
The local boundedness of gradients
of weak solutions to elliptic and
parabolic ϕ-Laplacian systems

Toni Scharle

A thesis submitted for the degree of
Master of Science

supervised by Prof. Dr. Lars Diening

May 2015



Abstract
In this thesis, a unified approach to prove the boundedness of gradients
of solutions to degenerate and singular elliptic and parabolic ϕ-Laplacian
systems is presented. At first, a Cacciopoli-type energy inequality with an
additional function f which can be chosen freely is proven. Then, Di Giorgi’s
method is applied using level sets which will lead to L∞-estimates on the
gradient of the weak solution ∇u.
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1 Introduction

In 1900 David Hilbert gave his famous talk ”mathematical problems“ 1 where
he discribed 25 at this moment unsolved problems whose solutions would
”bring an advancement to science“ 2.
The 19th problem reads:
“Are solutions to regular variational problems always neccecarily
analytic?”

One subclass of the variational problems Hilbert called regular are those
with a given N-function (see section 2) ϕ and a domain Ω where we want to
find a function u ∈ W 1,ϕ(Ω) (that means with

∫
Ω ϕ(|∇u|) < ∞) such that

the functional ∫
Ω

ϕ(|∇u|)

is minimized.
This leads to the elliptic Euler-Lagrange equation (defining v := |∇u|)

∆ϕu := div

(
ϕ′(v)

v
∇u
)

= 0

The best known special case of this is ϕ(t) = tp for p > 1 where we get the
p-Laplacian equation:

∆pu := div
(
vp−2∇u

)
= 0

We are now interested in local minimizers of those functionals. This
means we are looking for a function u with∫

suppζ

ϕ(|∇u|) ≤
∫

suppζ

ϕ(|∇u+∇ζ|)

for all ζ ∈ C1
0 (Ω). This leads to∫

ω

ϕ′(v)

v
∇u · ∇ζ = 0

for all ζ ∈W 1,ϕ
0 (ω) with ω b Ω.

Ennio de Giorgi proved in 1957 ([2]) the boundedness of solutions of linear
elliptic equations with a truncation method that does not rely on the linear-
ity of the problem and could be easily adopted to proof Hoelder continuity of

1”Mathematische Probleme”, see [1],translation by the author
2”von deren Behandlung eine Förderung der Wissenschaft sich erwarten lässt” see [1],

translation by the author
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the gradients of those solutions. Independently, Nash got similar results for
linear elliptic and parabolic equations in [3] and later Moser proved Harnack
estimates for those equations in [4].
The boundedness in cases which behave like the p-Laplacian equation was
given by Uhlenbeck in 1976 in [5] in a context of differential forms for p > 2.
The 1 < p < 2 case was solved by Acerbi and Fisco in [6]. Evans proved
in [7] qualitative L∞ bounds by mollification for p > 0 but had to assume
u ∈W 1,p+2 which makes the proof only practical for p > 2.
Marcellini and Papi proved an estimate on the gradient of solutions to el-
liptic ϕ-laplacian systems in [8](

sup
B
v

)2−βn
. −
∫
2B

ϕ(v) + 1

where β is a ϕ-dependent constant between 1
n and 2

n . The restrictions on ϕ
are so weak that linear and exponential growth cases are included.
Requiring the qualitative fact that ∇u ∈W 1,∞ at some point in their prove
Diening, Stroffolini and Verde proved in 2009 ([9]) under the assumption 2.4
which we will also impose on ϕ the bound

sup
B
ϕ(v) ≤ −

∫
2B

ϕ(v)

which we will get in theorem 4.4. This was further generalized (by substitut-
ing assumption 2.4 by a weaker assumption) by Breit, Stroffolini and Verde
in [10].
To get to this point we will use technical tools we develop in section 2 to get
an energy inequality in section 3.1. We will use this to prove the mentioned
L∞-bound with iterated truncations χv>γ in section 4.2.

We will also look at the parabolic systems. We call a function u ∈
Lϕloc(I × Ω,Rm) ∩ Cloc(I, L

2
loc(Ω,Rm)) with v := |∇u| ∈ Lϕloc(I × Ω,R) ∩

L2
loc(I×Ω,R) a local weak solution to ut−∆ϕu = 0 on a cylindrical domain

I × Ω ⊂ R1+n iff ∫
suppζ

ϕ′(v)

v
∇u · ∇ζ =

∫
suppζ

u · ∂tζ

for every function ζ ∈ W 1,2
loc (I, L2

loc(Ω,Rm)) with |∇ζ| ∈ Lϕloc(I × Ω) and
compact essential support in I ×Ω. Equations like this appear in for exam-
ple in the study of non Newtonian fluids and other problems of continuum
mechanics. (See [11].) For the parabolic p-Laplacian systems the most fre-
quently used result is the one obtained by E. DiBenedetto in [12]: If u is
a local weak solution to ut − ∆pu = 0 on a cylinder I × Ω we have on a
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cylinder Q = J ×B b I ×Ω where B is a ball of radius Rx in Rn and J an
interval of length Rt = αR2

x and (with νr
2 = n

2 (p− 2) + r, r ≥ 2):

sup
Q

v2

α
.−
∫
2Q

vp + α
p

2−p for p ≥ 2

sup
Q

v
νr
2

α
r−p
2−p−

n
2

.−
∫
2Q

vr

α
p−r
2−p

+ α
p

2−p for p ≤ 2

We see that this estimate is not useful if the integral on the right hand
side is small. The proof itself is not very straightforward and it needs at
first a qualitative statement about v being in L∞ to allow to absorb terms
on the left hand side. It starts with the very same Caciopolli-type energy
equation we will find in theorem 3.4 but uses another function f than we
will do. Similar results were obtained earlier by DiBenedetto and Friedman
in [13].
After proving an energy inequality for parabolic ϕ-Laplacian equation in
section 3.2 we will get in section 4.3:

min

{
v
ν
2

α
2−n
n

,
v2

α

}
≤ −
∫
2Q

v2

α
+ vp

We see that we do not have to differentiate between the singular and de-
generate cases which will allow us to generalize this result to the parabolic
ϕ-Laplacian and whereas DiBenedetto’s estimate just provides a constant
bound for v < αp−2, we just have a switch of exponents. We need ν2 > 0 or
p > 2− 4

n and in this case r = 2 is the optimal exponent in DiBenedetto’s es-
timate. For larger r there is also an estimate for smaller p provided. Those
estimates need a higher integrability for v. DiBenedetto’s result was ob-
tained earlier by Choe [14].
Acerbi and Mingone proved higher integrability for inhomogeneous p-Laplacian
systems in [15] regaining∇u ∈ Lqloc if F ∈ Lq in the inhomogeneity∇ · (|F|p−2F).

After proving the boundedness of the gradient of parabolic ϕ-Laplacian
systems we could for example apply a result obtained by Liebermann in [16]
where he proved Hoelder continuity of gradients of those solutions if there
is L∞loc regularity. If we have a cylinder J × B =: Q b I × Ω with spacial
radius Rx, length of |J | := Rt = αR2

x and M := ‖v‖L∞(Q) <
1
α we have for

a smaller cylinder Q′ := B′ × J ′ with spacial radius rx and |J ′| = rt = αr2
x

and a positive exponent µ:

oscQ′ |∇u| .M

(
rx
Rx

)µ
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2 N-Functions

We use some standard results and definitions from [17] and [18] and start
with the definition of an N-Function:

Definition 2.1. Let ϕ′ : R+
0 → R+

0 be a non-decreasing, continuous function
with ϕ′(0) = 0, ϕ′(t) > 0 for t > 0 and limt→∞ ϕ(t) =∞. Then we call the
convex function

ϕ(t) :=

t∫
0

ϕ′(s) ds

an N-Function.

Some common examples are ϕ(t) = tp or ϕ(t) = t log(t+ 1).

Let Ω ⊂ Rn be a domain. The set of measurable functions u : Ω→ Rm
with

∫
Ω ϕ(|u|) <∞ is called the Orlicz class Lϕ(Ω). Its span is called Orlicz

space Kϕ(Ω). On this span we can define the so called Luxemburg norm via

‖u‖ϕ = inf

t > 0 :

∫
Ω

ϕ

(
|u(x)|
t

)
dx ≤ 1


Definition 2.2. For a given N-function we define

ϕ′−1(t) = sup{s ≥ 0 : ϕ′(s) < t}

the complimentary N-function via

ϕ∗(t) =

t∫
0

(
ϕ′
)−1

(s) ds

It is easy to see that if ϕ is strictly increasing, ϕ′−1 is the true inverse
function of ϕ′.
The main reason for this definition is Young’s inequality which says that for
all ε > 0 there exists cε such that for all s, t > 0:

st ≤ εϕ(s) + cεϕ
∗(t)

This result is standard and can be found in any textbook about Orlicz
spaces, for example [18].
With our definition of the Luxemburg norm we also get a Hoelder type
inequality: ∫

Ω

fg ≤ 2‖f‖ϕ‖g‖ϕ∗
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Definition 2.3. The N-Function ϕ is said to fulfill the ∆2-condition iff we
have a constant c independent of t such that

ϕ(2t) ≤ cϕ(t)

As ϕ is strictly increasing we can find a constant for every a > 0 such that
ϕ(at) ≤ cϕ(t) uniformly in t. This also implies that the Orlicz-class Lϕ(Ω)
is a vector space and we therefore have Lϕ(Ω) = Kϕ(Ω). We will denote the
smallest constant c fulfilling ϕ(2t) ≤ cϕ(t) uniformly in t by ∆2(ϕ) and for
a family of N-Functions ϕs we will denote ∆2({ϕs}) := sups{∆2(ϕs)}.
If ∆2(ϕ) <∞ we get

ϕ(t) ∼ tϕ′(t) (2.1)

because of ϕ(t)
t = 1

t

∫ t
0 ϕ
′(s) ds ≤ ϕ′(t) and ϕ(t)

t ≥
ϕ(2t)
t∆2(ϕ) = 1

t∆2(ϕ)

∫ t
0 ϕ
′(s) ds+

1
t∆2(ϕ)

∫ 2t
t ϕ′(s) ds ≥ 1

∆2(ϕ)ϕ
′(t).

If we have ∆2(ϕ∗) <∞, we get

ϕ∗(t) ∼ t (ϕ∗)′ (t) = t
(
ϕ′
)−1

(t)

and therefore after setting t = ϕ′(s):

ϕ∗
(
ϕ′(s)

)
∼ ϕ′(s)s ∼ ϕ(s) (2.2)

In this thesis we will usually impose a stronger condition than the ∆2-
condition on ϕ:

Assumption 2.4.
ϕ′(t) ∼ ϕ′′(t)t (2.3)

Definition 2.5. For a given N-function ϕ we define the following functions
for λ, t ∈ R+

0 and Q ∈ Rn×m:

ϕ′λ(t) :=
ϕ′(λ+ t)

λ+ t
t

ψ′(t) :=
√
ϕ′(t)t

A(Q) :=
ϕ′(|Q|)
|Q|

Q

V(Q) :=
ψ′(|Q|)
|Q|

Q

We will now prove some useful estimates on those quantities.

Theorem 2.6. With the Definitions as above and ϕ with ∆2({ϕ,ϕ∗}) <∞
fulfilling assumption 2.4 we have for all P,Q,R ∈ Rn×m:

(a) ∂ijAkl(P) = ϕ′(|P|)
|P|

(
δ̃ikδ̃jl −

PijPkl
|P|2

)
+ ϕ′′(|P|)PijPkl|P|2 for all P ∈ Rn×m

where δ̃ji is the Kronecker Delta.
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(b) |A(P)−A(Q)| . ϕ′′(|P|+ |Q|)|P−Q|

(c) ϕ′′(|P|+ |Q|)|P−Q| ∼ ϕ′|P|(|P−Q|)

(d) |P−Q|2ϕ′′(|P|+ |Q|) ∼ ϕ|P|(|P−Q|) ∼ |V(P)−V(Q)|2 ∼ (A(P)−
A(Q))(P−Q)

(e) ϕ′|P|(|P−Q|) . ϕ′|R|(|P−R|) + ϕ′|R|(|Q−R|)

Proof. (a) We use ∂ijPkl = δ̃ikδ̃jl and ∂ij |P| = Pij
|P|

∂ij

(
ϕ′(|P|)
|P|

Pkl

)
=
ϕ′(|P|)
|P|

δ̃ikδ̃jl +
ϕ′′(|P|)
|P|

Pij
|P|

Pkl −
ϕ′(|P|)
|P |2

Pij
|P|

Pkl

(b) Define the convex combination [P,Q]s := (sP+(1−s)Q) and estimate

|A(P)−A(Q)| =

∣∣∣∣∣∣
1∫

0

(∇A)([P,Q]s)(P−Q) ds

∣∣∣∣∣∣
.

