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In this work a covariant and gauge invariant averaging formalism for finite volumes will be
developed. This averaging will be applied to the scalar parts of Einstein’s equations. For this
purpose “dust” as a physical laboratory will be coupled to the gravitating system. The goal is
to study the deviation from the homogeneous universe and the impact of this deviation on the
dynamics of our universe.

At first, the standard homogeneous cosmological model will be presented. Then, the so called
backreaction as proposed in [3] will be introduced. We will cite [8] and show that the averaging
procedure used in [3] is not gauge invariant. Furthermore, a remedy to this problem will be
presented. Fields of physical observables (dust) will be included in the studied system and used
to construct a reference frame to perform the averaging without a formal gauge fixing.

The derived equations resolve the question whether backreaction is gauge dependent. The
outcome of our approach will be compared to the results of [3]. Those will be reinterpreted in our
set up. In the last chapter we will make suggestions for experimental methods for studying the

inhomogeneities and their effect on the dynamics of the universe.
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Chapter 1

Cosmological backreaction

1.1 Introduction

Einstein’s theory of general relativity enabled the humankind to describe the state of the entire
universe in a mathematically precise way. The question is which solution of the Einstein field
equations describes the universe we observe. As usual in physics, one observes the sources and
searches for a solution for the field which would be generated by them. But even if one knows the
sources, i.e. the energy momentum distribution, the theory can not be straightforwardly solved as
would be the case for Maxwell’s electromagnetism. Einstein’s equations have a highly complicated
structure and what makes the task especially involved is the fact that the source is dependent
on the field (the metric) which one wishes to solve for. So, to have a solution it is necessary to
reduce the degrees of freedom by introducing symmetries. The most drastic reduction of degrees of
freedom was performed by Alexander Friedmann who used the assumption of the spatially isotropic
universe. This leaves just one free parameter -the scale factor of the universe- and Einstein’s theory
becomes solvable. The homogeneity assumption was at the times of A. Friedmann rather motivated
by philosophy, the mediocrity- or Copernican principle. This principle states that our position in
the universe is not preferred in any way.

Nowadays the discovery of the Cosmic Microwave Background radiation is the strongest evi-
dence for isotropy. The microwave signal is extremely close to black body radiation with minimal
fluctuations of 107° relative magnitude. Therefore, we know that the universe used to be highly
isotropic at the age of 380,000 years when electrons and protons formed hydrogen atoms and al-
lowed the photons to travel freely. At this time the FRW universe, which will be shortly discussed
in detail, was an excellent description of our universe. However, the very fact that today this thesis
can be written violates the isotropy. More precisely, the energy density inside a galaxy is by a

factor of 10° greater than the average energy density of the universe. So how is the homogeneity
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hypothesis meant at present?

Hawking and Ellis write in their book “Large scale structure of space-time”: “...the universe,
when viewed on a suitable scale, is approximately spatially homogeneous.” This statement is
imprecise in two ways. First, according to which averaging procedure is spatial homogeneity
approximate? Second, what is this suitable scale? The goal of this work will be to make this into
a more precise mathematical statement.

We will proceed in the following way: At first, the formalism used by Thomas Buchert will be
introduced. In this formalism the Einstein equations of an inhomogeneous universe are studied.
The author defines a space-time slicing using the velocity flow of an ideal fluid. The scalar parts
of the Einstein equations are projected out using the normal vectors of this slicing and they are
averaged over a space-like domain. The astonishing observation is that the resulting equations
have a similar structure to the Friedmann equations, but also contain extra terms. These terms
are a quantitative measure of the inhomogeneity effect on the dynamics of the domain under
consideration. The author calls the newly found terms the “backreaction”. These terms are of
great interest to quantitatively analyze the deviation from an FRW universe.

