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In this work a covariant and gauge invariant averaging formalism for �nite volumes will be

developed. This averaging will be applied to the scalar parts of Einstein's equations. For this

purpose �dust� as a physical laboratory will be coupled to the gravitating system. The goal is

to study the deviation from the homogeneous universe and the impact of this deviation on the

dynamics of our universe.

At �rst, the standard homogeneous cosmological model will be presented. Then, the so called

backreaction as proposed in [3] will be introduced. We will cite [8] and show that the averaging

procedure used in [3] is not gauge invariant. Furthermore, a remedy to this problem will be

presented. Fields of physical observables (dust) will be included in the studied system and used

to construct a reference frame to perform the averaging without a formal gauge �xing.

The derived equations resolve the question whether backreaction is gauge dependent. The

outcome of our approach will be compared to the results of [3]. Those will be reinterpreted in our

set up. In the last chapter we will make suggestions for experimental methods for studying the

inhomogeneities and their e�ect on the dynamics of the universe.
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Chapter 1

Cosmological backreaction

1.1 Introduction

Einstein's theory of general relativity enabled the humankind to describe the state of the entire

universe in a mathematically precise way. The question is which solution of the Einstein �eld

equations describes the universe we observe. As usual in physics, one observes the sources and

searches for a solution for the �eld which would be generated by them. But even if one knows the

sources, i.e. the energy momentum distribution, the theory can not be straightforwardly solved as

would be the case for Maxwell's electromagnetism. Einstein's equations have a highly complicated

structure and what makes the task especially involved is the fact that the source is dependent

on the �eld (the metric) which one wishes to solve for. So, to have a solution it is necessary to

reduce the degrees of freedom by introducing symmetries. The most drastic reduction of degrees of

freedom was performed by Alexander Friedmann who used the assumption of the spatially isotropic

universe. This leaves just one free parameter -the scale factor of the universe- and Einstein's theory

becomes solvable. The homogeneity assumption was at the times of A. Friedmann rather motivated

by philosophy, the mediocrity- or Copernican principle. This principle states that our position in

the universe is not preferred in any way.

Nowadays the discovery of the Cosmic Microwave Background radiation is the strongest evi-

dence for isotropy. The microwave signal is extremely close to black body radiation with minimal

�uctuations of 10−5 relative magnitude. Therefore, we know that the universe used to be highly

isotropic at the age of 380,000 years when electrons and protons formed hydrogen atoms and al-

lowed the photons to travel freely. At this time the FRW universe, which will be shortly discussed

in detail, was an excellent description of our universe. However, the very fact that today this thesis

can be written violates the isotropy. More precisely, the energy density inside a galaxy is by a

factor of 105 greater than the average energy density of the universe. So how is the homogeneity

7
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hypothesis meant at present?

Hawking and Ellis write in their book �Large scale structure of space-time�: �...the universe,

when viewed on a suitable scale, is approximately spatially homogeneous.� This statement is

imprecise in two ways. First, according to which averaging procedure is spatial homogeneity

approximate? Second, what is this suitable scale? The goal of this work will be to make this into

a more precise mathematical statement.

We will proceed in the following way: At �rst, the formalism used by Thomas Buchert will be

introduced. In this formalism the Einstein equations of an inhomogeneous universe are studied.

The author de�nes a space-time slicing using the velocity �ow of an ideal �uid. The scalar parts

of the Einstein equations are projected out using the normal vectors of this slicing and they are

averaged over a space-like domain. The astonishing observation is that the resulting equations

have a similar structure to the Friedmann equations, but also contain extra terms. These terms

are a quantitative measure of the inhomogeneity e�ect on the dynamics of the domain under

consideration. The author calls the newly found terms the �backreaction�. These terms are of

great interest to quantitatively analyze the deviation from an FRW universe.

Buchert's derivation has been criticized in the literature. Gabriele Veneziano has shown that the

averaging functional used by T. Buchert breaks gauge invariance. This is a point worth worrying

about, since we can only observe quantities which are independent of the chosen gauge. Veneziano

proposes a remedy for the problem concerning the choice of foliation, but he fails to construct a

gauge independent averaging scheme for �nite volumes. Veneziano's argument for the di�culty of

constructing such a �nite-volume method, is the absence of spatially inhomogeneous scalar �elds

in an FRW universe. This is of course correct, but why should one average an FRW universe?

The case we are interested in, is spatially not homogeneous and we wish to investigate whether

this feature appears in the averaged case. So, in our model such spatially inhomogeneous physical

scalars do exist and those will be used to construct the gauge independent averaging formalism for

�nite volumes.

In the third chapter we will introduce the method of deparametrization using dust. This

formalism has been developed to address the problem of time in general relativity. We will also

discuss this problem in detail and how adding matter to the system helps address it. The system

under consideration will be enlarged by the speci�c type of matter, namely the pressure-less �uid

(called dust). The coordinates of the dust will serve as a physical coordinate system and as the

desired scalar �elds with a spatial gradient. We will perform the averaging of the scalar parts of

Einstein's equations in a manifestly gauge invariant way. As always in physics, it is legitimate

to �x a gauge when the whole formalism used is gauge covariant. We will do so and rediscover

Buchert's equations in a certain gauge and under certain conditions. Hence, we will show that the
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Buchert equations for the dynamics of �nite volumes are valid under certain constraints and the

backreaction is, in principle, an observable quantity. This �nally resolves the question of the gauge

dependence of the backreaction. In the last chapter we will make suggestions how to estimate

the desired values experimentally with the �nal goal to give an exact statement concerning the

isotropy of the universe.

1.2 Introduction to homogeneous cosmology

Einstein's theory of gravity makes incredible predictions for our universe under the assumption

of isotropy. So at �rst let us follow A. Friedmann's path, assume an isotropic universe and derive

the Friedmann equations as in [19]. Those will be compared to Buchert's equations later on.