1∫
0

ϕ′(|[P,Q]s|)
|[P,Q]s|

ds|P−Q|

.
ϕ′(|P|+ |Q|)
|P|+ |Q|

|P−Q|

. ϕ′′(|P|+ |Q|)|P−Q|

The inequality
∫ 1

0
ϕ′(|[P,Q]s|)
|[P,Q]s| ds . ϕ′(|P|+|Q|)

|P|+|Q| is proven in the appendix
in lemma 5.6.

(c) We have

ϕ′′(|P|+ |Q|)|P−Q| ∼ ϕ′(|P|+ |Q|)
|P|+ |Q|

|P−Q|

∼ϕ
′(|P|+ |P−Q|)
|P|+ |P−Q|

|P−Q| ∼ ϕ′|P|(|P−Q|)

where we used the assumption 2.4 on ϕ, the ∆2-condition and the fact
that |P|+|Q| ∼ |P|+|P−Q| via |P|+ |Q|= |P|+ |Q−P + P|≤ 2|P|+ |Q−P|
and |P|+ |P−Q| ≤ 2|P|+ |Q|.

(d) The first similarity follows directly from point (c) and ϕ′(t)t ∼ ϕ(t)
For the second similarity we first note that the N-function ψ fulfills
assumption 2.4 and that we have ψ′′(t) ∼

√
ϕ′′(t). (Both facts are

proven in the appendix in lemma 5.7.) This means we can replace ϕ
by ψ and A by V in the proof of part (b) and get
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|V(P)−V(Q)|2 ∼ |P−Q|2
(
ψ′′(|P|+ |Q|)

)2 ∼ |P−Q|2ϕ′′(|P|+ |Q|)

For the third similarity we use the the compatibility of Frobenius-Norm
with Matrix multiplication and point (b) to get:

|(A(P)−A(Q))(P−Q)| ≤|A(P)−A(Q)| |P−Q|
.ϕ′′(|P|+ |Q|)|P−Q|2

For the other direction we first note that we get for every P,B ∈ Rn×m:

Bij (∂ijAkl) (P )Bkl =
ϕ′(|P|)
|P|

(
|B|2 − |P ·B|

2

|P|2

)
+ ϕ′′(|P|) |P ·B|

2

|P|2

≥cϕ′′(|P|)
(
|B|2 − |P ·B|

2

|P |2

)
+ ϕ′′(|P|) |P ·B|

2

|P|2

=(c− ε)ϕ′′(|P|)
(
|B|2 − |P ·B|

2

|P|2

)
+ εϕ′′(|P|)|B|2 + (1− ε)ϕ′′(|P|) |P ·B|

2

|P|2

≥εϕ′′(|P|)|B|2

where we used point (a) and took c ∈ R+ such that ϕ′(t)
t ≥ cϕ

′′(t) and
0 < ε ≤ min{1, c}.
We then estimate (A(P)−A(Q))(P−Q) using 5.6 and the fact that
ϕ fulfills assumption 2.4:

(A(P)−A(Q))(P−Q) =

1∫
0

(∇A)([P,S]s)(P−Q)(P−Q) ds

&

1∫
0

ϕ′′(|[P,S]s) ds|P−Q|2

∼ϕ′′(|P|+ |S|)|P−Q|2

(e) Let us at first assume that |Q−R| ≤ |P−R| and therefore |P−Q| ≤
|P − R + R − Q| ≤ |P − R| + |Q − R| ≤ 2|P − R|. We also recall
that ∆2(ϕλ) is bound uniformly in λ as proven in lemma 5.8 and we
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therefore get ϕ′λ(2s) ∼ ϕ′λ(t) uniformly in t and λ. Then we have

ϕ′|P|(|P−Q|) ≤ ϕ′|P|(2|P−R|)

∼ ϕ′|P|(|P−R|)

=
ϕ′(|P−R|+ |P|)
|P−R|+ |P|

|P−R|

∼ ϕ′(|P−R|+ |R|)
|P−R|+ |R|

|P−R|

= ϕ′|R|(|P−R|)

≤ ϕ′|R|(|P−R|) + ϕ′|R|(|Q−R|)

where we used |P| + |P − Q| = |P − Q + Q| + |P − Q| < 2(|Q| +
|P − Q|) and therefore |P| + |P − Q| ∼ |Q| + |P − Q|. As we have
ϕ′(|P−Q|+|P|)
|P−Q|+|P| |P − Q| ∼ ϕ′(|P−Q|+|Q|)

|P−Q|+|Q| |P − Q| like in the 4th step we

can interchange the roles of |P| and |Q|.
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3 Energy estimates

3.1 The elliptic case

The main result of this section is the following theorem.

Theorem 3.1 (Energy estimate for the elliptic case). Let ϕ be an N-
function with ∆2({ϕ,ϕ∗}) < ∞ satisfying the assumption 2.4 and let u ∈
W 1,ϕ
loc (Ω,Rm) be a local weak solution to

∆ϕu = 0

on a domain Ω ⊂ Rn and let f : R+
0 → R be a non-decreasing, non-negative,

bounded, piecewise continuously differentiable function which is constant for

large arguments. Define V(Q) =

√
ϕ′(|Q|)
|Q| Q as above and denote v = |∇u|

and let B b Ω be a ball of radius R and η a C∞0 (B) function with 0 ≤ η ≤ 1.
Then we get

−
∫
B

|∇V(∇u)|2ηqf(v) . −
∫
B

ϕ(v)|∇η|2f(v) (3.1)

Before we prove this we restrict the choice of f .

Lemma 3.2. The assertion of theorem 3.1 holds with the additional as-
sumption f ∈ C1 with f ′(t) ≥ 0 and f ′(t) = 0 for t large enough.

Proof. We denote (τj,hg)(x) := g(x + hej) − g(x), (δj,hg)(x) = 1
h(τj,hg)(x)

and δhg :=
∑n

j=1 (δj,hg)ej and take a C∞0 function η with supp η ⊂ B and
0 ≤ η ≤ 1. We use the test function ζ := δj,−h(f(|δhu|))δj,hu ηq where we
chose q > 2 such that ϕ(ηq−1t) ≤ ηqϕ(t) which is possible because of lemma
5.9 and we note that q only depends on ϕ and not on η. We get

0 =〈A(∇u),∇(δj,−h(f(|δhu|)δj,hu ηq))〉 = 〈δj,hA(∇u),∇(f(|δhu|)δj,hu ηq)
=〈δj,hA(∇u), f ′(|δhu|)∇|δhu|δj,hu ηq + f(|δhu|)δj,h∇u + f(|δhu|)δj,hu qηq−1∇η〉
=:Ij + IIj + IIIj (3.2)

We will at first look at Ij in 3.2. We note that |δj,hu|f ′(|δhu|) ≤ |δhu|f ′(|δhu|)
is bounded uniformly in h because of f ′(t) = 0 for large t. For the integrand
of Ij this gives

|δj,hA(∇u)f ′(|δhu|)∇|δhu|δj,huηq|
≤|δj,hA(∇u)| |∇|δhu|| |f ′(|δhu|)δj,hu|

.
1

h2
|τj,hA(∇u)| |τh∇u| (3.3)
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We now use 2.6 (b) and (c)

|(τj,hA)(x)| = |A((∇u)(x+ h))−A((∇u)(x))|
. ϕ′′(|(∇u)(x+ h)|+ |(∇u)(x)|)|(τj,h∇u)(x)|
∼ ϕ′|∇u|(|(τj,h∇u)(x)|) (3.4)

Using this we return to 3.3 and denote maxj=1,2...,n |τj,h∇u| = |τj0,h∇u| and
note that for n < ∞ all p-norms of Rn including the supremum norm are
equivalent and estimate using the fact that ϕ′|∇u| is increasing and 2.6 (d):

1

h2
|(τj,hA)(x)| |τh∇u| ∼ 1

h2
ϕ′|∇u|(|(τj,h∇u)(x)|) |τh∇u|

.
1

h2
ϕ′|∇u|(|(τj0,h∇u)(x)|) |τh,j0∇u|

∼ 1

h2
ϕ|∇u|(|(τj0,h∇u)(x)|)

∼ 1

h2
|τj0,hV(∇u)(x)|2

∼|δhV(∇u)(x)|2 (3.5)

As h → 0, this goes to |∇V(∇u)|2 in L2(B) since V(∇u) ∈ W 1,2
loc (Ω) as

proven in Theorem 5.11. This means we can use a generalized version of the
theorem of dominated convergence of Lebesgue which says that if fn → f
pointwise almost everywhere and |fn| < gn for an L1 convergent sequence
gn we have

∫
fn →

∫
f .

We now need δk,hv → ∂kv, δj,h(Aki(∇u))→ ∂lpAki(∇u)∂j∂lup and δj,hui →
∂jui. This would be implied by ∇u ∈ W 2,1

loc (Ω). It would be possible to
show this for a shifted N-function ϕλ with λ > 0 and then we’d have to take
the limit λ→ 0 in the end like in [9]. For the sake of clarity and simplicity
we will just assume this here. This gives (using the Einstein summation
convention and writing δ̃ij for the Kronecker-Delta and after a summation
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over j):

I :=

m∑
j=1

Ij =

∫
B

δkvδj (Aki(∇u)) δjuif
′(|δhu|) dx

→
∫
B

∂kv (∂lpAki) (∇u)∂j∂lup∂juif
′(v) dx

=

∫
B

∂kv

(
ϕ′(v)

v

(
δ̃lkδ̃pi −

∂lup∂kui
v2

)
+ ϕ′′(v)

∂lup ∂kui
v2

)
∂j∂lup ∂juif

′(v) dx

=

∫
B

ϕ′(v)

v

(
∂lv ∂j∂lui ∂jui −

∂kv ∂kui ∂j∂lup ∂lup∂kui
v2

)
f ′(v) dx

+

∫
B

ϕ′′(v)
∂kv ∂kui ∂j∂lup ∂lup∂kui

v2
f ′(v) dx

=

∫
B

(
ϕ′(v)

v

(
|∇v|2 − |∇v · ∇u|2

v2

)
+ ϕ′′(v)

|∇v · ∇u|2

v2

)
f ′(v) dx

Since we have f ′ ≥ 0 and |∇v · ∇u|2 ≤ v2|∇v|2 because of the Cauchy-
Schwartz inequality, we get

lim
h→0

I ≥ 0 (3.6)

To estimate IIj we apply theorem 2.6(d) and get like in [19]:

(τj,hA(∇u))(x) · (τj,h∇u)(x)

= (A(∇u(x+ h))−A((∇u)(x))) · (τj,h∇u)(x)

∼ |(τj,hV(∇u))(x)|2

Dividing by h2 gives

(δj,hA(∇u))(x) · (δj,hδu)(x) ∼ |(δj,hV(∇u))(x)|2

Using this we get

IIj = 〈δj,hA(∇u), f(|δhu|)δj,h∇u ηq〉 ∼ −
∫
B

|δj,hV(∇u)|2f(|δhu|)ηq (3.7)

We use 3.4 to estimate IIIj and note that

|(δj,hu)(x)| =

∣∣∣∣∣∣
h

−
∫
0

(∂ju)(x+ sej) ds

∣∣∣∣∣∣ ≤
h

−
∫
0

|(∇u ◦ Tsej )(x)|ds

This gives
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|IIIj | =|〈δj,hA(∇u), f(|δhu|)δj,hu qηq−1∇η〉|

.
1

h2
−
∫
B

h

−
∫
0

ηq−1ϕ′|∇u|(|τj,h∇u|)|∇u ◦ Tsej |h|∇η|f(|δhu|) ds (3.8)

We now estimate the integrand using theorem 2.6 (e), Young’s inequality,
equation 2.2, h|∇η| ≤ 1 with Lemma 5.10 and theorem 2.6 (d):

ηq−1ϕ′|∇u|(|τh∇u|)|∇u ◦ Tsej |h|∇η|

.ηq−1
(
ϕ′|∇u◦Tsej |

(|τj,h−s∇u ◦ Tsej |) + ϕ′|∇u◦Tsej |
(|τs∇u|)

)
h|∇η| |∇u ◦ Tsej |

≤ε
(
ϕ|∇u◦Tsej |

)∗ (
ηq−1ϕ′|∇u◦Tsej |

(|τj,h−s∇u ◦ Tsej |)
)

+ ε
(
ϕ|∇u◦Tsej |

)∗ (
ηq−1ϕ′|∇u◦Tsej |

(|τs∇u|)
)

+ cεϕ|∇u◦Tsej |
(
h|∇η| |∇u ◦ Tsej |

)
.εηq

(
ϕ|∇u◦Tsej |

)∗ (
ϕ′|∇u◦Tsej |

(|τj,h−s∇u ◦ Tsej |)
)