Buchert’s derivation has been criticized in the literature. Gabriele Veneziano has shown that the
averaging functional used by T. Buchert breaks gauge invariance. This is a point worth worrying
about, since we can only observe quantities which are independent of the chosen gauge. Veneziano
proposes a remedy for the problem concerning the choice of foliation, but he fails to construct a
gauge independent averaging scheme for finite volumes. Veneziano’s argument for the difficulty of
constructing such a finite-volume method, is the absence of spatially inhomogeneous scalar fields
in an FRW universe. This is of course correct, but why should one average an FRW universe?
The case we are interested in, is spatially not homogeneous and we wish to investigate whether
this feature appears in the averaged case. So, in our model such spatially inhomogeneous physical
scalars do exist and those will be used to construct the gauge independent averaging formalism for
finite volumes.

In the third chapter we will introduce the method of deparametrization using dust. This
formalism has been developed to address the problem of time in general relativity. We will also
discuss this problem in detail and how adding matter to the system helps address it. The system
under consideration will be enlarged by the specific type of matter, namely the pressure-less fluid
(called dust). The coordinates of the dust will serve as a physical coordinate system and as the
desired scalar fields with a spatial gradient. We will perform the averaging of the scalar parts of
Einstein’s equations in a manifestly gauge invariant way. As always in physics, it is legitimate
to fix a gauge when the whole formalism used is gauge covariant. We will do so and rediscover

Buchert’s equations in a certain gauge and under certain conditions. Hence, we will show that the
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Buchert equations for the dynamics of finite volumes are valid under certain constraints and the
backreaction is, in principle, an observable quantity. This finally resolves the question of the gauge
dependence of the backreaction. In the last chapter we will make suggestions how to estimate
the desired values experimentally with the final goal to give an exact statement concerning the

isotropy of the universe.

1.2 Introduction to homogeneous cosmology

Einstein’s theory of gravity makes incredible predictions for our universe under the assumption
of isotropy. So at first let us follow A. Friedmann’s path, assume an isotropic universe and derive
the Friedmann equations as in [19]. Those will be compared to Buchert’s equations later on.

First the notions of isotropy and homogeneity have to be defined in a precise way.

Definition of homogeneity:

A space-time is called spatially homogeneous if there exists an isometry of h,, on X; which
keeps hy, and U® fixed and carries a point p € ¥; into g € X;.
Definition of isotropy:

A space-time is said to be spatially isotropic at each point, if there exists a congruence of time-
like curves (i.e observers), with tangents U®, filling the space-time and satisfying the following
property: Given any point p and any two unit “spatial” tangent vectors Sy, S$e€ V,, (orthogonal
to U®), there exists an isometry of g,, which leaves p and U® at p fixed, but rotates S{ into SY.
Thus, in an isotropic universe it is impossible to construct a geometrically preferred tangent vector

orthogonal to U®.

Figure 1.1: congruence of time-like curves
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Claim:

Under the assumption of isotropy it is possible to foliate the space-time into isotropic hyper-

surfaces Y; which are orthogonal to U®.

Proof:

Assume the contrary. Furthermore assume ¥; and the isotropic observers are unique. If now
the tangent subspace to p orthogonal to U® does not coincide with ¥, , it is possible to find a
preferred spatial direction, by projecting U® on ;. The vector U{ then represents a spatially
preferred direction. This contradicts the assumption.

We assume only isotropy. Then within the foliation, g, induces a metric h(t), on X; by
restricting the action of g,, at p to vectors tangent to ;. Keep in mind that because of isotropy,
it must be impossible to construct any geometrically preferred vectors on ;. Consider now the
Riemann tensor ®)R%, constructed from h,, on ;. The construction R, h* = R, @ at p, is
a linear map L of the space W of two forms into itself R : W — W . By the symmetry of the
R-tensor, L is also a symmetric map. Therefore, W has on orthogonal basis of eigenvectors of L.
From isotropy we conclude that all eigenvalues of L must be equal (otherwise we could construct
a preferred spatial vector) i.e.

L=Kid

3) Rab cd — K&fdé,‘f] = Ropea = K hc[ahb]d

use now the Bianchi identity for the Riemann tensor.

0 = DY Ropjea = (D K)hyahiga

(Here D is the derivative operator associated with h on ;) From this we conclude:

D.K =0= K = const.