First the notions of isotropy and homogeneity have to be de�ned in a precise way.

De�nition of homogeneity :

A space-time is called spatially homogeneous if there exists an isometry of hab on Σt which

keeps hab and U
α �xed and carries a point p ∈ Σt into q ∈ Σt.

De�nition of isotropy:

A space-time is said to be spatially isotropic at each point, if there exists a congruence of time-

like curves (i.e observers), with tangents Uα, �lling the space-time and satisfying the following

property: Given any point p and any two unit �spatial� tangent vectors Sa1 , S
a
2∈ Vp (orthogonal

to Uα), there exists an isometry of gµν which leaves p and Uα at p �xed, but rotates Sa1 into Sa2 .

Thus, in an isotropic universe it is impossible to construct a geometrically preferred tangent vector

orthogonal to Uα.

Figure 1.1: congruence of time-like curves
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Claim:

Under the assumption of isotropy it is possible to foliate the space-time into isotropic hyper-

surfaces Σt which are orthogonal to Uα.

Proof :

Assume the contrary. Furthermore assume Σt and the isotropic observers are unique. If now

the tangent subspace to p orthogonal to Uα does not coincide with Σt , it is possible to �nd a

preferred spatial direction, by projecting Uα on Σt. The vector Uα
⊥ then represents a spatially

preferred direction. This contradicts the assumption.

We assume only isotropy. Then within the foliation, gµν induces a metric h(t)ab on Σt by

restricting the action of gµν at p to vectors tangent to Σt. Keep in mind that because of isotropy,

it must be impossible to construct any geometrically preferred vectors on Σt. Consider now the

Riemann tensor (3)Rd
abc constructed from hab on Σt. The construction R d

abe h
ec = R cd

ab at p, is

a linear map L of the space W of two forms into itself R : W → W . By the symmetry of the

R-tensor, L is also a symmetric map. Therefore, W has on orthogonal basis of eigenvectors of L.

From isotropy we conclude that all eigenvalues of L must be equal (otherwise we could construct

a preferred spatial vector) i.e.

L = K id

(3)R cd
ab = K δc[dδ

d
b] ⇒ Rabcd = K hc[ahb]d

use now the Bianchi identity for the Riemann tensor.

0 = D
(3)
[e Rab]cd = (D[eK)h|c|ahb]d

(Here D is the derivative operator associated with h on Σt) From this we conclude:

DeK = 0⇒ K = const.

That means the eigenvalues of L, L being the map associated with the Riemann tensor, are equal

and constant all over Σt (so called constant curvature). This implies homogeneity for the spatial

hypersurface. Remarkable is that homogeneity is a consequence of isotropy and was not assumed

a priori. So the crucial assumption is isotropy.

Now the problem has been reduced to identifying spaces of constant curvature. It turns out

that there are just three distinct choices. K > 0 , K < 0 and K = 0 spherical- , hyperbolic-

and �at-space respectively. The metric splits into gµν = −uµuν + hµν(t) where at each t, h(t)
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is the metric of either a sphere, a hyperboloid or the euclidean space on Σt. In the Friedman-

Robertson-Walker cosmological model the metric has only one free parameter a. In the positive

spatial curvature case it is the radius of the three sphere. In general we call it the scale factor.

The time τ is the proper time measured by the isotropic observers. The metric has the following

structure, where k ∈ {−1, 0, 1} denotes the spatial curvature:

ds2 = −dτ 2 + a(τ)2

[
dr2

1− k r2
+ r2

(
dθ2 + sin2(θ) dφ2

)]
Note that for k = 1 this coordinatization has a singularity and so it covers only the r < 1

fraction of the 3-sphere.

The Einstein Tensor computed from the above metric and written as a matrix has the following

form:

Gµ
ν = −


3(k+ȧ2)

a2
0 0 0

0 k+2aä+ȧ2

a2
0 0

0 0 k+2aä+ȧ2

a2
0

0 0 0 k+2aä+ȧ2

a2

 (1.1)

To solve the Einstein equation of the universe we also need the source i.e. the energy momentum

tensor. The one for non relativistic matter, is to a good approximation T µν = ρuµuν an energy

momentum tensor of a pressure-less �uid. The situation is di�erent if one includes radiation and

needs to take the pressure into account as well. The most general tensor which is compatible with

the isometries of the FRW model is the one of the perfect �uid T µν = ρ(t)uµuν+p(t)(uµuν+gµν) =

ρuµuν + pP⊥ , with ρ the energy density, p the pressure and P⊥ the projection tensor on the

orthogonal plane to uµ. The velocity �ow of the �uid is normalized i.e. uµuµ = −1 (the minus

appears due to our metric convention (−,+,+,+)). The di�erent types of considered tensors are

characterized by the equation of state ω = p/ρ. The tensor can be written as a matrix, in analogy

to the Einstein tensor above:

T µν = T µλgλν = ρ(t)uµuλgλν + p(t)(uµuλgλν + gµλgλν) = ρ(t)uµuν + p(t) (uµuν + gµν)

In the �uid's rest frame uµ = (1, 0, 0, 0) and hence the matrix can be explicitly written as:
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T µν =


−ρ(t) 0 0 0

0 p(t) 0 0

0 0 p(t) 0

0 0 0 p(t)

 (1.2)

Note that we have chosen coordinates in which we expressed the metric and we also have decided

to use the �uid's rest frame, since this is a convenient choice. This is absolutely legitimate, since

all the equations we have are covariant tensor equations and hence transform correctly under

coordinate changes.