+ εηq
(
ϕ|∇u◦Tsej |

)∗ (
ϕ′|∇u◦Tsej |

(|τs∇u|)
)

+ cεh
2|∇η|2ϕ

(
|∇u ◦ Tsej |

)
.εηqϕ|∇u◦Tsej |

(
|τj,h−s∇u ◦ Tsej |

)
+ εϕ|∇u◦Tsej | (|τs∇u|) + cεh

2|∇η|2ϕ
(
|∇u ◦ Tsej |

)
∼εηq|τj,h−sV(∇u) ◦ Tsej |2 + εηq|τj,sV (∇u)|2 + cεh

2|∇η|2ϕ
(
|∇u ◦ Tsej |

)
(3.9)

Putting this in 3.8 we get

|IIIj | =|〈δj,hA(∇u), f(|δhu|)δj,hu qηq−1∇η〉|

.
ε

h2
−
∫
B

h

−
∫
0

∣∣τj,h−sV(∇u) ◦ Tsej
∣∣2 f(|δhu|) ds

+
ε

h2
−
∫
B

h

−
∫
0

|τj,sV(∇u)|2 f(|δhu|) ds

+ cε−
∫
B

h

−
∫
0

ϕ(|∇u ◦ Tsej |)|∇η|2f(|δhu|) ds (3.10)
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Putting 3.7 and 3.10 in 3.2 we get after a summation over j

I + I′ :=I +−
∫
B

|δhV(∇u)|2f(|δhu|)ηq

.ε
m∑
j=1

−
∫
B

h

−
∫
0

∣∣∣∣τj,h−sV(∇u) ◦ Tsej
h

∣∣∣∣2 f(|δhu|)ηq ds

+ ε

m∑
j=1

−
∫
B

h

−
∫
0

∣∣∣∣τj,sV(∇u)

h

∣∣∣∣2 f(|δhu|)ηq ds

+ cε

m∑
j=1

−
∫
B

h

−
∫
0

ϕ(|∇u ◦ Tsej |)|∇η|2f(|δhu|) ds

=: ε

m∑
j=1

II′j + ε

m∑
j=1

III′j + cε

m∑
j=1

IV′j (3.11)

We now want to take the limit h → 0 in 3.11 and know from equa-
tion 3.6 that limh→0 I ≥ 0 and note that V(∇u) ∈ W 1,2

loc (Ω) as proved in
theorem 5.11. This means we have δV(∇u) → ∇V(∇u) in L2(B). Since
u ∈ W 1,ϕ

loc (Ω) we also have δhu→ ∇u and therefore f(|δhu|)→ f(v) point-
wise almost everywhere for a subsequence and as η ∈ C∞0 (B) ηq is uniformly
continuous.
For I′ this means (passing to this subsequence)

∣∣∣∣∣∣−
∫
B

|δhV(∇u)|2f(|δhu|)ηq −−
∫
B

|∇V(∇u)|2f(v)ηq

∣∣∣∣∣∣
≤−
∫
B

∣∣|δhV(∇u)|2 − |∇V(∇u)|2
∣∣ f(|δhu|)ηq +−

∫
B

|∇V(∇u)|2 |f(|δhu)− f(v)|ηq

=:I′1 + I′2

Since f(|δhu|)ηq ≤ ‖f‖∞ and δV(∇u)→ ∇V(∇u) in L2(B) I′1 tends to zero.
For the integrand in I′2 we have the dominating function ‖f‖∞ |∇V(∇u)|2
and this summand also goes to zero by dominated convergence as f(|δu|)→
f(v) pointwise almost everywhere. In total this gives

I′ → −
∫
B

|∇V(∇u)|2f(v)ηq (3.12)
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We now look at IV′j and use the theorem of Fubini-Tonelli:∣∣∣∣∣∣−
∫
B

h

−
∫
0

ϕ(|∇u ◦ Tsej |)|∇η|2f(|δhu|) ds−−
∫
B

h

−
∫
0

ϕ(|∇u|)|∇η|2f(v) ds

∣∣∣∣∣∣
≤−
∫
B

h

−
∫
0

∣∣(ϕ(|∇u ◦ Tsej |)− ϕ(|∇u|)
)
|∇η|2f(|δhu|)

∣∣ ds

+−
∫
B

|ϕ(|∇u|)|∇η|2 (f(|δhu|)− f(v)) |

.‖f |∇η|2‖∞

h

−
∫
0

−
∫
B

|ϕ(|∇u ◦ Tsej |)− ϕ(|∇u|)| ds+−
∫
B

ϕ(|∇u|)|f(|δhu|)− f(v)| |∇η|2

=:IV′j,1 + IV′j,2

To show IV′j,2 → 0 we use dominated convergence with the dominant ϕ(v)‖f |∇η|2‖∞
and f(|δhu|) → f(v) pointwise almost everywhere for a subsequence as
above. To estimate IV′j,1 we use the Lϕ-continuity of translations and the
third implication in lemma 5.2 and observe that

g : s 7→ −
∫
B

∣∣ϕ(|∇u ◦ Tsej |)− ϕ(|∇u|)
∣∣

is a continuous function with g(0) = 0. But with the fundamental theorem
of calculus we have

lim
h→0

1

h

h∫
0

g(s) ds =
d

dh

h∫
0

g(s) ds = g(0) = 0

and therefore IV′j,1 → 0 and after choosing a subsequence we get

IV′j → −
∫
B

ϕ(|∇u|)|∇η|2f(v) (3.13)

We now want to estimate III′j (from 3.11) and observe using h > s:

III′j = −
∫
B

h

−
∫
0

∣∣∣∣τj,sV(∇u)

h

∣∣∣∣2 f(|δhu|)ηq ds ≤
h

−
∫
0

−
∫
B

|δj,sV(∇u)|2 f(|δhu|)ηq ds =: III′′j

We estimate this term:
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∣∣∣∣∣∣
h

−
∫
0

−
∫
B

|δj,sV(∇u)|2f(|δhu|)ηq ds−
h

−
∫
0

−
∫
B

| |∂jV(∇u)|2f(v)ηq ds

∣∣∣∣∣∣
≤‖f‖∞

h

−
∫
0

−
∫
B

∣∣δj,sV(∇u)|2 − |∂jV(∇u)|2
∣∣ ds

+

h

−
∫
0

−
∫
B

|∂jV(∇u)|2|f(|δhu|)− f(v)|ηq ds|

=:III′′j,1 + III′′j,2

We have III′′j,2 → 0 for h → 0 in a subsequence as we had IV′j,2 → 0 as
the integrand is bounded by ‖f‖∞|∂jV(∇u)|2 ∈ L1(B) and we can use
dominated convergence.
To estimate III′′j,1 we note that if wn → w in L2 also ‖wn‖L2 → ‖w‖L2 and

we get using V(∇u) ∈W 1,2
loc (Ω):

s 7→ −
∫
B

(|δj,sV(∇u)|2 − |∂jV(∇u)|2)

is also a continuous function which is 0 at s = 0 and using the same argu-
ments we used for IV′j we get III′′j,1 → 0 and therefore

III′j ≤ III′′j → −
∫
B

|∂jV(∇u)|2f(v)ηq (3.14)

For II′j in 3.11 we first use the invariance of the Lebesgue measure under
translations. We also chose h small enough that the closure of the ball B′

with the same center as B and radius r+h is contained in Ω which is possible
since B b Ω and get

|B|II′J =|B| −
∫
B

h

−
∫
0

∣∣∣∣τj,h−sV(∇u) ◦ Tsej
h

∣∣∣∣2 f(|δhu|)ηq ds

≤
h

−
∫
0

∫
B′

∣∣∣∣τj,h−sV(∇u)

h− s

∣∣∣∣2 ((ηqf(|δhu|)) ◦ T−sej
)

ds

=

h

−
∫
0

∫
B′

∣∣∣∣τsV(∇u)

s

∣∣∣∣2 ((ηqf(|δhu|)) ◦ T(s−h)ej

)
ds =: II′′j

We then have
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∣∣∣∣∣∣
h

−
∫
0

∫
B′

|δs,jV(∇u)|2
(

(ηqf(|δhu|)) ◦ T(s−h)ej

)
− |∂jV(∇u)|2f(v)ηq ds

∣∣∣∣∣∣
≤

h

−
∫
0

∫
B′

∣∣|δs,jV(∇u)|2 − |∂jV(∇u)|2
∣∣ (ηqf(|δhu|)) ◦ T(s−h)ej ds

+

h

−
∫
0

∫
B′

|∂jV(∇u)|2
∣∣∣(ηqf(|δhu|)) ◦ T(s−h)ej − (ηqf(|δhu|)) ◦ T−hej

∣∣∣ ds

+

h

−
∫
0

∫
B′

|∂jV(∇u)|2
∣∣(ηqf(|δhu|)) ◦ T−hej − η

qf(|δhu|)
∣∣ ds

+

h

−
∫
0

∫
B′

|∂jV(∇u)|2 |f(|δhu|)− f(v)| ηq ds

=:II′′1 + II′′2 + II′′3 + II′′4

We have II′′1 → 0 for the same reasons as IV′j,1 → 0 and III′j,1 → 0. The
integrands of II′′2 and II′′3 are bounded by the L1

loc-function ‖f‖∞|∂jV(∇u)|2
and go to zero for s → 0 pointwise almost everywhere. This means the
integrals over B′ go to zero and we can use the fundamental theorem as
before. We get II′′4 → 0 via dominated convergence like III′′j,2.
This means in the end (using also suppη ⊂ B):

II′j ≤
1

|B|
II′′j → −

∫
B

|∂jV(∇u)|2f(v)ηq (3.15)

Now we can let h→ 0 in 3.11 and get using 3.12, 3.13, 3.14 and 3.15

−
∫
B

|∇V(∇u)|2ζqf(v) . 2ε−
∫
B

|∇V(∇u)|2ζqf(v)+cε−
∫
B

ϕ(v)|∇ζ|2f(v) (3.16)

We choose ε small enough that we can absorb the first summand of the right
hand side on the left hand side and the proof for f ∈ C1 is concluded.

Proof of theorem 3.1. For the case of a general non decreasing bounded
piecewise differentiable function f approximate it by a sequence of non-
decreasing, uniformly bounded C1 functions fk with limk→∞ fk(x) = f(x)
for all x ∈ R+

0 . We use 3.2 and get
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−
∫
B

Dk := −
∫
B

|∇V(∇u)|2ηqfk(v) . −
∫
B

ϕ(v)|∇η|2fk(v) =: −
∫
B

Ek

As we have fk → f pointwise everywhere, we get Dk → D∞ and Ek → E∞
almost everywhere. As we have Ek ≤ ‖f‖∞|∇V(∇u)|2ηq ∈ L1(B) and
Ek ≤ ‖f‖∞ϕ(v)|∇η|2 ∈ L1(B), we can use dominated convergence and get
the desired result.

Corollary 3.3. Let ϕ be an N-function with ∆2({ϕ,ϕ∗}) satisfying the as-
sumption 2.4 and let u ∈ W 1,ϕ

loc (Ω,Rm) be a local weak solution to ∆ϕu = 0
and G(t) := (ψ′(t)− ψ′(γ))+ with a non negative real number γ
Then we have

−
∫
B

|∇
(
G(v)η

q
2

)
|2 . −

∫
B

ϕ(v)χv>γ |∇η|2 (3.17)

Proof. We use f(t) = χt>γ . With theorem 3.1 we get

−
∫
B

|∇V(∇u)|2ηqχt>γ . −
∫
B

ϕ(v)|∇η|2χt>γ

For the left hand side we use that |(|Q|)′| = | Q|Q| | ≤ 1 and (x+)′ = χR+(x)
which are both bounded which means that we can apply the chain rule for
sobolev functions and χt>γ = χ2

t>γ almost everywhere:

−
∫
B

|∇V(∇u)|2ηqχv>γ ≥ −
∫
B

|∇ (|V(∇u)|) |2ηqχv>γ = −
∫
B

∣∣∣∇ (ψ′(v)
)
χv>γη

q
2

∣∣∣2
≥−
∫
B

∣∣∣∇ (ψ′(v)− ψ′(γ)
)
χt>γη

q
2

∣∣∣2 = −
∫
B

∣∣∣∇((ψ′(v)− ψ′(γ)
)

+

)
η
q
2

∣∣∣2 (3.18)

As we also haveG2(v) ≤ ψ′(v)2χv>γ ∼ ϕ(v)χv>γ and |∇(η
q
2 )| = q

2η
q
2
−1|∇η| .

|∇η| we get

−
∫
B

G2(v)
∣∣∣∇(η q2)∣∣∣2 . −

∫
B

ϕ(v)|∇η|2χt>γ (3.19)

After adding 3.18 and 3.19 we conclude the proof with the product rule.
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3.2 The parabolic case

Theorem 3.4 (Energy estimate for the inelliptic case). Let ϕ be an N-
function with ∆2({ϕ,ϕ∗}) < ∞ satisfying the assumption 2.4 and let u ∈
Lϕloc(J×Ω,Rm)∩L2

loc(J×Ω,Rm) with |∇u| := v ∈ Lϕloc(J×Ω)∩L2
loc(J×Ω)

be a local weak solution to
∆ϕu = ∂tu

on a cylindrical domain J × Ω ⊂ R1+n and let f : R+
0 → R be a non-

decreasing, piecewise continuously differentiable, bounded function which is

constant for large arguments. Define V(Q) =

√
ϕ′(|Q|)
|Q| Q as usual and

H ′(t) = tf(t) and let Q := I × B b J × Ω be a cylinder where B is a
ball in Rn of radius Rx and I an interval of length Rt = αR2

x and η a
C∞0 (Q) function with 0 ≤ η ≤ 1.
Then we get

sup
I

1

α
−
∫
B

H(v)ηq +R2
x−
∫
Q

|∇V(∇u)|2ηqf(v)

.R2
x−
∫
Q

|V(∇u)|2|∇η|2f(v) +R2
x−
∫
Q

H(v)ηq−1∂tζ (3.20)

As in the elliptic case, we start with a lemma restricting f to differen-
tiable functions with f ′ ≥ 0.