That means the eigenvalues of L, L being the map associated with the Riemann tensor, are equal
and constant all over ¥; (so called constant curvature). This implies homogeneity for the spatial
hypersurface. Remarkable is that homogeneity is a consequence of isotropy and was not assumed
a priori. So the crucial assumption is isotropy.

Now the problem has been reduced to identifying spaces of constant curvature. It turns out
that there are just three distinct choices. K > 0, K < 0 and K = 0 spherical- , hyperbolic-
and flat-space respectively. The metric splits into g,, = —uw,u, + h,,(t) where at each ¢, h(t)
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is the metric of either a sphere, a hyperboloid or the euclidean space on ;. In the Friedman-
Robertson-Walker cosmological model the metric has only one free parameter a. In the positive
spatial curvature case it is the radius of the three sphere. In general we call it the scale factor.
The time 7 is the proper time measured by the isotropic observers. The metric has the following

structure, where k € {—1,0, 1} denotes the spatial curvature:

dr?
1—kr?

Note that for £ = 1 this coordinatization has a singularity and so it covers only the r < 1

ds® = —dr* + a(7)? + 12 (d6? + sin®*(0) dg?)

fraction of the 3-sphere.

The Einstein Tensor computed from the above metric and written as a matrix has the following

form:
a2
) 0 0
o] 0 EEEE 0 ’ (1.1)
v 0 0 k+2a('2i+d2 0 :
0 0 0 k+2a62i+d2

To solve the Einstein equation of the universe we also need the source i.e. the energy momentum
tensor. The one for non relativistic matter, is to a good approximation T* = pu*u” an energy
momentum tensor of a pressure-less fluid. The situation is different if one includes radiation and
needs to take the pressure into account as well. The most general tensor which is compatible with
the isometries of the FRW model is the one of the perfect fluid 7" = p(t)u*u” +p(t) (v u” +g") =
putu’ + p P, , with p the energy density, p the pressure and P, the projection tensor on the
orthogonal plane to w*. The velocity flow of the fluid is normalized i.e. u*u, = —1 (the minus
appears due to our metric convention (—, 4+, +,+)). The different types of considered tensors are
characterized by the equation of state w = p/p. The tensor can be written as a matrix, in analogy

to the Einstein tensor above:

T = T gy, = p(t)uru* gy, + p(t) (u u gy, + g ga) = p(t) u'u, + p(t) (w'u, + g*)

In the fluid’s rest frame u* = (1,0,0,0) and hence the matrix can be explicitly written as:
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—p(t) 0 0 0
To = 0 pt) 0 0 12)
0 0 pt) 0
0 0 0 p@)

Note that we have chosen coordinates in which we expressed the metric and we also have decided
to use the fluid’s rest frame, since this is a convenient choice. This is absolutely legitimate, since
all the equations we have are covariant tensor equations and hence transform correctly under
coordinate changes.

Now we can use the velocity flow to project the Einstein equation on it:

G’ = 871Gy p(t) (w'u,)? + p(t) ((u'u,)® + (utu,,)) = 87Gy p(t)

As mentioned above in the fluid’s rest frame u* = (1,0,0,0) and therefore the left hand side is

just the temporal-temporal component of the Einstein tensor. Comparing to (1.1) and taking:

3(k+a?)

K —
Goglto - a2

We obtain the first Friedmann equation, which can be formulated with the the Hubble expansion

rate:
H=a/a
L\ 2
k
3 <9> — 87Gyp — 3 (1.3)
a a

k
3H? = 81Gnp — 3—
a

An amazing observation is that assuming p > 0 (which is a reasonable assumption based on our
experience) from the first Friedmann equation it follows that the universe can not be static. The
only possibility to enforce a vanishing H is to assume the scale factor to have a specific fine-tuned
value, which would still yield an unstable solution. Einstein himself has realized this property, but
found it unphysical and tried to “cure” this feature by introducing a cosmological constant term,

which will be discussed below in more detail.