Now we can use the velocity �ow to project the Einstein equation on it:

Gµνu
µuν = 8πGN ρ(t) (uµuµ)2 + p(t)

(
(uµuµ)2 + (uµuµ)

)
= 8πGN ρ(t)

As mentioned above in the �uid's rest frame uµ = (1, 0, 0, 0) and therefore the left hand side is

just the temporal-temporal component of the Einstein tensor. Comparing to (1.1) and taking:

Gµ
0 gµ0 =

3 (k + ȧ2)

a2

We obtain the �rst Friedmann equation, which can be formulated with the the Hubble expansion

rate:

H = ȧ/a

3

(
ȧ

a

)2

= 8πGNρ− 3
k

a2
(1.3)

3H2 = 8πGNρ− 3
k

a2

An amazing observation is that assuming ρ > 0 (which is a reasonable assumption based on our

experience) from the �rst Friedmann equation it follows that the universe can not be static. The

only possibility to enforce a vanishing H is to assume the scale factor to have a speci�c �ne-tuned

value, which would still yield an unstable solution. Einstein himself has realized this property, but

found it unphysical and tried to �cure� this feature by introducing a cosmological constant term,

which will be discussed below in more detail.

To compute the trace of Einstein's equation we can use the explicit matrix notation above (1.1)
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and (1.2) :

Tr(Gµ
ν) = 8πGN Tr(T

µ
ν)

This yields the second Friedmann equation:

−6
ä

a
= 8πGN(ρ+ 3p) (1.4)

(
Ḣ +H2

)
= −4π

3
GN(ρ+ 3p)

Of course there are also other projections possible, as: Gµνh
µahνb and Gµνh

µauν (where a, b ∈

{1, 2, 3}) but those are identically zero in an isotropic universe. This can be seen directly from

the equation (1.1). On the other hand it is clear that such �space-space� components, independent

from the identical diagonal components would violate isotropy.

The total energy momentum tensor of the universe can now be a linear superposition of tensors

of ideal �uids with di�erent equations of state. The standard model matter would be to a good

approximation described by ideal �uids, with ω = 0 for fermionic, non-relativistic matter and

ω = 1/3 for bosons (radiation). Given the equation of state for a perfect �uid i.e. ω, the Friedmann

equations can be solved and give an evolution equation for the scale factor, with a constant a0

determined by initial conditions:

a(t) = a0 t
( 2
3(ω+1)) (1.5)

Note: This solution is not valid for ω = −1, which would result in a constant energy density

and an exponential growth of the scale factor. It is remarkable that ω = −1 would correspond to a

cosmological constant Λ which can also be included in the most general Einstein tensor (Lovelock).

In cosmology the evolution of the universe is of great interest. The energy budget is the crucial

quantity in�uencing the universe's dynamics. Given certain initial conditions, i.e. fractions of the

di�erent energy-momentum tensors in the total energy budget at one point of time, the question

could be asked: How will the energy be diluted with the change of the scale factor? To solve this

problem we di�erentiate (1.3) and setting here k = 0 insert (1.4), this results in:

ρ̇ = −3H (ρ+ p) = −3H ρ (1 + ω)⇔ dρ = −3
1

a
da (1 + ω)

Integrating this, we obtain:
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ρ = ρ0

(
a

a0

)−3(1+ω)

� For non relativistic matter with ω = 0 the scaling is: ρ(a) ∝ a−3

� For radiation with ω = 1
3
the scaling is: ρ(a) ∝ a−4

� For ω = −1, which is the case for the cosmological constant the energy density is constant.

This case will be discussed later more carefully.

Our result applied to the cosmological hot big bang model, which is the most accepted at the

present times, shows the following. The early universe which was extremely hot and radiation

dominated, expanded according to (1.5) as a(t) ∼ t
1
2 , but the energy density of relativistic matter

was diluted during the expansion with the fourth inverse power of a, while the non relativistic

matter was diluted with the third inverse power of a. Therefore, at some point the non relativistic

matter must have taken over. In the non-relativistic (dust) era the scale factors behavior was

dominantly a(t) ∼ t
2
3 . This scenario matches with the observational data to a high accuracy.

A new fascinating observation has been made in the nineties. Supernova surveys indicate that

our era is dominated by the cosmological constant. To this evolution the simple solution (1.5)

does not apply. To discuss the cosmological constant problem, let us �rst derive an expression for

the total energy budget and discuss its value at present. Rewriting the �rst Friedmann equation,

including the cosmological constant and rearranging terms, one obtains:

1 = H−2

(
8πGN

3
ρ(t)− k

a2
+

Λ

3

)
With de�nitions of the partial energy budgets Ωi :

Ωm :=
8πGN

3H2
ρ(t)

Ωk := − k

H2

ΩΛ := − Λ

3H2

We can write down the total energy budget of the universe:
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Ωm + Ωk + ΩΛ = 1

The observations of the cosmic microwave background (CMB), supernovae explosions (SNe) and

barion acoustic oscillations (BAO) give very strong evidence that the universe is �at, the Ωm w 0, 3

and the ΩΛ w 0, 7. It is the overlap of this three independent observations, which makes this data

so credible and provides an extremely strong test for any model which claims to explain nature.

The so called Λ-CDM model is the most successful today, since it explains observations of all this

experiments to a high accuracy. The evidence for a non radiating (dark) matter as well as the

fascinating physics of the observed e�ects, can not be discussed at this point, but we will come

back to some of them in the last chapter.

Figure 1.2: Cosmological budget

The cosmological constant ΛCC is a natural term in the Einstein equation. On the other hand

from quantum �eld theory we know an object called vacuum energy. This object has the equation

of state ω = −1 . According to QFT if there are any quantum �elds present in the theory the

whole space is �lled with this ground state. Since QFT is the best theory we know to understand

the fundamental properties of matter, we have to take it seriously. This means that the value of

ΛQFT will renormalize the the bare value of ΛCC and result in an e�ective ΛEff . So far only shifts

in the vacuum energy, as in the Casimir e�ect, have been observed. The absolute value seems to be

only accessible via cosmological observations. This absolute value is predicted by the theory, but

the predicted value of ΛQFT and the observed ΛEff di�er by at least 50 orders of magnitude. This

discrepancy indicates that we do not understand some mechanism very profoundly or have to accept
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a �ne tuning up to 50 decimal orders. Such a �ne tuning shows by itself some fundamental problem

in the theory. In the fourth chapter we will discuss whether studying the e�ect of inhomogeneities

can open a new window of opportunity and help come closer to the solution of this challenging

riddle.