Lemma 3.5. The assertion of theorem 3.4 holds with the additional as-
sumption f ∈ C1 with f ′(t) = 0 for large t.

Proof. As we do not have (weak) differentiability of u or v in t, we need to
use a standard mollifier ξσ(t) in one dimension and denote gσ = g ∗ ξσ This
is differentiable in time for all σ > 0 and converges to g(x, t) in Lϕ(Q) for
σ → 0 if g ∈ Lϕ(Q).
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For the equation this means using the test function g:∫
Q

[A(∇u)]σ (t, x)∇g(t, x) dz

=

∫
Q

∫
A(∇u)(t− τ, x)ξσ(τ)∇g(t, x)dτ dz

=

∫ ∫
Q

A(∇u)(t, x)∇g(t+ τ, x) dz ξσ(τ)dτ

=

∫ ∫
Q

u(t, x) (∂tg) (t+ τ, x) dz ξσ(τ)dτ

=

∫
Q

∫
u(t− τ, x) ξσ(τ)dτ (∂tg) (t, x) dz

=

∫
Q

uσ (∂tg) (t, x) dz

We now use the test function g(t, x) := δh,−j(f(|δhuσ|)δh,juσρ(t)ηq) where
ρ(t) is a C∞-approximation of χt>t0 and after a summation over j using
Einstein’s summation convention and recalling H ′(t) = tf(t) we get:

−
∫
Q

[A(∇u)]σ∇δh,−j(f(|δhuσ|)δh,juσρ(t)ηq) dz = −
∫
Q

uσ (∂tδh,−j(f(|δhuσ|)δh,juσρ(t)ηq)) dz

−
∫
Q

[δh,jA(∇u)]σ∇(f(|δhuσ|)δh,juσρ(t)ηq) dz = −−
∫
Q

∂tδh,juσf(|δhuσ|)δh,juσρ(t)ηq dz

= −−
∫
Q

f(|δhuσ|)|δhuσ|∂t|δhuσ|ρ(t)ηq dz = −−
∫
Q

∂tH(|δhuσ|)ρ(t)ηq dz

= −
∫
Q

H(|δhuσ|)∂t(ρ(t)ηq) dz

= −
∫
Q

H(|δhuσ|)ηq∂tρ(t) dz +−
∫
Q

H(|δhu|σ)ρ(t)∂tη
q dz

= −
∫
Q

H(|δhuσ|)ρ(t)∂tη
q dz −−

∫
Q

ρ(t)∂t (H(|δhuσ|)ηq) dz

We now note that χt0,T ≤ 1 and let ρ → χt0,T (as we have smoothed
the functions the limits are easily justified by the dominated convergence
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theorem) and get

I + II :=−
∫
Q

[δh,jA(∇u)]σ∇(f(|δhuσ|)δh,juσρ(t)ηq) dz +
1

Rt
−
∫
B

(H(|δhuσ|)ηq) dx
∣∣
t=T

≤−
∫
Q

H(|δhuσ|)∂t (ηq) dz := III (3.21)

We now want to take the limit σ → 0.

I =−
∫
Q

[δh,jA(∇u)]σ (δh,j∇uσ)f(|δhuσ|)ρ(t)ηq dz

+−
∫
Q

[δh,jA(∇u)]σ∇(f(|δhuσ|))δh,juσρ(t)ηq dz

+−
∫
Q

[δh,jA(∇u)]σ ρ(t)∇(ηq)δh,juσf(|δhuσ|) dz =: I1 + I2 + I3

We note that A(∇u) ∈ Lϕ∗(Q) since

ϕ∗
(∣∣∣∣ϕ′(v)

v
∇u

∣∣∣∣) = ϕ∗(ϕ′(v)) ∼ ϕ(v) ∈ L1
loc(J × Ω)

And as Lϕ
∗
(Q) is a vector space because of ∆2(ϕ∗) < ∞, we also have

δh,jA(∇u) ∈ Lϕ∗(Q) and therefore [δh,jA(∇u)]σ → δh,jA(∇u) in Lϕ
∗
(Q).

This means we have for a general g ∈ Lϕ(Q) (with therefore gσ → g in
Lϕ(Q) and ||gσ||Lϕ(Q) uniformly bounded):

∣∣∣∣∣∣∣−
∫
Q

[δh,jA(∇u)]σ gσ − δh,jA(∇u)g dz

∣∣∣∣∣∣∣
≤−
∫
Q

∣∣[δh,jA(∇u)]σ − δh,jA(∇u)
∣∣ |gσ|dz +−

∫
Q

|δh,jA(∇u)| |gσ − g|dz

≤2‖[δh,jA(∇u)]σ − δh,jA(∇u)‖
Lϕ∗
‖gσ‖Lϕ + 2‖δh,jA(∇u)‖Lϕ∗‖gσ − g‖Lϕ → 0
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Using δh,j∇u ∈ Lϕ(Q) and dominated convergence we get for I1:∣∣∣∣∣∣∣−
∫
Q

[δh,jA(∇u)]σ (δh,j∇uσ)f(|δhuσ|)ρ(t)ηq − δh,jA(∇u)δh,j∇uf(|δhu|)ρ(t)ηq dz

∣∣∣∣∣∣∣
≤‖f(|δhuσ|)ρ(t)ηq‖∞−

∫
Q

| [δh,jA(∇u)]σ (δh,j∇uσ)− δh,jA(∇u)δh,j∇u|dz

+‖ρ(t)ηq‖∞−
∫
Q

|δh,jA(∇u)δh,j∇u| |f(|δhuσ|)− f(|δhu|)| dz → 0

For I2 we can use the chain rule since f is globally Lipschitz and differen-
tiable:

I2 = −
∫
Q

[δh,jA(∇u)]σ f
′(|δhuσ|)

δh,kuσ∇δh,kuσ
|δhuσ|

δh,juσρ(t)ηq

We now see that f ′(|δhuσ|)δh,juσ is bounded uniformly in σ as f ′(t)t is

bounded and therefore ‖f ′(|δhuσ|)
δk,huσδh,juσ
|δhuσ | ‖

∞
is uniformly bounded in σ.

Using this, δk,h∇u ∈ Lϕ(Q) and dominated convergece we get∣∣∣−∫
Q

[δh,jA(∇u)]σ δk,h∇uσf
′(|δhuσ|)

δk,huσδh,juσ
|δhuσ|

ρ(t)ηq

−δh,jA(∇u)δk,h∇uf ′(|δhu|)
δk,huδh,ju

|δhu|
ρ(t)ηq dz

∣∣∣
≤
∣∣∣∣∣∣∣∣f ′(|δhuσ|)δk,huσδh,juσ|δhuσ|

ρ(t)ηq
∣∣∣∣∣∣∣∣
∞
−
∫
Q

| [δh,jA(∇u)]σ δk,h∇uσ − δh,jA(∇u)δk,h∇u| dz

+−
∫
Q

δh,jA(∇u)δk,h∇u

∣∣∣∣f ′(|δhuσ|)δk,huσδh,juσ|δhuσ|
− f ′(|δhu|)

δk,huδh,ju

|δk,hu|

∣∣∣∣ ρ(t)ηq dz → 0

Treating I3 works the same way as treating I1 using that ‖f(|δhuσ|)ρ(t)∇ζ‖∞
is uniformly bounded in σ and δh,ju ∈ Lϕ(Q):∣∣∣∣∣∣∣−
∫
Q

(
[δh,jA(∇u)]σ δh,juσf(|δhuσ|)ρ(t)∇(ηq)− δh,jA(∇u)δh,juf(|δhu|)ρ(t)∇(ηq)

)
dz

∣∣∣∣∣∣∣
≤‖f(|δhuσ|)ρ(t)∇(ηq)‖∞−

∫
Q

| [δh,jA(∇u)]σ δh,juσ − δh,jA(∇u)δh,ju|dz

+−
∫
Q

|δh,jA(∇u)δh,ju| |f(|δhuσ|)− f(|δhu|)| |ρ(t)∇(ηq)| dz → 0
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We now want to estimate II and III in equation 3.21. For this reason we
first note for b > a:

|H(b)−H(a)| =
b

−
∫
a

sf(s) ds ≤ ‖f‖∞

b

−
∫
a

s ds =
‖f‖∞

2

(
b2 − a2

)
(3.22)

and since ∇u ∈ L2(Q,Rm) we have |δhuσ| → |δhu| in L2(Q) and get taking
the limit σ → 0:

II→ 1

Rt
−
∫
B

(H(|δhu|)ηq) dx
∣∣
t=T

III→ −
∫
Q

H(|δhu|)∂t (ηq) dz

This means we can take the limit σ → 0 and the supremum over all T ∈ I
in equation 3.21 and get

I’ + II’ :=−
∫
Q

δh,jA(∇u)∇(f(|δhuσ|)δh,juρ(t)ηq) dz

+
1

Rt
sup
I
−
∫
B

(H(|δhu|)ηq) dx ≤ −
∫
Q

H(|δhu|)∂t (ηq) dz =: III’ (3.23)

We now want take the limit h → 0. Since V(∇u) ∈ L2
loc(J,W

1,2
loc (Ω)) (see

Theorem 5.15) we can proceed as in the elliptic case (lemma 3.2) for term I’.
For II’ and III’ we note that u ∈ L2

loc(J,W
1,2
loc (Ω)) and therefore |δhu| → v

in L2(Q) as h→ 0. Using equation 3.22 we get

II’→ sup
I

1

Rt
−
∫
B

H(v)ηq dx

III’→ −
∫
Q

H(v)∂t (ηq) dz

This means we can take the limit h → 0 in equation 3.23 and multiply by
R2
x to get

sup
I

1

α
−
∫
B

H(v)ηq +R2
x−
∫
Q

|∇V(∇u)|2ηqf(v)

.R2
x−
∫
Q

|V(∇u)|2|∇η|2f(v) +R2
x−
∫
Q

H(v)ηq−1∂tη
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Proof of theorem 3.4. As in the proof of theorem 3.1, we approximate f
by a sequence of uniformly bounded, non-decreasing C1 functions fk with
limk→∞ fk(x) = f(x) for all x ∈ R+

0 . As the fk are uniformly bounded C1

functions we can apply lemma 3.5 and get with Hk(t) :=
∫ t

0 sfk(s) ds

sup
I
−
∫
B

Ak+−
∫
Q

Bk := sup
I

1

α
−
∫
B

Hk(v)ηq +R2
x−
∫
Q

|∇V(∇u)|2ηqfk(v)

.R2
x−
∫
Q

|V(∇u)|2|∇η|2fk(v) +R2
x−
∫
Q

Hk(v)ηq−1∂tη =: −
∫
Q

Ck +−
∫
Q

Dk

(3.24)

We have ‖fk‖∞ ≤ M . As in the proof of theorem 3.1 Bk is bounded by
the L1-function M |∇V(∇u)|2ηq and Ck is bounded by M |V(∇u)|2|∇η|2 ∈
L1(Q).
For the other terms we note that Hk(t) =

∫ t
0 sfk(s) ds ≤ Ms2.This means

we have Ak ≤M v2ηq ∈ L1(Q) and Dk ≤Mv2ηq−1∂tη ∈ L1(Q). This means
we can take the limit k → ∞ and use dominated convergence to conclude
the proof.