To compute the trace of Einstein’s equation we can use the explicit matrix notation above (1.1)
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and (1.2) :

Tr(GY) =8rGyTr(T%)

This yields the second Friedmann equation:

—6% = 87Gw(p+ 3p) (1.4)

(H + H2> - —%”GN(p +3p)

Of course there are also other projections possible, as: G, h**h** and G, h**u” (where a, b €
{1,2,3}) but those are identically zero in an isotropic universe. This can be seen directly from
the equation (1.1). On the other hand it is clear that such “space-space” components, independent

from the identical diagonal components would violate isotropy.

The total energy momentum tensor of the universe can now be a linear superposition of tensors
of ideal fluids with different equations of state. The standard model matter would be to a good
approximation described by ideal fluids, with w = 0 for fermionic, non-relativistic matter and
w = 1/3 for bosons (radiation). Given the equation of state for a perfect fluid i.e. w, the Friedmann
equations can be solved and give an evolution equation for the scale factor, with a constant ag

determined by initial conditions:

2
a(t) = a0t<3(w+1>) (1.5)
Note: This solution is not valid for w = —1, which would result in a constant energy density
and an exponential growth of the scale factor. It is remarkable that w = —1 would correspond to a

cosmological constant A which can also be included in the most general Einstein tensor (Lovelock).

In cosmology the evolution of the universe is of great interest. The energy budget is the crucial
quantity influencing the universe’s dynamics. Given certain initial conditions, i.e. fractions of the
different energy-momentum tensors in the total energy budget at one point of time, the question
could be asked: How will the energy be diluted with the change of the scale factor? To solve this
problem we differentiate (1.3) and setting here k£ = 0 insert (1.4), this results in:

1
p=-3H (p+p):—3Hp(1+w)<:>dp:—3ada(1+w)

Integrating this, we obtain:
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e For non relativistic matter with w = 0 the scaling is: p(a) oc a3

e For radiation with w = 3 the scaling is: p(a) o a™*

e For w = —1, which is the case for the cosmological constant the energy density is constant.

This case will be discussed later more carefully.

Our result applied to the cosmological hot big bang model, which is the most accepted at the
present times, shows the following. The early universe which was extremely hot and radiation
dominated, expanded according to (1.5) as a(t) ~ tz, but the energy density of relativistic matter
was diluted during the expansion with the fourth inverse power of a, while the non relativistic
matter was diluted with the third inverse power of a. Therefore, at some point the non relativistic
matter must have taken over. In the non-relativistic (dust) era the scale factors behavior was
dominantly a(t) ~ ¢5. This scenario matches with the observational data to a high accuracy.

A new fascinating observation has been made in the nineties. Supernova surveys indicate that
our era is dominated by the cosmological constant. To this evolution the simple solution (1.5)
does not apply. To discuss the cosmological constant problem, let us first derive an expression for
the total energy budget and discuss its value at present. Rewriting the first Friedmann equation,
including the cosmological constant and rearranging terms, one obtains:

8rG E A
— H2 N —_ 4=
1=H ( 5 p(t) 5+ 3)

With definitions of the partial energy budgets €2, :

87TGN

k
U=

A
=g

We can write down the total energy budget of the universe:
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Qo +Qp +Qp =1

The observations of the cosmic microwave background (CMB), supernovae explosions (SNe) and
barion acoustic oscillations (BAQO) give very strong evidence that the universe is flat, the Q,, = 0,3
and the 2y = 0,7. Tt is the overlap of this three independent observations, which makes this data
so credible and provides an extremely strong test for any model which claims to explain nature.
The so called A-CDM model is the most successful today, since it explains observations of all this
experiments to a high accuracy. The evidence for a non radiating (dark) matter as well as the
fascinating physics of the observed effects, can not be discussed at this point, but we will come

back to some of them in the last chapter.

20

Figure 1.2: Cosmological budget

The cosmological constant Ace is a natural term in the Einstein equation. On the other hand
from quantum field theory we know an object called vacuum energy. This object has the equation
of state w = —1 . According to QFT if there are any quantum fields present in the theory the
whole space is filled with this ground state. Since QFT is the best theory we know to understand
the fundamental properties of matter, we have to take it seriously. This means that the value of
Agpr will renormalize the the bare value of Acc and result in an effective Agss. So far only shifts
in the vacuum energy, as in the Casimir effect, have been observed. The absolute value seems to be
only accessible via cosmological observations. This absolute value is predicted by the theory, but
the predicted value of Agpr and the observed Agys differ by at least 50 orders of magnitude. This

discrepancy indicates that we do not understand some mechanism very profoundly or have to accept
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a fine tuning up to 50 decimal orders. Such a fine tuning shows by itself some fundamental problem
in the theory. In the fourth chapter we will discuss whether studying the effect of inhomogeneities
can open a new window of opportunity and help come closer to the solution of this challenging
riddle.