Brie�y summarizing, the up-to-date observational results from supernovae explosions and the

cosmic microwave background, indicate that the universe is �at k = 0 (or very close to it) and

that its expansion accelerates, which would mean a domination of a quantity with constant energy

density.

1.3 Inhomogeneous Cosmology

From the CMB we know that the universe used to be highly isotropic, but today this isotropy has

been violated. Since this was an evolutionary process we expect it to happen in a continuous way,

starting from an FRW universe and smoothly developing inhomogeneities. One is interested in

e�ective equations describing the dynamics of space-time and expects them to have a similar struc-

ture as the Friedmann equations and corrections, small compared to the Friedmann background.

The question we could ask now is, whether this assumption of an FRW background is an

unnecessary limitation, or whether it can be avoided and the Einstein equations can be solved

generally. For this purpose, let us compare GR and Maxwell's Electromagnetism. Let us assume

that we have the external sources (the currents) in Maxwell's theory and want to solve the �eld

equation for Aµ:

∂µF
µν = ∂µ (∂µAν − ∂νAµ) = �Aν − ∂ν∂ · A = Jν

Choosing the Lorentz gauge by shifting Aν → Aν⊥ = Aν + ∂νχ with �χ = 0 s.t. ∂ · A⊥ = 0 we

rewrite the equation as:

�Aν⊥ = Jν which has the solution: Aν⊥ =
Jν

�

Where the inverse of Box is understood as the appropriate Green's function. This is possible only
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because J has no dependence on A.

The situation in GR is drastically di�erent. Consider the �eld equation for the gravitational

�eld:

Gµν = 8πGN Tµν

Now one is interested in the solution for gµν . The Einstein tensor depends on the metric and its

derivatives up to second order but the problem is that also the source has a g dependence.

Suppose the matter is described by a Lagrange function LM , then the energy momentum tensor

would be:

Tµν(g) =
1√
−g

∂LM
∂gµν

In this case we can not write down a Green's function as a working recipe for the solution. The

only way to solve the equation is to impose symmetries or to choose a background.

For instance choosing Minkowski background and expanding in small perturbations around it

one would get gµν = ηµν + hµν and can solve the dynamics for a �eld containing hµν , the so called

de Donder �el. De�ned by:

Ψµν = hµν −
1

2
ηµνTr(hµν)

We choose a gauge where ∂µΨµν = 0, the de Donder gauge. The di�eomorphism invariance of the

theory (which will be discussed in more detail in the second chapter) is the freedom to transform

coordinates as xµ → xµ + ξµ which results in hµν → hµν + ∂(µξν). This makes it possible to impose

the de Donder gauge condition. So the equation of motion for Ψ in the de Donder gauge reads:

�Ψµν = 8πGN Tµν(η) ⇒ Ψµν = 8πGN
Tµν(η)

�

Note that the source here only depends on the background and the d'Lambert operator is de�ned

on Minkowski. This shows that if we do not want to make symmetry assumptions about the full

metric, we are forced to choose a background. Coming back to the question in the beginning of this
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section, we answer: Yes, we have to assume an FRW background and this is also a physical and

natural way to do it. Exactly because of the evolutionary process, which started in an homogeneous

era.

There are di�erent approaches possible to estimate the e�ect of inhomogeneities on the cosmic

evolution. One possibility to study local perturbations of the metric and they time development,

as it is done in [13]. An other way would be to develop an averaging procedure and �nd equations

governing the dynamics of the averaged domains. The averaging scheme has a big physical signif-

icance, since cosmological observations are often strongly coarse grained and rather correspond to

averages than local measurements. Nevertheless it is interesting to study the local perturbative

approach to get an idea, for instance which components of Einstein's equations will be most inter-

esting to study. A detailed discussion of the cosmological perturbation theory is beyond the scope

of this work. We will brie�y summarize some results from [13].

It has been shown that perturbations of the energy momentum tensor of an ideal �uid can be

written to �rst order in gauge invariant variables as:

¯δT 0
0 = δ̄ε, ¯δT 0

i =
1

a
(ε0 + p0)

(
¯δu‖i + δu⊥i

)
, ¯δT ij = −δ̄p δij (1.6)

The metric perturbations in a �at FRW universe can be written in the so called Longitudinal

gauge, with φ and ψ being the scalar perturbations and η the conformal time, as:

ds2 = a(η)2
[
− (1 + 2φ) dη2 + (1− 2ψ) δijdx

idxj
]

The Einstein tensor calculated from the above metric is diagonal. Equations (1.6) show that the

perturbations of the energy momentum tensor are diagonal in the spatial-spatial parts. If one

furthermore assumes a pressure-less �uid of low energy density s.t. ε0/a� 1, the whole perturbed

Einstein equation will be diagonal. Moreover, the structure of the equations is such that the

zero-zero component and the trace carry the full information of the perturbed system. This is of

course not a rigorous proof, but a motivation to concentrate the analysis of the averaged, perturbed

Einstein equations on their scalar parts.
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1.4 Backreaction as proposed by T. Buchert

In [3] a formalism for averaging traces of Einstein's equations was proposed. This formalism

will be introduced in the following section.

1.4.1 Choice of foliation and basic equations

As a model system, a pressure free �uid called �dust� (which obeys the isometries of an isotropic

cosmology) living on a manifold M of topology R × Σ is studied. Furthermore a cosmological

constant Λ is included. Already at this point we know that the averaged space-time is not general.

For instance it can not be a Minkowski background, since it does not support an energy density

present in the whole space and of course the presence of Λ also forbids Minkowski. The system,

as mentioned above, should be rather viewed as a space-time, which deviates from FRW in a

continuous way.