Corollary 3.6. Let ϕ, u and v be as defined above and denote G(t) := (ϕ(t)− ϕ(γ))+

and H(t) = (v2 − γ2)+ with a non-negative real number γ.
Then we get

sup
I

1

α
−
∫
B

H(v)ηq +R2
x−
∫
Q

|∇
(
G(v)η

q
2

)
|2

.R2
x−
∫
Q

ϕ(v)∇η|2χv>γ +R2
x−
∫
Q

H(v)ηq−1∂tη (3.25)

Proof. We use f(t) = χt>γ . This leads to H(t) =
∫ t
γ s ds+ = (t2 − γ2)+

as claimed. To get −
∫
Q |∇V (∇u)|2χv>γηq & −

∫
Q |∇

(
G(v)η

q
2

)
|2 we proceed

like in the proof of corollary 3.3. Putting this in the result of theorem 3.4
concludes the proof.
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4 De-Giorgi-Techinque

4.1 Preliminary Lemmas

At first we proof two important lemmas.

Lemma 4.1. (Fast geometric convergence) Let α > 0,C > 0 and b > 1 be
real numbers and ak a sequence with the properties

ak+1 ≤ Cbka1+α
k

a0 ≤ C−
1
α b−

1
α2

Then we have ak ≤ C−
1
α b−

1+kα

α2 → 0

Proof. We use induction:
The base case k = 0 follows directly from the second property.

The induction step is straightforward: Let ak ≤ C−
1
α b−

1+kα

α2 for some k,
then we get

ak+1 ≤ Cbka1+α
k ≤ Cbk

(
C−

1
α b−

1+kα

α2

)1+α

≤ CbkC−1− 1
α b−

1+(k+1)α

α2 −k = C−
1
α b−

1+(k+1)α

α2

From this we get an easy

Corollary 4.2. Let α > 0, C > 0, b > 1 and γ be real numbers and ak a
sequence with

ak+1 ≤ Cbkak
(
ak
γ

)α
Then we have ak → 0 if γ = a0C

1
α b

1
α2

Proof. Use Lemma 4.1 on the sequence ak
γ .

Lemma 4.3. Let h ∈ C1(R+
0 ) be an increasing function with h(0) = 0,

h(2t) ≤ dh(t) and h′(t) ∼ h(t)
t and let c ∈ R+ be a constant and define

ck = c
(
1− 2−k

)
.

Then we have for v > ck+1

h(v) . 2k+1 (h(v)− h(ck))+

and the constant only depends on h.
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Proof. We calculate:

h(v) = h(v)− h(ck) + h(ck)

= h(v)− h(ck) +
h(ck)

h(ck+1)− h(ck)
(h(ck+1)− h(ck))

≤ (h(v)− h(ck))
h(ck+1)

h(ck+1)− h(ck)

≤ h(ck+1)

h(ck+1)− h(ck)
(h(v)− h(ck))+

If we have k = 0, we have h(c0) = 0 and the therefore
h(ck+1)

h(ck+1)−h(ck) = 1.

For the case k ≥ 1 we use the intermediate value theorem of differential
calculus and for some t ∈ (ck, ck+1) (implying c

2 ≤ t ≤ c) we get

h(ck+1)

h(ck+1)− h(ck)
=

h(ck+1)

h′(t) (ck+1 − ck)

∼ h(ck+1)t

h(t) (c (2−k − 2−k−1))

.
h(c)

h
(
c
2

)2k+1

≤ d2k+1
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4.2 The elliptic case

We will start directly with the main theorem of this section

Theorem 4.4. Let ϕ be an N-function with ∆2({ϕ,ϕ∗}) <∞ which satisfies
assumption 2.4, let u ∈W 1,ϕ

loc (Ω,Rm) be a local weak solution to ∆ϕu = 0 on
a domain Ω ⊂ Rn and B ⊂ Ω a ball of radius R with 2B b Ω. Furthermore,
we denote v := |∇u|.
Then we have

sup
B
ϕ(v) . −

∫
2B

ϕ(v)

Proof. We define

Bk : = B(1 + 2−k)

ζk ∈ C∞0 with

χBk ≤ ζk ≤ χBk+1

|∇ζk| .
2k

R

γk : = γ∞(1− 2−k)

where γ∞ ∈ R+ is a constant to be chosen later.
In the end we want to use Corollary 4.2 on the sequenceWk := ‖ϕ(v)χv>γkζ

q
k‖1

where q ≥ 2 is chosen such that ϕ(ζq−1
k t) ≤ ζqkϕ(t) for all k ∈ N. We esti-

mate:

Wk+1 = ‖ϕ(v)χv>γk+1
ζqk+1‖1 ≤ ‖ϕ(v)χv>γk+1

ζqk+1‖ n
n−2

‖χv>γk+1
χsuppζk+1

‖ 2
n

≤ ‖ϕ
1
2 (v)χv>γk+1

ζ
q
2
k+1‖

2

2n
n−2

‖χv>γk+1
χsuppζk+1

‖ 2
n

We now observe that with ψ′(t) =
√
ϕ′(t)t ∼ ϕ

1
2 the assumptions of lemma

4.3 are fulfilled because of ∆2(ϕ) <∞ and we get ϕ
1
2 (t) . 2k+1(ψ′(t)− ψ′(γk))+ =: 2k+1Gk(t)

like in corollary 3.3 for v > γk+1. We use this and Sobolev’s inequality where
we note that the Sobolev constant is proportional to R2:

‖ϕ
1
2 (v)χv>γk+1

ζ
q
2
k+1‖

2

2n
n−2

‖χv>γk+1
χsuppζk+1

‖ 2
n

.22k+2‖Gk(v)ζ
q
2
k+1‖

2

2n
n−2

‖χv>γk+1
χsuppζk+1

‖ 2
n

.22k+2R2‖∇
(
Gk(v)ζ

q
2
k+1

)
‖

2

2
‖χv>γk+1

χsuppζk+1
‖

2
n
1

Now we can apply corollary 3.3 on the first factor. For the second factor we
see that using χav>γk+1

= χv>γk+1
and ζk ≡ 1 on suppζk+1 we get:

‖ϕ(v)χv>γkζ
q
k‖a ≥ ‖ϕ(v)χv>γk+1

ζqk‖a ≥ ϕ(γk+1)‖χv>γk+1
ζqk‖a ≥ ϕ(γk+1)‖χv>γk+1

χsuppζk+1
‖
a
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Putting this in our estimate gives

22k+2R2‖∇
(
Gk(v)ζ

q
2
k+1

)
‖

2

2
‖χv>γk+1

χsuppζk+1
‖

2
n
1

.22k+2R2‖ϕ(v)χv>γk |∇ζk+1|2‖1

(‖ϕ(v)χv>γkζ
q
k‖1

ϕ(γk+1)

) 2
n

We now observe that γk+1 = γ∞
(
1− 2−(k+1)

)
≥ γ∞

2 and therefore ϕ(γk+1) ≥
ϕ
(γ∞

2

)
≥ ∆2(ϕ)ϕ(γ∞) and using |∇ζ|2 ≤ 22kR−2χsuppζk+1

≤ 22kR−2ζqk we
get

22k+2R2‖ϕ(v)χv>γk |∇ζk+1|2‖1

(‖ϕ(v)χv>γkζ
q
k‖1

ϕ(γk+1)

) 2
n

.24k‖ϕ(v)χv>γkζ
q
k‖1

(‖ϕ(v)χv>γkζ
q
k‖1

ϕ(γ∞)

) 2
n

= 24kWk

(
Wk

ϕ (γ∞)

) 2
n

In total we have Wk+1 . 24kWk

(
Wk

ϕ(γ∞)

) 2
n

and can apply corollary 4.2 on

Wk. This means we have Wk → 0 if ϕ(γ∞) ∼ W0 but this gives χv>γ∞ = 0
and therefore ϕ(v) ≤ ϕ(γ∞) on suppζ∞ = B. So in the end we get on B:

ϕ(v) < ϕ (γ∞) ∼ a0 = −
∫
2B

ϕ(v)χv>0ζ
2
0 ≤ −

∫
2B

ϕ(v)
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4.3 The parabolic case

At first we define for a sequence of C∞0 -functions ζk the norm

‖f‖Ls(Lr)(k) := ‖‖f‖Ls(ζqk dx)‖Lr( dt)
=

(
−
∫ (
−
∫
f rζqk dx

) s
r

dt

) 1
s

and based on this

Yk := ‖ϕ(v)χv>γk‖L1(L1)(k)

Zk := ‖v2χv>γk‖L1(L1)(k)

Wk := Yk +
1

α
Zk

Lemma 4.5. Let u ∈ Lϕloc(J×Ω,Rm)∩Cloc(I, L
2
loc(Ω,Rm)) with v := |∇u| ∈

Lϕloc(J×Ω)∩L2
loc(Ω) be a local weak solution to ∂tu−∆ϕu = 0 on a cylindrical

domain J×Ω ⊂ R1+n and let Q = I×B ⊂ R1+n be a cylinder in space-time
with Radius Rx in space and height Rt in time with Rt = αR2

x. Let the
sequences ζk ∈ C∞0

(
R1+n

)
and γk ∈ R+ have the following properties:

Qk = 2
(

1 + 2−k
)
Q =: Ik ×Bk

χQk ≤ ζk ≤ χQk+1∣∣∣∣∇(ζ n−2
n

k

)∣∣∣∣ . R−1
x 2k∣∣∣∣∂t(ζ n−2

n
k

)∣∣∣∣ . R−1
t 2k

γk = γ∞

(
1− 2−k

)
Then we have

‖v2χv>γk+1
‖
L∞(L1)(k+1)

. 23kαWk (4.1)

‖ϕ(v)χv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

. 23kWk (4.2)

Proof. We recall the energy inequality 3.25 from corollary 3.6 with η =(
ζ
n−2
n

k+1

)
:

sup
I

1

α
−
∫
B

Hk(v)ζ
q n
n−2

k+1 dx+R2
x−
∫
Q

∣∣∣∣∇(Gζ q2 n
n−2

k+1

)∣∣∣∣2 dz

.R2
x−
∫
Q

ϕ(v)
∣∣∣∇(ζ n

n−2

k+1

)∣∣∣2 χv>γk+1
dz +R2

x−
∫
Q

H(v)ζ
(q−1) n

n−2

k+1 ∂t

(
ζ

n
n−2

)
dz

(4.3)
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At first we estimate the terms on the right hand side of 4.3 and note
that ζk ≡ 1 on suppζk+1:

R2
x−
∫
Q

ϕ(v)χv>γk

∣∣∣∣∇(ζ n−2
n

k+1

)∣∣∣∣2 dz . 22k−
∫
Q

ϕ(v)χv>γkχsuppχk+1
dz

≤ 22k−
∫
Q

ϕ(v)χv>γkζ
q
k dz

= 22kYk

R2
x−
∫
Q

Hk(v)

(
ζ
n−2
n

k+1

)q−1 ∣∣∣∣∂t(ζ n−2
n

k+1

)∣∣∣∣ dz .
2k+1R2

x

Rt
−
∫
Q

v2χv>γkχsuppχk+1
dz

.
2k

α
−
∫
Q

v2χv>γkζ
q
k dz

=
2k

α
Zk ≤

22k

α
Zk

Putting this in 4.3 gives

sup
I

1

α
−
∫
B

Hk(v)ζ
q n
n−2

k+1 dx+R2
x−
∫
Q

∣∣∣∣∇(Gζ q2 n
n−2

k+1

)∣∣∣∣2 dz . 22kWk (4.4)

To prove 4.1 we use lemma 4.3 with h(t) = t2 to get v2 . 2kHk(v) for

v > γk+1 and we see that ζ ≤ ζ
n−2
n as 0 ≤ ζ ≤ 1. Putting this in 4.4 gives

‖v2χv>γk+1
‖
L∞(L1)(k+1)

= α sup
I

1

α
−
∫
B

v2χv>γk+1
ζqk+1 dx

. α2k sup
I

1

α
−
∫
B

Hk(v)

(
ζ
n−2
n

k+1

)q
dx

. α23kWk

For inequality 4.2 we set h(t) = ϕ(t)
1
2 in lemma 4.3 and get ϕ(t)

1
2 .

2kGk(t) for t > γk+1 like in the elliptic case. We also use Sobolev’s inequality
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and note that its constant is proportional to R2
x.