Briefly summarizing, the up-to-date observational results from supernovae explosions and the
cosmic microwave background, indicate that the universe is flat &k = 0 (or very close to it) and
that its expansion accelerates, which would mean a domination of a quantity with constant energy

density.

1.3 Inhomogeneous Cosmology

From the CMB we know that the universe used to be highly isotropic, but today this isotropy has
been violated. Since this was an evolutionary process we expect it to happen in a continuous way,
starting from an FRW universe and smoothly developing inhomogeneities. One is interested in
effective equations describing the dynamics of space-time and expects them to have a similar struc-
ture as the Friedmann equations and corrections, small compared to the Friedmann background.

The question we could ask now is, whether this assumption of an FRW background is an
unnecessary limitation, or whether it can be avoided and the Einstein equations can be solved
generally. For this purpose, let us compare GR and Maxwell’s Electromagnetism. Let us assume
that we have the external sources (the currents) in Maxwell’s theory and want to solve the field

equation for A*:

0, F" =0, (0"A” —0"A*) =0A" —0"0- A= J"

Choosing the Lorentz gauge by shifting AY — A4 = A¥ + 9"y with Oy =0s.t. 0- A, =0 we
rewrite the equation as:
JI/

LA = J” which has the solution: A’ = =

Where the inverse of Box is understood as the appropriate Green’s function. This is possible only
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because .J has no dependence on A.
The situation in GR is drastically different. Consider the field equation for the gravitational
field:

G/W = 87TGN ij

Now one is interested in the solution for g,,. The Einstein tensor depends on the metric and its
derivatives up to second order but the problem is that also the source has a g dependence.
Suppose the matter is described by a Lagrange function £y, then the energy momentum tensor

would be:

1 ALy
V=4 09"

In this case we can not write down a Green’s function as a working recipe for the solution. The

Ty (9 )

only way to solve the equation is to impose symmetries or to choose a background.
For instance choosing Minkowski background and expanding in small perturbations around it
one would get g,, = 1 + hy and can solve the dynamics for a field containing A the so called

de Donder fiel. Defined by:

2]

1

w =l — 577WTT(hW)

v

We choose a gauge where 0"V, = 0, the de Donder gauge. The diffeomorphism invariance of the
theory (which will be discussed in more detail in the second chapter) is the freedom to transform
coordinates as x* — x* 4 {# which results in h,, — hy, +0,&,). This makes it possible to impose

the de Donder gauge condition. So the equation of motion for ¥ in the de Donder gauge reads:

Tw(ﬁ)
O

D\IJNV = 87TGN Tul/(n) = ‘I/;w = 87TGN

Note that the source here only depends on the background and the d’Lambert operator is defined
on Minkowski. This shows that if we do not want to make symmetry assumptions about the full

metric, we are forced to choose a background. Coming back to the question in the beginning of this
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section, we answer: Yes, we have to assume an FRW background and this is also a physical and
natural way to do it. Exactly because of the evolutionary process, which started in an homogeneous
era.

There are different approaches possible to estimate the effect of inhomogeneities on the cosmic
evolution. One possibility to study local perturbations of the metric and they time development,
as it is done in [13]. An other way would be to develop an averaging procedure and find equations
governing the dynamics of the averaged domains. The averaging scheme has a big physical signif-
icance, since cosmological observations are often strongly coarse grained and rather correspond to
averages than local measurements. Nevertheless it is interesting to study the local perturbative
approach to get an idea, for instance which components of Einstein’s equations will be most inter-
esting to study. A detailed discussion of the cosmological perturbation theory is beyond the scope
of this work. We will briefly summarize some results from [13].