The Einstein equation reads:

Eµν = Rµν −
1

2
gµνR− 8πGNρuµuν + Λgµν = 0

To obtain the zero-zero component and the trace of this equation, projections on the velocity �ow

of the �uid as well as on the hypersurfaces de�ned by it are used. The co-moving frame is chosen

immediately at the beginning. The rest frame of the �uid, which corresponds to a geodesic observer

is a physically relevant choice. It represents our position on the earth when we observe distant

objects. The problem is that if the gauge is �xed before averaging the averaging procedure will

break the di�eomorphism invariance and the result can be questioned. This is exactly the point

Veneziano has criticized about Buchert's averaging scheme. We will come back to this issue later.

For now we will proceed and present the calculations by T. Buchert. First a �ow orthogonal

coordinate system is chosen, such that xµ = (t, Xk) = fµ(Xk, t) and therefore:

uµ = ∂t f
µ =: ḟµ = (1, 0, 0, 0)

These coordinates label geodesics in space-time i.e. ∇uu = 0. Together with the choice of vanishing

3-velocity they are also co-moving. Since in that case Ẋk = 0 , they can be called Lagrangian

coordinates of the �uid elements. The �uid �lling the space-time obeys the mass conservation law:

∇µ(ρuµuν) = 0
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The velocity �ow of the dust foliates the space-time into hypersurfaces Σt with the induced

metric hij , which is the pull-back of the projection tensor hµν = gµν + uµuν on the hypersurfaces

of constant t . The full metric can be written in the following way:

ds2 = −dt2 + hijdX
idXj

With the de�nition of the projection tensor hµν = gµν +uµuν and its pull-back, one can express

the extrinsic curvature:

Kij = −hµi hνj∇νuµ

Here the Latin indices represent coordinates on Σt and the Greek indices the coordinates onM.

Intermezzo:

Here a few words on the extrinsic curvature. This object is the second fundamental form on the

hypersurface Σt and can be viewed as the time derivative of the metric hij, in the following sense:

The extrisic curvature is a tensor, entirely in Σ i.e Kµνu
µ = Kµνu

ν = 0 and therefore Kµν = Kνµ.

Using this symmetry one obtains:

Kµν =
1

2
(∇µuν +∇νuµ) =

1

2
Lugµν =

1

2
(Lu(hµν − uµuν)) =

1

2
Luhµν

In case the coordinates are adapted to uµ (Gaussian coordinates):

Kµν =
1

2
∂thµν

So, the intuitive picture one should have for the role of the extrinsic curvature is the bending

of the hypersurface Σ in the manifoldM.

With the extrinsic curvature, Einstein's equations can be rewritten in a way which will be more

convenient for later discussion1. Projecting the Einstein equation written as one tensor Eµν = 0

1A detailed derivation of the Einstein tensor in terms of the extrinsic curvature and the 3-scalar-curvature can
be found in Appendix A in the derivation of the ADM formalism.



CHAPTER 1. COSMOLOGICAL BACKREACTION 21

on the velocity �ow of the �uid gives the zero-zero component:

Eµνu
µuν = Gµνu

µuν − 8πGNρ (uµu
µ)2 − Λ (uµu

µ) = 0 ⇒ R00 +
1

2
R = 8πGNρ+ Λ

where

R00 =
1

2
((Ka

a)2 −Ki
jK

j
i )

and therefore the Hamiltonian constraint density reads:

1

2
(R +K2 −Ki

jK
j
i ) = 8πGNρ+ Λ

The projection of Eµνu
µhνi = 0 gives the space-time components, called momentum constraints

(whereDj is the covariant derivative operator related to the space metric h and ∂Xj is the derivative

w.r.t. the Lagrangian coordinates X i of the dust):

DiK
i
j − ∂XjK = 0

Except for the four constraints, there are three evolution equations. Using the mass conserva-

tion one can compute:

0 = uν · ∇µ(ρuµuν) = uν(u
νuµ∇µρ+ ρuν∇µu

µ + ρ∇uu) = −uµ∇µρ− ρ∇µu
µ = ∂tρ− ρK

⇒ ρ̇ = Kρ (1.7)

The projection of Eµνh
µ
j h

ν
i = 0 gives the spatial-spatial components of Einstein's equations and

using those one gets:

˙(hij) = −2hikK
k
j (1.8)

˙(Ki
j) = KKi

j +Ri
j − (4πρGN + Λ)δij

An other important scalar equation is the Raychaudhuri-Landau equation. It basically describes
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the motion of nearby bits of matter due to gravity. With the de�nition of the shear tensor:

σij := θij −
1

3
θhij

where θij = −Kij is the expansion tensor and θ = tr(θij) the expansion rate. Note that θ can be

viewed as the local analog of the Hubble rate, since we have observed that the extrinsic curvature

is a time derivative of the metric. De�ning the square of the shear tensor as:

σ2 :=
1

2
σijσ

j
i

The Raychaudhuri-Landau 2 equation can be formulated as:

θ̇ +
1

3
θ2 + 2σ2 + 4πGNρ− Λ = 0 (1.9)

This equation is the local analog to the second Friedmann equation. It describes the change

of the local expansion rate. With the de�nition of the shear tensor at hand we can rewrite the

Hamiltonian constraint density somewhat more conveniently:

1

3
θ2 = 8πGNρ+ Λ− 1

2
R + σ2 (1.10)

This would be the analog of the �rst Friedmann equation, which contains the square of the

expansion rate. In the local case the deviation from the Friedmann equations is due to the shear,

which is of course not present in an isotropic universe. This set of equations has also been discussed

in connection with perturbation theory by Kasai (1995), Matarrese (1996, and ref. therein) and

by Matarrese & Terranova (1996), as well as in the papers by Russ et al. (1996, 1997).