‖ϕ(v)χv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

= ‖‖ϕ(v)χv>γk+1
ζ
q n−2

n
k+1 ‖L n

n−2 ( dx)
‖
L1( dt)

= ‖‖ϕ(v)
1
2χv>γk+1

ζ
q
2
n−2
n

k+1 ‖
2

L
2n
n−2 ( dx)

‖
L1( dt)

. 2k‖‖Gk(v)ζ
q
2
n−2
n

k+1 ‖
2

L
2n
n−2 ( dx)

‖
L1( dt)

. 2kR2
x‖‖∇

(
Gk(v)ζ

q
2
n−2
n

)
‖

2

L2( dx)
‖
L1( dt)

= 2kR2
x−
∫ ∣∣∣∇(Gk(v)ζ

q
2
n−2
n

)∣∣∣2 dz

. 23kWk

We will now specialize to the case ϕ(t) = tp. To find the optimal upper
bound in the parabolic p-Laplacian case we want to use all the information
we get from the lemma we have just proved. With the weak type estimate

‖vχv>γk+1
‖
Lr(Lq)(k+1)

> γk+1‖χv>γk+1
‖
Lr(Lq)(k+1)

(4.5)

we get

‖vχv>γk+1
‖
Lp

(
L
p n
n−2

)
(k+1)

. 2
3k
p W

1
p

k

‖vχv>γk+1
‖
L∞(L2)(k+1)

. α
1
2 2

3k
2 W

1
2
k

‖χv>γk+1
‖
Lp(Lp)(k+1)

≤
‖vχv>γk+1

‖
Lp(Lp)(k+1)

γk+1
. 2

3k
p
W

1
p

k

γ∞

‖χv>γk+1
‖
L∞(L2)(k+1)

≤
‖vχv>γk+1

‖
L∞(L2)(k+1)

γk+1
. 2

3k
2
α

1
2W

1
2
k

γ∞

‖χv>γk+1
‖
L∞(L2)(k+1)

≤ 1

(4.6)

As in the elliptic case we want to apply corollary 4.2 on Wk. To get to the
point where this is possible we use at first Hoelder’s inequality and then
use the interpolation of Bochner-Lebesgue-spaces (cf lemma 5.1 in the ap-
pendix) in both factors between the spaces where we have information about
the norms.
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We start by estimating Y . For simplicity we drop the 2k-factors for now.

Y
1
p

k+1 =‖vχv>γk+1
‖
Lp(Lp)(k+1)

≤‖vχv>γk+1
‖
Lr(Ls)(k+1)

‖χv>γk+1
‖
Lr′ (Ls′ )(k+1)

≤‖vχv>γk+1
‖θ
Lp

(
L
p n
n−2

)
(k+1)

‖vχv>γk+1
‖1−θ
L∞(L2)(k+1)

‖χv>γk+1
‖α1

Lp
(
L
p n
n−2

)
(k+1)

‖χv>γk+1
‖α2

L∞(L2)(k+1)
‖χv>γk+1

‖α3

L∞(L∞)(k+1)

.
W

θ
p

+ 1−θ
2

+
α1
p

+
α2
2

k α
1−θ+α2

2

γα1+α2∞

This can be rearranged to

Yk+1 .Wk

Wkα

p
2

1−θ+α2

p( θp+ 1−θ
2 +

α1
p +

α2
2 )−1

γ

p(α1+α2)

p( θp+ 1−θ
2 +

α1
p +

α2
2 )−1

∞


p( θ
p

+ 1−θ
2

+
α1
p

+
α2
2

)−1

(4.7)

To fix the parameters we get the equations

1

p
=

1

r
+

1

r′
=

1

s
+

1

s′

1

r
=
θ

p

1

s
=

θ

p n
n−2

+
1− θ

2

1

r′
=
α1

p
1

s′
=

α1

p n
n−2

+
α2

2

1 = α1 + α2 + α3

(4.8)

From this we get

α1 = 1− θ

α2 =
np(θ − 1) + 4

np
(4.9)

α3 =
np− 4

pn

and we are free to choose θ ∈ (0, 1) as long as we ensure that the αi are
non-negative. For α1 this is always the case. To get α2 ≥ 0 we just have to
choose θ large enough to have np−4

np < θ. As α3 is not dependent on θ, we
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have to deal with the restriction np ≥ 4 in another way. This will be done
later. For now we just note that because of n ≥ 2, we do not have problems
for p ≥ 2. We put 4.9 in 4.7 and get:

Yk+1 .Wk

(
Wkα

γ2
∞

) 2
n

(4.10)

We will now do the same for Z:

Z
1
2
k+1 =‖vχv>γk+1

‖
L2(L2)(k+1)

≤ ‖vχv>γk+1
‖
Lr(Ls)(k+1)

‖χv>γk+1
‖
Lr′ (Ls′ )(k+1)

≤‖vχv>γk+1
‖θ
Lp(L

p n
n−2 )(k+1)

‖vχv>γk+1
‖1−θ
L∞(L2)(k+1)

‖χv>γk+1
‖α1

Lp(L
p n
n−2 )(k+1)

‖χv>γk+1
‖α2

L∞(L2)(k+1)
‖χv>γk+1

‖α3

L∞(L∞)(k+1)

≤
W

θ
p

+ 1−θ
2

+
α1
p

+
α2
2

k α
1−θ+α2

2

γα1+α2∞

This can be rearranged to

Zk+1 .Wk

Wkα

1−Θ+α2

2( θp+ 1−θ
2 +

α1
p +

α2
2 )−1

γ

2(α1+α2)

2( θp+ 1−θ
2 +

α1
p +

α2
2 )−1

∞


2
(
θ
p

+ 1−θ
2

+
α1
p

+
α2
2

)
−1

(4.11)

We can substitute p by 2 in the first equation of 4.8 and get

α1 =
1

2
p− θ

α2 =
n(θ − 1) + 2

n

α3 =
n(4− p)− 4

2n

(4.12)

One more time we are allowed to choose Θ freely between 0 and 1 if we
ensure that the αi are non-negative. For this to be possible for α1 and α2

we need a Θ with 1
2p ≥ Θ ≥ 1− 2

n . This is only possible for p ≥ 2− 4
n . α3 is

independent of Θ and we need n(4− p)− 4 ≥ 0 which means p ≤ 2(2− 2
n).

In this case we put 4.12 in 4.11 and get using ν2 := n
2 (p− 2) + 4:

Zk+1 .Wk

(
Wkα

γ
ν2
2∞

) 2
n

(4.13)

To rule out most of the restrictions on p we first note that for n ≥ 2 the
requirement p ≤ 2(2 − 2

n) can only be a problem for p ≥ 2. We recall that
we did not have problems in this case with our estimate of Y . So we set
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1
2 = 1

p + 1
q and use Hoelder, χv>γk+1

(x) ∈ {0, 1}, the weak type estimate 4.5
and 4.10:

Zk+1 =‖vχv>γk+1
‖2
L2(L2)(k+1)

≤ ‖vχv>γk+1
‖2
Lp(Lp)(k+1)

‖χv>γk+1
‖2
Lq(Lq)(k+1)

=‖vχv>γk+1
‖2
Lp(Lp)(k+1)

‖χv>γk+1
‖

2p
q

Lp(Lp)(k+1) .
‖vχv>γk+1

‖p
Lp(Lp)(k+1)

γ
2p
q
∞

=
Yk+1

γp−2
∞
≤Wk

(
Wkα

γ
ν2
2

) 2
n

This shows that 4.13 is true for all p ≥ 2− 4
n .

In an analogous way we are now also able to get rid of the restriction np ≥ 4
in the estimate of Y as we see that this is only a problem for p ≤ 2. We set
1
p = 1

2 + 1
q and use Hoelder’s inequality, χv>γk+1

(x) ∈ {0, 1}, the weak type
estimate 4.5 and 4.13 to get

Yk+1 =‖vχv>γk+1
‖p
Lp(Lp)(k+1)

≤ ‖vχv>γk+1
‖p
L2(L2)(k+1)

‖χv>γk+1
‖p
Lq(Lq)(k+1)

=‖vχv>γk+1
‖p
L2(L2)(k+1)

‖χv>γk+1
‖

2p
q

L2(L2)(k+1)
.
‖vχv>γk+1

‖2
L2(L2)(k+1)

γ
2p
q
∞

=
Yk+1

γ2−p
∞
≤Wk

(
Wkα

γ2

) 2
n

This means 4.10 is valid for all p > 1. If we now add 4.10 and 1
α times 4.13

we get the estimate for W :

Wk+1 .Wk

(
min

{
Wkα

γ2
∞
,
Wkα

2−n
n

γ
ν2
2∞

}) 2
n

(4.14)

We see that this is independent of Θ and we still have the assumption
p > 2− 4

n . Assuming this a priori leads to an easier proof of those estimates
(and therefore estimates on v via corollary 4.2).

Theorem 4.6. Let p > 2− 4
n and u ∈ Lploc(J,W

1,p
loc (Ω,Rm))∩Cloc(J, L

2
loc(Ω,Rm))

with v := |∇u| ∈ L2
loc(J × Ω) be a local weak solution to the parabolic p-

Laplacian equation ∂tu−∆pu = 0 on a cylindrical Domain J × Ω ⊂ R1+n.
Denote ν2 = n(p− 2) + 4. For a cylinder Q = I ×B with 2Q b J × Ω and
Rt = αR2

x as before we have

min

{
v
ν2
2

α
2−n
n

,
v2

α

}
≤ −
∫
2Q

v2

α
+ vp
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Proof. We use the definitions from lemma 4.5 and get using equations 4.6
and 4.5:

Yk+1 = ‖vχv>γk+1
‖p
Lp(Lp)(k+1)

≤ ‖vχv>γk+1
‖p
Lp

(
L
p n
n−2

)
(k+1)

‖χv>γk+1
‖p
L∞

(
L
pn
2

)
(k+1)

=‖vχv>γk+1
‖p
Lp

(
L
p n
n−2

)
(k+1)

‖χv>γk+1
‖

4
n

L∞(L2)(k+1)

=‖vχv<γk+1
‖p
Lp(Lp)(k+1)

‖χv<γk+1
‖

4
n

L∞(L2)(k+1)

.23kWk
23k 2

nW
2
n
k α

2
n

γ
4
n∞

= 23k(1+ 2
n)Wk

(
Wkα

γ2

) 2
n

To estimate Z note that for p > 2− 4
n the function tp−2+ 4

n is increasing.

Zk+1 =‖vχv>γk+1
‖2
L2(L2)(k+1)

= ‖v2χv>γk+1
‖
L1(L1)(k+1)

= ‖v
p−2+ 4

n

vp−2+ 4
n

v2χv>γk+1
‖
L1(L1)(k+1)

≤ 1

γ
p−2+ 4

n
k+1

‖vp+
4
nχv>γk+1

‖
L1(L1)(k+1)

.
1

γ
2ν2
n∞

‖vpχv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

‖v
4
nχv>γk+1

‖
L∞

(
L

2
n

)
(k+1)

=
1

γ
ν2
n

‖vχv>γk+1
‖p
Lp

(
L
p n
n−2

)
(k+1)

‖vχv>γk+1
‖

4
n

L∞(L2)(k+1)

.23k(1+ 2
n)Wk

(
αWk

γ
ν2
2

) 2
n

This means we have

Wk+1 =Yk+1 +
1

α
Zk+1

.23k(1+ 2
n)Wk

(
α
Wk

γ2
∞

) 2
n

+ 23k(1+ 2
n) 1

α
Wk

(
Wkα

γ
ν2
2∞

) 2
n

.23k(1+ 2
n)Wk max


(
Wkα

γ2
∞

) 2
n

,

(
Wkα

2−n
2

γ
ν2
2∞

) 2
n


=23k(1+ 2

n)Wk

 Wk

min

{
γ
ν2
2∞

α
2−n

2
, γ

2
∞
α

}


2
n
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Like in the elliptic case we conclude with corollary 4.2 that Wk → 0 for

W0 ∼ min
{
γ
ν2
2 , γ2

}
and we therefore get on Q:

min

{
v
ν2
2

α
2−n

2

,
v2

α

}
< min

 γ
ν2
2∞

α
2−n

2

,
γ2
∞
α

 ∼W0 = −
∫
vp +

v2

α

We remark that we have ν2
2 < p for p < 2 and ν2

2 > p for p > 2.