It has been shown that perturbations of the energy momentum tensor of an ideal fluid can be

written to first order in gauge invariant variables as:

5TO = be,  OT9 = - (co+po) (Bups + Sur), 6T = —bpdi (1.6)

' oa
The metric perturbations in a flat FRW universe can be written in the so called Longitudinal

gauge, with ¢ and ¢ being the scalar perturbations and 7 the conformal time, as:

ds® = a(n)* [— (1 +2¢) dn® + (1 — 2¢) 6;;dz"da’ ]

The Einstein tensor calculated from the above metric is diagonal. Equations (1.6) show that the
perturbations of the energy momentum tensor are diagonal in the spatial-spatial parts. If one
furthermore assumes a pressure-less fluid of low energy density s.t. ¢y/a < 1, the whole perturbed
Einstein equation will be diagonal. Moreover, the structure of the equations is such that the
zero-zero component and the trace carry the full information of the perturbed system. This is of
course not a rigorous proof, but a motivation to concentrate the analysis of the averaged, perturbed

Einstein equations on their scalar parts.
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1.4 Backreaction as proposed by T. Buchert

In 3] a formalism for averaging traces of Einstein’s equations was proposed. This formalism
will be introduced in the following section.
1.4.1 Choice of foliation and basic equations

As a model system, a pressure free fluid called “dust” (which obeys the isometries of an isotropic
cosmology) living on a manifold M of topology R x X is studied. Furthermore a cosmological
constant A is included. Already at this point we know that the averaged space-time is not general.
For instance it can not be a Minkowski background, since it does not support an energy density
present in the whole space and of course the presence of A also forbids Minkowski. The system,
as mentioned above, should be rather viewed as a space-time, which deviates from FRW in a
continuous way.

The Einstein equation reads:

1
E, =R, — ég,u,R — 81Gypuyuy, + Agy =0

To obtain the zero-zero component and the trace of this equation, projections on the velocity flow
of the fluid as well as on the hypersurfaces defined by it are used. The co-moving frame is chosen
immediately at the beginning. The rest frame of the fluid, which corresponds to a geodesic observer
is a physically relevant choice. It represents our position on the earth when we observe distant
objects. The problem is that if the gauge is fixed before averaging the averaging procedure will
break the diffeomorphism invariance and the result can be questioned. This is exactly the point
Veneziano has criticized about Buchert’s averaging scheme. We will come back to this issue later.

For now we will proceed and present the calculations by T. Buchert. First a flow orthogonal

coordinate system is chosen, such that z# = (¢, X*) = f#(X*, t) and therefore:
ut =0, f* = f*=(1,0,0,0)

These coordinates label geodesics in space-time i.e. V,u = 0. Together with the choice of vanishing
3-velocity they are also co-moving. Since in that case X* = 0 , they can be called Lagrangian

coordinates of the fluid elements. The fluid filling the space-time obeys the mass conservation law:

Viu(pu*u") =0
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The velocity flow of the dust foliates the space-time into hypersurfaces ¥; with the induced
metric h;; , which is the pull-back of the projection tensor h,, = g, + u,u, on the hypersurfaces

of constant ¢ . The full metric can be written in the following way:

ds® = —dt* + h;dX'dX’

With the definition of the projection tensor h,, = g,, +u,u, and its pull-back, one can express
the extrinsic curvature:

Kij == —héLh;vyuu

Here the Latin indices represent coordinates on ¥; and the Greek indices the coordinates on M.

Intermezzo:

Here a few words on the extrinsic curvature. This object is the second fundamental form on the
hypersurface ¥; and can be viewed as the time derivative of the metric h;;, in the following sense:
The extrisic curvature is a tensor, entirely in ¥ i.e K, u"* = K, u” = 0 and therefore K, = K,,.