One more useful relation can be obtained from the projections. Taking the trace of (1.8),

written in the form:

Ki
j = −1

2
hik ˙(hkj)

2The Raychaudhuri-Landau equation governs the motion of nearby bits of matter. A sketch of the derivation
will be given in the Appendix B.



CHAPTER 1. COSMOLOGICAL BACKREACTION 23

and de�ning:

J(t, X i) :=
√
det(hij)

One obtains with:
1

2
hik ˙hki = ˙(ln(J))

the following identity:

J̇ = −K J = θJ

Using this, the continuity equation (1.7) can be integrated along the �ow lines:

ρ(t, X i) = (ρ(t0, X
i)J(t0, X

i)) J−1 (1.11)

This equation shows that mass is conserved along the �ow lines, which is a natural result. The

equations derived in this section and their averages will be studied to address the backreaction

problem.

1.4.2 Averaging the traces of Einstein's equations

The averaging procedure as proposed in [3] is a spatial averaging of scalar quantities. The

foliation into spatial hypersurfaces Σt is de�ned by the choice of the rest frame of the dust, which

corresponds to the choice of a geodesic observer. The spatial average of a scalar Ψ over a domain

D, located on the hypersurface of constant time Σt, is de�ned by:

〈
Ψ(t, X i)

〉
D :=

1

VD

ˆ
D

J d3X Ψ(t, X i)

with the volume element dV :=
√
det(hij) d

3X = J d3X of the spatial hypersurfaces of constant

time. So the volume naturally is:

VD :=

ˆ
J d3X

Furthermore an e�ective scale factor is de�ned as:

aD(t) :=

(
VD(t)

VD0

) 1
3

Thus the averaged expansion rate can be written in terms of the scale factor:
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〈θ〉D =
1

VD

ˆ
J d3X θ =

1

VD

ˆ
J d3X

J̇

J
=

1

VD

ˆ
J̇ d3X =

V̇D
VD

= 3
ȧD
aD

(1.12)

The dot denotes partial derivative w.r. t. time and hence commutes with the integral.

The integral (1.11) states the conservation of the total rest massMD of the dust as transported

along the �ow lines, the integral over a spatial volume gives the conserved mass included in the

domain:

MD =

ˆ
D

J d3X ρ = const ⇔ 〈ρ〉D =
MD

VD0a
3
D

In the future discussion the subscript D is not going to be mentioned explicitly but always assumed

when averages are considered.

Commutation Rule for the time derivative:

∂

∂t
〈Ψ〉 −

〈
Ψ̇
〉

= 〈Ψθ〉+ 〈Ψ〉 〈θ〉

Proof:

∂

∂t
〈Ψ〉 =

∂
∂t

´
ΨJ d3x

VD
−
ˆ

ΨJ d3x
1

V 2
V̇ =

ˆ
Ψ̇J d3x

1

V
+

ˆ
ΨJ̇ d3x

1

V
−
ˆ

ΨJ d3x
1

V

V̇

V
=

=
〈

Ψ̇
〉

+ 〈Ψθ〉 − 〈Ψ〉 〈θ〉

At this point we prove another equation which is going to be of use later. With the commutation

rule one gets:

〈
θ̇
〉

=
∂

∂t
〈θ〉+ 〈θ〉 2 −

〈
θ2
〉

Furthermore compute:

∂

∂t
〈θ〉 = 3

∂

∂t

(
ȧ

a

)
= 3

ä

a
− 3

ȧ2

a2
= 3

ä

a
− 1

3
〈θ〉 2

Combining the above expressions we get:

1

3

〈
θ2
〉

+
〈
θ̇
〉

= 3
ä

a
+

2

3
〈θ〉 2 − 2

3

〈
θ2
〉

(1.13)

This relation will prove to be useful in the later discussion.
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1.4.3 The averaged Einstein equations

In this section the averaging procedure described above will be applied to the scalar parts of

Einstein's equations. To use the scalar equations derived from the trace and zero-zero components

of Einstein's equations was motivated in 1.3. First the Hamiltonian constraint density will be aver-

aged. Second the Raychaudhuri equation, which is derived from the trace of Einstein's equations,

will be studied after performing the averaging. The resulting equations, called Buchert equations,

will be discussed in the end of this section. Λ is assumed to be zero since it is not of interest for

the averaging.

Hamiltonian constraint density:

After applying the spatial averaging to (1.10) one obtains:

8πGN 〈ρ〉 =
1

3

〈
θ2
〉

+
1

2
〈R〉 −

〈
σ2
〉

Inserting unity and transforming it according to (1.12), the equation containing the backreaction

term reads:

8πGN 〈ρ〉 =
1

3

〈
θ2
〉
− 1

3
〈θ〉 2 +

1

3
〈θ〉 2 +

1

2
〈R〉 −

〈
σ2
〉

=

=
1

3

〈
θ2
〉
− 1

3
〈θ〉 2 + 3

(
ȧ

a

)2

+
1

2
〈R〉 −

〈
σ2
〉

= 3

(
ȧ

a

)2

+
1

2
〈R〉+

QD

2

Here the quantity QD := 2
3
〈θ2〉 − 2

3
〈θ〉 2 − 2 〈σ2〉 = 2

3
(∆θ)2 − 2 〈σ2〉 (called backreaction) was

introduced. Note that a here denotes the scale factor of the averaging domain, as introduced

above. Furthermore, it is obvious that QD vanishes if we have a homogeneous universe, since there

is no shear and also no variance of the expansion rate. In the case of vanishing backreaction the

�rst Friedmann equation is rediscovered. The subtle di�erence is that this equation was obtained

by averaging a local quantity and would also hold for a �nite volume.