To generalize the p-Laplacian case back to the ϕ-Laplacian we have to
“translate” the assumptions on p to assumptions on an N-function ϕ. As
we do not have an easy relationship between ‖f‖ϕ = inf

{
k > 0 :

∫ ϕ
k ≤ 1

}
and

∫
ϕ(v) we cannot use Bochner spaces like before. The proof we got at

the end of the previous section is nonetheless easy to generalize. The final
theorem of this thesis reads:

Theorem 4.7. Let ϕ be an N-Function with ∆2({ϕ,ϕ∗}) < ∞ satisfying

assumption 2.4 where ρ(t)
2
n := ϕ(t)t

4
n
−2 is an increasing function and let

u ∈ Lϕloc(J × Ω) ∩ Cloc(J, L
2
loc(Ω,Rm)) with v := |∇u| ∈ Lϕloc(J × Ω) ∩

L2
loc(J, L

2
loc(Ω)) be a local weak solution to the parabolic ϕ-Laplacian equation

∂tu−∆ϕu = 0

on a cylindrical domain J ×Ω. For a cylinder Q = I ×B with 2Q b J ×Ω
and Rt = αR2

x we have

min

{
ρ(v)

α
2−n

2

,
v2

α

}
. −
∫
2Q

v2

α
+ ϕ(v)

Proof. We proceed as we did in the p-Laplacian case and use the definitions
from lemma 4.5. For Y we get:

Yk+1 =‖ϕ(v)χv>γk+1
‖
L1(L1)(k+1)

≤ ‖ϕ(v)χv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

‖χv>γk+1
‖
L∞

(
L
n
2

)
(k+1)

=‖ϕ(v)χv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

‖χv>γk+1
‖

4
n

L∞(L2)(k+1)

.23k(1+ 2
n)Wk

(
Wkα

γ2
∞

) 2
n
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And now for Z:

Zk+1 =‖v2χv>γk+1
‖
L1(L1)(k+1)

= ‖ρ(v)
2
n

ρ(v)
2
n

v2χv>γk+1
‖
L1(L1)(k+1)

≤ 1

ρ(γk+1)
2
n

‖ϕ(v)v
4
nχv>γk+1

‖
L1(L1)(k+1)

.
1

ρ(γ∞)
2
n

‖ϕ(v)χv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

‖v
4
nχv>γk+1

‖
L∞

(
L

2
n

)
(k+1)

=
1

ρ(γ∞)
2
n

‖ϕ(v)χv>γk+1
‖
L1

(
L

n
n−2

)
(k+1)

‖vχv2>γk+1
‖

2
n

L∞(L1)(k+1)

.23k(1+ 2
n)Wk

(
Wkα

ρ(γ∞)

) 2
n

In total, we have

Wk+1 =Yk+1 +
1

α
Zk+1

.23k(1+ 2
n)Wk

(
Wkα

γ2
∞

) 2
n

+
1

α
23k(1+ 2

n)Wk

(
Wkα

ρ(γ∞)

) 2
n

.23k(1+ 2
n)Wk max


(
Wkα

γ2
∞

) 2
n

,

(
Wkα

2−n
n

ρ(γ∞)

) 2
n


=23k(1+ 2

n)Wk

 Wk

min

{
ρ(γ∞)

α
2−n

2
, γ

2
∞
α

}


2
n

and the theorem follows as before from corollary 4.2 as we have Wk → 0 for

min

{
ρ(γ∞)

α
2−n

2
, γ

2
∞
α

}
∼W0:

min

{
ρ(v)

α
2−n

2

,
v2

α

}
< min

{
ρ (γ∞)

α
2−n

2

,
γ2
∞
α

}
∼W0 = −

∫
ϕ(v) +

v2

α
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5 Appendix

Lemma 5.1. Let (Ω1,A1, µ1) and (Ω2,A2, µ2) be measure spaces and denote
the corresponding Lebesgue-Bochner-spaces by Lp(Lq) := Lp(Ω1, L

q(Ω2,Rm)).

(a) Let p,p1, p2, q, q1, q2 be real numbers greater than 1 or infinity with
1
p = 1

p1
+ 1

p2
and 1

q = 1
q1

+ 1
q2

( 1
∞ = 0) and let f ∈ Lp1 (Lq1) and

g ∈ Lp2 (Lq2).
Then we have fg ∈ Lp (Lq) and ‖fg‖Lp(Lq) ≤ ‖f‖Lp1 (Lq1 )‖g‖Lp2 (Lq2 )

(b) Let p0, p1, q0, q1 be real numbers greater than 1 or infinity and let
f ∈ Lp0 (Lq1) ∩ Lp2 (Lq2) Then for Θ ∈ [0, 1] with 1

p = Θ
p1

+ 1−Θ
p0

and
1
1 = Θ

q1
+ 1−Θ

q0
we have f ∈ Lp (Lq).

Proof. (a)

‖fg‖Lp(Lq) = ‖‖fg‖Lp‖Lq ≤ ‖‖f‖Lp1‖g‖Lp2‖Lq
≤ ‖‖f‖Lp1‖Lq1‖‖g‖Lp2‖Lq2 = ‖f‖Lp1 (Lq1 )‖g‖Lp2 (Lq2 )

(b) We use the Hoelder-type estimate from above

‖f‖Lp(Lq) = ‖fΘf1−Θ‖Lp(Lq) ≤ ‖f
Θ‖

L
p1
Θ

(
L
q1
Θ

)‖f1−Θ‖
L

p0
1−Θ

(
L

q0
1−Θ

)
= ‖f‖ΘLp1 (Lq1 )‖f‖

1−Θ
Lp0 (Lq0 )

Lemma 5.2. Let ϕ be an N-Function with ∆2(ϕ) <∞. Then the following
are equivalent:

(a) ||fn − f ||ϕ → 0

(b)
∫
ϕ(|fn − f |)→ 0

and those imply ∣∣∣∣∫ ϕ(|fn|)−
∫
ϕ(|f |)

∣∣∣∣→ 0 (5.1)

Proof. ([18] Theorem 3.14.12) We show the theorem for f = 0. For the
general case we can just use gn = fn − f .
(a)⇒(b): As we have ‖fn‖ϕ → 0 we have ‖fn‖ϕ ≤ 1 for n large enough.
This leads to∫

ϕ(|fn|) =

∫
ϕ

(
‖fn‖ϕfn
‖fn‖ϕ

)
≤ ‖fn‖ϕ

∫
ϕ

(
fn
‖fn‖ϕ

)
≤ ‖fn‖ϕ → 0
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(b)⇒(a): Take ε > 0. Because of the ∆2-regularity of ϕ we have∫
ϕ

(
|fn|
ε

)
≤ cε

∫
ϕ(|fn|)

As
∫
ϕ(|fn|) → 0 there is an N such that

∫
ϕ(|fn|) ≤ 1

cε
. But this means

‖fn‖ϕ ≤ ε.
For the last assertion it suffices to show that

∫
ϕ(|f+g|) .

∫
(ϕ(|f |)+ϕ(|g|)).

With the convexity and monotony of ϕ and the ∆2-condition we get

ϕ(|f + g|) ≤ ϕ(|f |+ |g|) ≤ 1

2
(ϕ(2|f |) + ϕ(2|g|)) ≤ ∆2(ϕ)

2
(ϕ(|f |) + ϕ(|g|))

Lemma 5.3. Let ϕ be a ∆2-regular N-function and Ω a bounded domain.
Then the space of C∞-functions on Ω is dense in the Orlicz space Kϕ(Ω).

Proof. The proof is analogous to the Lp case using that convergence in mean
and convergence in norm are the same for a ∆2-regular ϕ. At first, we show
that simple functions are dense in Kϕ:
Since ϕ(|u|) ∈ L1, we can find an increasing sequence of simple functions
with

∫
ϕ(|un|) ↗

∫
ϕ(|u|) by the definition of the Lebesgue integral. Since

ϕ(|un|) ≥ ϕ(|u|) almost everywhere we have
∫
|ϕ(|u|)−ϕ(|un|)| → 0 and can

find a subsequence vn with vn → u almost everywhere. By the monotone
convergence theorem we therefore get

∫
ϕ(|u− vn|)→ 0.

As we can approximate any simple function by a C∞-function in every Lp-
space we can do so in Lϕ-spaces as well as we have ϕ(t) . (tα1 + tα2)ϕ(1)
(see [20]) by taking a sequence of C∞-functions un with (w.l.o.g. α1 > α2)
‖un − u‖α1

→ 0. Then we get:∫
Ω

ϕ(|un − u|) . ϕ(1)
(
‖un − u‖α1

α1
+ ‖un − u‖α2

α2

)
≤ ϕ(1)

(
‖un − u‖α1

α1
+ |Ω|

α1+α2
α1α2 ‖un − u‖

α2
α1
α1

)
→ 0

Lemma 5.4. Let ϕ be a ∆2-regular N-function and ξε a standard mollifier.
Denote by ωε the outer parallel set of ω b Ω. Then for ωε b Ω we have:∫

ω

ϕ(|uε|) ≤
∫
ωε

ϕ(|u|)

.
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Proof. For L1
loc-functions u we get using

∫
ξ = 1:∫

ω

∫
ωε

ξε(y − x)|u(y)| dz dx

≤
∫
ωε

∫
ω∩Bε(y)

ξε(y − x) dx|u(y)| dy ≤
∫
ωε

|u(y)|dy

We now define an x-dependent measure via dµx = ξε(y − x) dy and note
that

∫
ωε dµx = 1. Using Jensen’s inequality and the above result with the

L1
loc-function ϕ(|u|) we get:

∫
ω

ϕ

∣∣∣∣∣∣
∫
ωε

ξε(y − x)u(y) dy

∣∣∣∣∣∣
 dx ≤

∫
ω

ϕ

∫
ωε

|u(y)|dµx

 dx

≤
∫
ω

∫
ωε

ϕ (|u(y)|) dµx dx ≤
∫
ωε

ϕ(|u(y)|) dy

Lemma 5.5. Let ϕ be a ∆2-regular N-function and ξε a standard mollifier.
Then for every u ∈ Lϕloc we have uε := u ∗ ξε → u as ε→ 0.

Proof. Take an ω b Ω. We know that for smooth functions v we have vε →
v locally uniform and therefore also in ϕ-mean and in the ϕ-Luxemburg
norm. Let δ > 0 be fixed. For u ∈ Lϕ we chose a v ∈ C∞ such that
‖v− u‖ϕ,ωε0 ≤

δ
3 for some ε0 > 0. We also chose 0 < ε < ε0 small enoug

that ‖vε − v‖ϕ,ω ≤
δ
3holds. Then we get:

‖u− uε‖ϕ,ω ≤ ‖u− v‖ϕ,ω + ‖v− vε‖ϕ,ω + ‖vε − uε‖ϕ,ω
≤‖u− v‖ϕ,ω + ‖v− vε‖ϕ,ω + ‖v− u‖ϕ,ωε0 < δ

Lemma 5.6. (cf [19] Lemma 20) Let ϕ be an N-function with ∆2({ϕ,ϕ∗}) <
∞ and [P,Q]s = sP + (1− s)Q as before. Then we have

1∫
0

ϕ′(|[P,Q]s|)
|[P,Q]s|

ds ∼ ϕ′(|P|+ |Q|)
|P|+ |Q|

Proof. Because of ∆2(ϕ∗) < ∞ we have (cf [21] Lemmas 1.2.2 and 1.2.3) a
θ ∈ (0, 1) and an N-function ρ such that ϕθ ∼ ρ with ∆2({ρ, ρ∗}) <∞ and
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ρ′(t)t ∼ ρ(t) and therefore ϕ′(t) ∼ ϕ(t)
t ∼

ρ(t)
1
Θ

t ∼ ρ′(t)t
1
Θ
−1. This gives

1∫
0

ϕ′(|[P,Q]s|)
|[P,Q]s|

ds .

1∫
0

ρ′(|[P,Q]s|)
1
θ |[P,Q]s|

1
θ
−2 ds

≤
(
ρ′(|P|+ |Q|)

) 1
θ

1∫
0

|[P,Q]s|
1
θ
−2 ds

.
(
ρ′(|P|+ |Q|)

) 1
θ (|P|+ |Q|)

1
θ
−2

=
(|P|+ |Q|)(ρ′(|P|+ |S|))

1
θ

(|P|+ |Q|)2

∼ ϕ′(|P|+ |Q|)
|P|+ |Q|

where we used (|P|+ |Q|) ∼
∫ 1

0 |[P,Q]s|ds.
For the other direction we see using ϕ(t) ∼ ϕ′(t)t, |[P,Q]s| ≤ |P|+ |Q| and
Jensen’s inequality that

1∫
0

ϕ′(|[P,Q]s|)
|[P,Q]s|

ds &

1∫
0

ϕ(|[P,Q]s|)
(|P|+ |Q|)2

≥
ϕ
(∫ 1

0 |[P,Q]s| ds
)

(|P|+ |Q|)2

We now use that
∫ 1

0 |[P,Q]s|ds & c(|P|+ |Q|) (see for example [6]) and use
the ∆2 regularity of ϕ:

1∫
0

ϕ′(|[P,Q]s|)
|[P,Q]s|

ds &
ϕ (|P|+ |Q|)
(|P|+ |Q|)2

∼ ϕ′ (|P|+ |Q|)
|P|+ |Q|

Lemma 5.7. Let ϕ be an N-function satisfying assumption 2.4. Then the
associated N-function ψ defined via ψ′(t) =

√
tϕ′(t) also satisfies assumption

2.4 and we have ψ′′(t) ∼
√
ϕ′′(t)

Proof. We get

tψ′′(t) =
1

2
√
tϕ′(t)

(
ϕ′(t) + tϕ′′(t)

)
∼
√
tϕ′(t) = ψ′(t)

and use this to show

tψ′′(t) ∼ ψ′(t) =
√
tϕ′(t) ∼

√
t2ϕ′′(t) = t

√
ϕ′′(t)
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Lemma 5.8. Let ϕ be an N-function with ∆2({ϕ,ϕ∗}) <∞. Then ∆2({ϕλ, ϕ∗λ}λ≥0)
is bounded uniformly in λ.