Using this symmetry one obtains:

1 1 1 1
ij — §<VMUV + Vyuu) = éﬁug;w = é(ﬁu(h/ﬂ/ - uﬂul/)) = E‘C“h/“/

In case the coordinates are adapted to u, (Gaussian coordinates):

1
K/U/ - 5875}1/“,/

So, the intuitive picture one should have for the role of the extrinsic curvature is the bending
of the hypersurface ¥ in the manifold M.
With the extrinsic curvature, Einstein’s equations can be rewritten in a way which will be more

convenient for later discussion’. Projecting the Einstein equation written as one tensor E,, = 0

LA detailed derivation of the Einstein tensor in terms of the extrinsic curvature and the 3-scalar-curvature can
be found in Appendix A in the derivation of the ADM formalism.
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on the velocity flow of the fluid gives the zero-zero component:

E

1
wutn” = Gutu” — 8nGp (uuu“)2 — A(uyut) =0 = Ry + §R =8rGyp+ A

where
1 L
Roo = §(<K3)2 - K;Kz‘j)
and therefore the Hamiltonian constraint density reads:

1 L
5(R+ K? — KIK]) = 87Gnp + A

The projection of E,,uthy = 0 gives the space-time components, called momentum constraints
(where Dj is the covariant derivative operator related to the space metric h and Oy, is the derivative

w.r.t. the Lagrangian coordinates X* of the dust):

DK — 9x,K =0

Except for the four constraints, there are three evolution equations. Using the mass conserva-

tion one can compute:
0=u, V,(pu'u") = u,(Wu'V,p+ pu”"V,u" + pV,u) = —ulV,p — pV, ut' = 0p — pK

=p=Kp (1.7)

The projection of E,U,h;‘ hY = 0 gives the spatial-spatial components of Einstein’s equations and

using those one gets:

(hij) = —2hi K} (1.8)

(K!) = K K + R, — (47pGy + A)0

An other important scalar equation is the Raychaudhuri-Landau equation. It basically describes
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the motion of nearby bits of matter due to gravity. With the definition of the shear tensor:
1
Uij = GZJ — g@hm

where 6;; = —K; is the expansion tensor and 6 = tr(6;;) the expansion rate. Note that 6 can be
viewed as the local analog of the Hubble rate, since we have observed that the extrinsic curvature

is a time derivative of the metric. Defining the square of the shear tensor as:

1 .
o? = 50}

J
0;

The Raychaudhuri-Landau ? equation can be formulated as:

-1
0+§92+20‘2+47TGNp—A: 0 (1.9)

This equation is the local analog to the second Friedmann equation. It describes the change
of the local expansion rate. With the definition of the shear tensor at hand we can rewrite the

Hamiltonian constraint density somewhat more conveniently:

1 1
592 = 81Gnp+ A — §R+02 (1.10)

This would be the analog of the first Friedmann equation, which contains the square of the
expansion rate. In the local case the deviation from the Friedmann equations is due to the shear,
which is of course not present in an isotropic universe. This set of equations has also been discussed
in connection with perturbation theory by Kasai (1995), Matarrese (1996, and ref. therein) and
by Matarrese & Terranova (1996), as well as in the papers by Russ et al. (1996, 1997).

One more useful relation can be obtained from the projections. Taking the trace of (1.8),
written in the form:

) 1. . .
Ki= —ihl’f(hkj)

J

2The Raychaudhuri-Landau equation governs the motion of nearby bits of matter. A sketch of the derivation
will be given in the Appendix B.



CHAPTER 1. COSMOLOGICAL BACKREACTION 23

and defining:

J(t, XZ) = det(h”)
One obtains with:

the following identity:

J=—-KJ=0J

Using this, the continuity equation (1.7) can be integrated along the flow lines:

plt, X7) = (plto, X)J(to, X)) I~ (111)

This equation shows that mass is conserved along the flow lines, which is a natural result. The
equations derived in this section and their averages will be studied to address the backreaction
problem.