Raychaudhuri's equation:

After averaging (1.9) the relation reads:

〈
θ̇
〉

+
1

3

〈
θ2
〉

+ 2
〈
σ2
〉

+ 8πGN 〈ρ〉 = 0

Using the computed identity (1.13) one gets:

3
ä

a
+

2

3
〈θ〉 2 − 2

3

〈
θ2
〉

+ 2
〈
σ2
〉

+ 8πGN 〈ρ〉 =
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= 3
ä

a
−QD + 8πGN 〈ρ〉 = 0

Which is the equivalent of the second Friedmann equation for a �nite volume. Again the correction

term is the domain dependent backreaction QD. In both cases the deviation of the Buchert

equations from Friedmann's equations contain the averaged shear. This was expected since also

the local analoga of the Friedmann equations deviate only be the shear term. The amazing and

surprising result is that Buchert's equations also contain a correction, which is connected to the

variance of the local expansion rate. This is a purely statistical quantity, which can be only

obtained in the averaging process.

Cosmological balance:

De�ning:

HD :=
ȧ

a

Ωm :=
8πGNMD

3V0a3H2
D

Ωk := − 〈R〉
6H2

D

ΩQ := − QD

6H2
D

With the above de�nitions the Hamiltonian constraint density reads:

Ωm + Ωk + ΩQ = 1

If from the start a presence of a cosmological constant Λ was allowed, it would not be a�ected by

the averaging procedure and result in an analogous term ΩΛ in the cosmological balance equation:

Ωm + Ωk + ΩQ + ΩΛ = 1

Compare this with the cosmological balance equation from the Λ-CDM model. An interesting

question is, whether the e�ect of inhomogeneities expressed in QD opens a possibility to substitute

or change the cosmological constant usually assumed in the standard Λ-CDM model.

To understand the nature of the accelerated expansion is of great physical interest, since there

is gigantic mismatch between the value of ΛEff renormalized by the quantum vacuum energy and
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the Λ value we expect in the Λ-CDM model, in order to explain the accelerating expansion. To

address this question, we have to ensure that the e�ect of QD can be observed in an experiment.

All the derived domain dependent quantities have to be physical observables for this purpose. We

will discuss in the next section that the crucial feature for a quantity to be observable is gauge

invariance and in the case of general relativity di�eomorphism invariance.

1.5 Summary Chapter 1

In this chapter we have seen what amazing predictions GR gives us under the assumption of isotropy

for the history of our universe and how many of this predictions can by veri�ed in experiments. The

problem of accelerated expansion, associated with the cosmological constant, and its connection

to the quantum vacuum has been presented. Then the isotropy hypothesis has been questioned.

Especially at present times it can only be understood in a statistical way. Hence the necessity

of an averaging prescription arose naturally. We have analyzed perturbations about FRW and

conjectured that the most relevant parts of Einstein's equations will be the scalars. We presented

the averaging procedure proposed in [3] and found that e�ective Friedmann equations for domains

can be derived from averages of the traces of Einstein's equations. The e�ective equations contain

correction terms due to the deviation from FRW. Those terms seem to open a new window of

opportunity to address the question of accelerated expansion. In order to take the predictions

seriously we have to ensure gauge invariance. This will be the topic of the following chapters.



Chapter 2

On di�eomorphism invariance and

observables

In this chapter the general covariance of Eistein's theory and its implications for physics will be

discussed. Furthermore it will be shown that the averaging functional used in [3] violates this

principle. At last a remedy for the breaking of gauge invariance will be proposed.

2.1 Active and passive di�eomorphisms

Before elaborating on the general covariance of Einstein's equations, we discuss the di�erence be-

tween active and passive di�eomorphisms. We will start with an illustrative example to understand

this in a similar manner as in [16].

Consider the surface of the earth and call itM . The temperature on the earth is given by a

scalar function T :M→ R. So the temperature in London would be T (L) and the temperature in

Paris T (P ). Imagine now a weather model where the temperature is changed due to winds only.

Therefore during a time-interval wind can carry the air from London to Paris and hence:

T (P )→ T̃ (P ) = T (f(P )) = T (L) (2.1)

The function f :M→M represents the displacement of the air by wind. This corresponds to an

28
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active di�eomorphism.

The other situation could be the following: Describing the coordinates on earth with longitude

and latitude one could express the temperature in London (which is close to Greenwich) by T (θ =

θL, φ = 0) and the temperature in Paris by T (θ = θP , φ w −2°20′) . The French could disagree

with this coordinate choice and identify the origin of the polar angle with Paris. The temperature

in Paris would be certainly not a�ected by such transformations:

T̃ (θ = θP , φ = 0) = T (θ = θP , φ+ 2°20′)

Such change of coordinates can also be described by a function f :M→M and the equation

reads T̃ (x) = T (f(x)) which is a formula of exactly the same structure as (2.1). This is called a

passive di�eomorphism. Even if the mathematical formulation is the same, nevertheless the the

processes are very di�erent from the physical point of view.

Now let us de�ne the notions in a mathematically precise way:

Active di�eomorphism :

Given a ManifoldM , an active di�eomorphism φ is a smooth invertible map fromM toM. A

scalar �eld T onM is a map T :M→ R. Given an active di�eomorphism f , we de�ne the new

scalar �eld T̃ transformed by f as:

T̃ (P ) = T (f(P ))

This means the �eld has been pushed forward to a new space-time point and in the next step the

coordinates have been adopted in such a way that the �elds are evaluated at the same coordinate

values. In the later discussion of the di�eomorphism invariance of the averaging formalism we will

refer to active di�eomorphisms as local �eld rede�nitions or gauge transformations (GT).
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Passive di�eomorphism:

Given a coordinate system1 a passive di�eomorphism is an invertible di�erentiable map f : Rd →

Rd that de�nes a new coordinate system x̃ onM by x(P ) = f(x̃(P )). The value of the �eld T in

coordinate system x̃ is given by:

t̃(x̃) = t(x) = t(f(x̃))

In the later discussion we will call passive di�eomorphisms, general coordinate transformations

(GCT).