Proof. (cf [19] Lemma 23) As we have ϕ′λ(t)t ∼ ϕλ(t) uniformly in λ and
ϕ′(2t) ∼ ϕ′(t) and λ+ 2t ∼ λ+ t we get

ϕ′λ(2t) =
ϕ′(λ+ 2t)

λ+ 2t
2t ∼ ϕ′(λ+ t)

λ+ t
t = ϕ′λ(t)

and this proves the claim for ϕλ. The proof for ϕ∗λ is analogous.

Lemma 5.9. Let ϕ be an N-function with ∆2({ϕ,ϕ∗}) <∞. Then we have
an ε > 0 depending only on ∆2({ϕ,ϕ∗}) such that ϕλ(kt) . k1+εϕλ(t) holds
for all 0 ≤ k ≤ 1.

Proof. (see Lemma 31 in [19]) Like in the proof of 5.6 we have an N-function
ρ with ϕΘ ∼ ρ for a 0 < Θ < 1. Then we get uniformly in t and k:

ϕ(kt) ∼ (ρ(kt))
1
Θ ∼ k

1
Θϕ(t)

This shows the claim for λ = 0 with ε = 1
Θ−1. As we have ∆2({ϕλ, ϕ∗λ}λ≥0)

from lemma 5.8 the proof for ϕλ is analogous.

Lemma 5.10. Let ϕ be an N-function with ∆2({ϕ,ϕ∗}) < ∞. Then we
have ϕλ(λk) ∼ k2ϕ(λ) uniformly in 0 ≤ k ≤ 1

Proof. We note that kλ + λ ∼ λ and ϕ′(ct) ∼ ϕ(t) because of the ∆2

condition and estimate

ϕλ(kλ) ∼ kλϕ′λ(kλ) = k2λ2ϕ
′(kλ+ λ)

kλ+ λ
∼ k2λϕ′(λ) ∼ k2ϕ(λ)

Theorem 5.11. Let ϕ be an N-function satisfying assumption 2.4 with
∆2({ϕ,ϕ∗}) <∞ and u ∈ W 1,ϕ

loc (Ω) be a local weak solution to ∆ϕu = 0 on

a domain Ω ⊂ Rn. Then we have V(∇u) ∈W 1,2
loc (Ω).

We proceed like in [19] and begin by showing the following

Theorem 5.12. Let u be a local weak solution of ∆ϕu = 0 on Ω. For a
cube Q with side-length R and 5Q b Ω we have the inequality:

−
∫
Q

|τhV(∇u)|2 dx .
|h|2

R2
−
∫
5Q

|V(∇u)|2 dx (5.2)

The proof is split into two parts
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Lemma 5.13. Let u be a local weak solution of ∆ϕu = 0 on Ω. For a cube
Q with side-length R and 4Q b Ω we have the inequality:

λ

−
∫
0

∫
Q

|τsV (∇u)|2 dx . ε

λ

−
∫
0

∫
4Q

|τsV(∇u)|2 dxdλ+ cε
λ2

R2

∫
4Q

ϕ(|∇u|) dx (5.3)

Proof. We take equation 3.2 on 2Q and f ≡ 1, multiply with h2 and take
the C∞ function η with χQ ≤ η ≤ χ2Q and |∇η| < R−1. We get

0 = 〈A(∇u),∇(τj,−h(τj,huη
q))〉 = 〈τj,hA(∇u),∇(δj,huη

q)

= 〈δj,hA(∇u), δj,h∇uηq + δj,huqη
q−1∇η〉 = I + II (5.4)

Like in 3.6 we get

I ∼ −
∫
2Q

|τj,hV(∇u)|2ηq dx ≥ −
∫
Q

|τj,hV(∇u)| dx (5.5)

and in analogy to 3.8 we get

II .
∫

2Q

h

−
∫
0

ηq−1ϕ′|∇u|(|τj,h∇u|)|∇u ◦ Tsej |h|∇η| ds

≤
∫

2Q

h

−
∫
0

ηq−1 h

R
ϕ′|∇u|(|τj,h∇u|)|∇u ◦ Tsej | ds (5.6)

Replacing the factor h by λ and and |∇η| by R−1 in 3.9 we get the inequality

ηq−1ϕ′|∇u|(|τh∇u|)|∇u ◦ Tsej |
λ

R

.εηq|τj,h−sV(∇u) ◦ Tsej |2 + εηq|τj,sV(∇u)|2 + cε
λ2

R2
ϕ
(
|∇u ◦ Tsej |

)
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Putting this in 5.6 we get

II ≤εh
λ

∫
2Q

h

−
∫
0

ηq|τj,h−sV(∇u) ◦ Tsej |2 ds dx

+ε
h

λ

∫
2Q

h

−
∫
0

ηq|τj,sV(∇u)|2 ds dx+ cε
λ2

R2

∫
2Q

h

−
∫
0

ϕ
(
|∇u ◦ Tsej |

)
ds dx

≤εh
λ

∫
2Q

h

−
∫
0

|τj,h−sV(∇u) ◦ Tsej |2 dx

+ε
h

λ

∫
2Q

h

−
∫
0

|τj,sV(∇u)|2 ds dx+ cε
λ2

R2

∫
2Q

h

−
∫
0

ϕ
(
|∇u ◦ Tsej |

)
ds dx (5.7)

We now note for a general f ∈ L1
loc and s < R

∫
2Q

h

−
∫
0

|(f ◦ Ts)(x)|ds dx

=

h

−
∫
0

∫
Rn

χ2Q(x)|(f ◦ Ts)(x)| dx ds

=

h

−
∫
0

∫
Rn

(χ2Q ◦ T−s)︸ ︷︷ ︸
≤χ4Q(x)

(x)|f(x)|dx ds

≤
∫

4Q

h

−
∫
0

|(f)(x)|ds dx
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and ∫
2Q

h

−
∫
0

| (τh−sf ◦ Ts) (x)| ds dx

=

∫
2Q

h

−
∫
0

| (τsf ◦ Th−s) (x)| ds dx

=

h

−
∫
0

∫
Rn

(χ2Q ◦ Ts−h)(x)︸ ︷︷ ︸
≤χ4Q(x)

| (τsf) (x)|ds dx

≤
∫

4Q

h

−
∫
0

| (τsf) (x)|ds dx

Putting those 2 estimates in 5.7 and putting it with 5.5 in 5.4 we get

−
∫
Q

|τj,hV(∇u)|2 dx ≤ εh
λ

∫
4Q

h

−
∫
0

|τj,sV(∇u)|2 dx+ cε
λ2

R2

∫
4Q

(|∇u|) dx (5.8)

We note that we get for any L1-function g:

λ

−
∫
0

h

λ

h

−
∫
0

|g(s)| dsdh =
1

λ2

1∫
0

1∫
0

χ(0,h)(s)χ(0,λ)(h)|g(s)|dsdh

=
1

λ2

1∫
0

1∫
0

χ(s,λ)(h)χ(0,λ)(s)|g(s)|dsdh =

λ

−
∫
0

1

λ

λ∫
s

dh|g(s)| ds

≤
λ

−
∫
0

|g(s)| ds

Integrating 5.8 via −
∫ λ

0 dh proves lemma 5.13.

To conclude the proof of theorem 5.12 we need a lemma from [19]:

Lemma 5.14. Let γ1, γ2 functions such that γi(R, h) is non decreasing in h
and h

R . Let f ∈ L2
loc(Ω) and gi ∈ L2

loc(Ω) be functions such that the following
statement is true: For every ε > 0 there is a cε > 0 such that for every cube
Q with side length R and 4Q b Ω and every 0 < h < R holds:

λ

−
∫
0

∫
Q

|τsf |2 dx . ε

λ

−
∫
0

∫
4Q

|τsf |2 dx ds+ cε

2∑
i=1

γi(R, h)

∫
4Q

gi dx (5.9)
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Then there exist constants N2(n) and c such that for every 0 < h < R0
10 and

every cube Q0 with 5Q0 b Ω holds∫
Q0

|τsf |2 dx . c

2∑
i=1

γi(R, h)

∫
5Q0

gi dx (5.10)

Proof. [19] Lemma 13.

We are now able to prove theorem 5.12.

Proof of theorem 5.12. From lemma 5.13 we know that the assumptions of
lemma 5.14 are fulfilled with f = V(∇u), γ1(R, h) = h2

R2 , γ2 = 0 and
g1 = ϕ(|∇u|). To conclude the proof we note γ1(N2R,N2h) = γ1(R, h)

Proof of Theorem 5.11. We divide equation 5.2 by h2 and get

−
∫
Q

|δhV(∇u)|2 dx .
1

R2
−
∫
5Q

|V(∇u)|2 dx <∞

This implies the existence of ∇V(∇u) ∈ L2(Q) for every Cube Q with
5Q b Ω. For any other ω b Ω we denote by R = dist(ω, ∂Ω). Take the
open covering ω ⊂ ∩x∈ωQR

6
(x) ⊂ Ω since ω is compact we have a finite

subcovering of cubes Qi := QR
6

(xi), i = 1, ..., N , with 5Qi b Ω. Therefore

we have

−
∫
ω

|δhV(∇u)|2 dx .
1

R2

N∑
i=1

−
∫
5Qi

|V(∇u)|2 dx <∞

Theorem 5.15. Let ϕ be an N-function satisfying assumption 2.4 and u ∈
Lϕloc(J×Ω,Rm)∩Cloc(J, L

2(Ω,Rm)) be a local weak solution to ∆ϕu = ut on
a cylindric domain J×Ω ⊂ R1+n with v := |∇u| ∈ L2

loc(J×Ω)∩Lϕloc(J×Ω).

Then we have V(∇u) ∈ L2
loc(I,W

1,2
loc (Ω,Rm)).

In analogy to the elliptic case we divide the proof.

Lemma 5.16. Let ϕ be an N-function satisfying assumption 2.4 and u ∈
Lϕloc(J×Ω,Rm)∩Cloc(J, L

2(Ω,Rm)) be a local weak solution to ∆ϕu = ∂tu on
a cylindric domain J×Ω ⊂ R1+n with with v := |∇u| ∈ L2

loc(J×Ω)∩Lϕloc(J×
Ω). Then for every space time cube Q of sidelength R with 4Q b J ×Ω and
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every λ < R we have

λ

−
∫
0

∫
Q

|τsV(∇u)|2 dz ≤ ε
λ

−
∫
0

∫
4Q

|τsV(∇u)|2 dxds

+cε

 λ2

R2

∫
4Q

ϕ(|∇u|) dz +
λ2

R

∫
4Q

|∇u|2 dz

 (5.11)

Proof. We multiply the inequality 3.23 on 2Q by h2, set f ≡ 1 and discard
II’: ∫

2Q′

τh,jA(∇u)∇(τh,juρ(t)ηq) dz ≤ h2

∫
2Q

H(|δhu|)∂t (ηq) dz

We now take η ∈ C∞0 such that χQ ≤ η ≤ χ2Q, |∇η| ≤ R−1 and |∂tη| ≤ R−1

and get

I” :=

∫
Q

τh,jA(∇u)∇(τh,ju) dz ≤ R−1

∫
2Q

|τhu|2 dz =: II” (5.12)

Since u ∈ L2(W 1,2) we have 1
h2

∫
2Q |τhu|

2 dz →
∫

2Q |∇u|2 dz and therefore
for every λ > h

II” ≤ 2

R
h2

∫
2Q

|∇u|2 dz ≤ 2λ2

∫
4Q

|∇u|2 dz

We then handle I” like in lemma 5.13 and take max{cε, 2} as our new cε
to get the result of lemma 5.16

Proof of theorem 5.15. We use the Giaquinta-Modica type lemma 5.14 with
γ1(R, λ) = λ2

R2 , γ2 = λ2

R , g1 = ϕ(|∇u|) and g2 = |∇u|2. We get

−
∫
Q

|τλV(∇u)|2 dz ≤ c

 λ2

R2
−
∫
5Q

ϕ(|∇u|) +
λ2

R
−
∫
5Q

|∇u|2


Dividing this by λ2 leads to

−
∫
Q

|δλV(∇u)|2 dz ≤ c

 1

R2
−
∫
5Q

ϕ(|∇u|) +
1

R
−
∫
5Q

|∇u|2

 <∞

which implies V(∇u) ∈ W 1,2(Q) for every cube Q with 5Q b Ω. The
same simple covering argument as in the elliptic case leads to V(∇u) ∈
W 1,2

loc (Ω)
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