1.4.2 Averaging the traces of Einstein’s equations

The averaging procedure as proposed in [3] is a spatial averaging of scalar quantities. The
foliation into spatial hypersurfaces 3; is defined by the choice of the rest frame of the dust, which
corresponds to the choice of a geodesic observer. The spatial average of a scalar ¥ over a domain

D, located on the hypersurface of constant time ¥, is defined by:

(U(t, X")) p = Vi/ JdPX W(t, X')

with the volume element dV := y/det(h;;) X = Jd*X of the spatial hypersurfaces of constant

time. So the volume naturally is:

Vp = / Jd*X

Furthermore an effective scale factor is defined as:

Thus the averaged expansion rate can be written in terms of the scale factor:
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1 1 J 1 . VD ap
Np=— [ J&X0=— | J&XZ=—"— [ J&X =-—==3—= 1.12
< >D VD VD/ J VD VD ap ( )

The dot denotes partial derivative w.r. t. time and hence commutes with the integral.
The integral (1.11) states the conservation of the total rest mass Mp of the dust as transported
along the flow lines, the integral over a spatial volume gives the conserved mass included in the

domain:

Mp
= 3
VDO ap

MD:/Jd3Xp:const < (p)p
D

In the future discussion the subscript D is not going to be mentioned explicitly but always assumed
when averages are considered.

Commutation Rule for the time derivative:

9wy~ (i) = (w) + (¥) ()

d 2 [W]dx 1. . 1 o1 1V
— =0 """ U PV = [ VIdr— /\pdS——/qfcﬁ——:
(W) A / J T / J xV—I— J T J gy

= () + (o) — () (6)

At this point we prove another equation which is going to be of use later. With the commutation

rule one gets:

Furthermore compute:

o, .0 (a\ i .a® i 1,.,
§<9>‘3&(‘>_3"3__35_§<9>

a

Combining the above expressions we get:

% (0%) + <9'> = 3% + ; (0)2 — ; (6%) (1.13)

This relation will prove to be useful in the later discussion.
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1.4.3 The averaged Einstein equations

In this section the averaging procedure described above will be applied to the scalar parts of
Einstein’s equations. To use the scalar equations derived from the trace and zero-zero components
of Einstein’s equations was motivated in 1.3. First the Hamiltonian constraint density will be aver-
aged. Second the Raychaudhuri equation, which is derived from the trace of Einstein’s equations,
will be studied after performing the averaging. The resulting equations, called Buchert equations,
will be discussed in the end of this section. A is assumed to be zero since it is not of interest for
the averaging.

Hamziltonian constraint density:

After applying the spatial averaging to (1.10) one obtains:

1 2 1 2
= 3(0)+5(R) = (")

Inserting unity and transforming it according to (1.12), the equation containing the backreaction

87TGN <p>

term reads:

(%) =2 (0)7 + 5 0)" + 5 {R) — (0%) =

87Gw (p) = 3

W

1 1 a\? 1 a\? 1 Qp
:§<92>—§<0>2+3(5> +§<R>—<a2>:3<a> + = (R) + =
Here the quantity Qp = 2(6%) — 2(0)2 — 2(0?) = 2(A8)? — 2(0?) (called backreaction) was
introduced. Note that a here denotes the scale factor of the averaging domain, as introduced
above. Furthermore, it is obvious that ()p vanishes if we have a homogeneous universe, since there
is no shear and also no variance of the expansion rate. In the case of vanishing backreaction the
first Friedmann equation is rediscovered. The subtle difference is that this equation was obtained
by averaging a local quantity and would also hold for a finite volume.

Raychaudhuri’s equation:

After averaging (1.9) the relation reads:

<9'> + % (0%) +2(0%) + 871Gy (p) =0

Using the computed identity (1.13) one gets:

30+ 2 (6)7 — 2 (8%) +2(0%) + 87C (p) =
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232_QD+87TGN<,0>:O

Which is the equivalent of the second Friedmann equation for a finite volume. Again the correction
term is the domain dependent backreaction ()p. In both cases the deviation of the Buchert
equations from Friedmann’s equations contain the averaged shear. This was expected since also
the local analoga of the Friedmann equations deviate only be the shear term. The amazing and
surprising result is that Buchert’s equations also contain a correction, which is connected to the
variance of the local expansion rate. This is a purely statistical quantity, which can be only
obtained in the averaging process.

Cosmological balance:

Defining:
HD = g
a
8’/TGNMD
Q= —
3Voa® H?,

(R)