On active di�eomorphisms and the Lie derivative:

Even though in the case of a scalar �eld the physical interpretation of active and passive di�eomor-

phisms is clear, it is not a good example to point out the di�erence between them. To illustrate

this we will use the transformation of a vector and tensor �eld under a gauge transformation, sim-

ilar to [1]. Let us start with a co-vector �eld Aµ. Consider an in�nitesimal active di�eomorphism

generated by a vector �eld ξ by x→ x̃ = x− ξdλ, hence:

Ãµ(x) = Aα(x+ ξdλ)
∂xα

∂x̃µ
= Aµ(x) + {ξα∂aAµ(x) + Aα(x)∂µξ

α} dλ (2.2)

Consider the di�erence to a passive di�eomorphism generated by the same transformation x →

x̃ = x− ξdλ:

Ãµ(x̃) = Aα(x)
∂xα

∂x̃µ
= Aµ(x) + {Aα(x)∂µξ

α} dλ (2.3)

Note that the active di�eomorphism has a similar structure, but contains an extra term, which we

will discuss later.

Now we study the transformation of a tensor onM, we take the metric tensor useful for later

1A coordinate system x on a d-dim manifoldM is an invertible di�erentiable map fromM to Rd. Given a �eld
T onM, this map determines the function t : Rd → R de�ned by t(x) = T (P (x)), called �the �eld T in coordinates
x�. Many times t and T are not distinguished.
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discussion.

g̃µν(x) = gαβ(x+ ξdλ)
∂xα

∂x̃µ
∂xβ

∂x̃ν
= gµν(x) + {ξα∂agµν(x) + gαν(x)∂µξ

α + gµα(x)∂νξ
α} dλ (2.4)

For a metric tensor, ful�ling the metric compatibility requirement we have:

g̃µν(x) = gµν(x) + {gαν(x)∂µξ
α + gµα(x)∂νξ

α} dλ (2.5)

We introduce the notion of a Lie derivative, as known from di�erential geometry. With T being

a tensor �eld changed by an in�nitesimal di�eomorphism T̃ := f∆λT along the vector �eld ξ (as

de�ned above) by an amount �rst-order in ∆λ and linear in ξ , the Lie derivative is de�ned as:

LξT := lim
∆λ→0

f∆λT (x)− T (x)

∆λ

The Lie derivatives of the above �elds (2.2) and (2.5) read therefore:

LξAµ(x) = ξα∂aAµ(x) + Aα(x)∂µξ
α and Lξgµν(x) = ξα∂agµν(x) + gαν(x)∂µξ

α + gµα(x)∂νξ
α

We see that in fact an in�nitesimal active di�eomorphism is generated by a Lie derivative as:

T̃ → T +LξT dλ. Considering the vector �eld, we can interpret the �rst part of the Lie derivative

generating the in�nitesimal di�eomorphism as a push forward to an other point of the manifold.

The second term represents the subsequent coordinate change (hence the similarity to (2.3)),

such that the �elds are evaluated at the same coordinate values. Since the Lie- and covariant

derivative of a scalar coincide, the transformation equations of scalar �elds under active and passive

di�eomorphisms are the same.
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Transformation of the volume element:

Before proceeding to the next section, we study the transformation properties of the volume element

dnx
√
−g under active and passive di�eomorphisms, since this will be useful later. We start with

a passive di�eomorphism, or general coordinate transformation GCT generated by x̃ = f(x):

dnx→ dnx̃ = dnx

∣∣∣∣∂f∂x
∣∣∣∣
f−1(x)

Where
∣∣∂f
∂x

∣∣
f−1(x)

is the Jacobian matrix of the transformation. Resulting from the transformation

of the metric tensor, the metric determinant transforms as following:

√
−g(x)→

√
−g̃(x̃) =

∣∣∣∣∂x∂f
∣∣∣∣
f−1(x)

√
−g(x)

With
∣∣∣∂x∂f ∣∣∣

f−1(x)
being the inverse Jacobian matrix of the transformation. Combining this elements

we observe that the total volume element is a scalar under GCTs:

dnx
√
−g(x)→ dnx̃

√
−g̃(x̃) = dnx

√
−g(x)

On the other hand dnx is invariant under an active di�eomorphism or gauge transformation

(since the push forward combined with the coordinate rede�nition result in an identity), while the

metric determinant transforms as follows:

√
−g(x)→

√
−g̃(x) =

∣∣∣∣∂x∂f
∣∣∣∣
f−1(x)

√
−g(f−1(x))

This results in the transformation of the volume element as:

dnx
√
−g(x)→ dnx̃

√
−g̃(x) = dnx

∣∣∣∣∂x∂f
∣∣∣∣
f−1(x)

√
−g(f−1(x))

Hence, it is not a scalar under an active di�emorphism (We will apply a GCT to �x this in the

next section).
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2.2 General covariance

In this section we will give a short outlook on the role of general covariance for GR and its history.

This will show us again the important di�erence between active and passive di�eomorphisms.

Already in 1912 Einstein has understood the role of the gravitational �eld as an entity which

de�nes the local inertial frame and also describes how these inertial frames �fall� w.r.t each other.

But it took Einstein three years to discover the �eld equations of this object2. Einstein believed

that physics must not depend on the choice of coordinates and therefore he wanted the �eld

equations to be covariant under passive di�eomorphisms. This �rst impulse though was stopped

by himself. Why did the genius hesitate to follow his philosophy and derive generally covariant

equations? And even worse, in 1914 Einstein was convinced that the equations must not be

generally covariant. But why? The reason is exactly the similarity between the equations for

active and passive di�eomorphisms, which implies that a generally covariant theory also has the

property that solutions are mapped to solutions by active di�eomorphisms3. This was used by

Einstein as an argument against the general covariance in his famous �hole� argument. We will

present this argument brie�y:

Consider a space-time represented my a manifoldM which contains matter everywhere except

for one region H , the hole.

Figure 2.1: The hole is the region in M without matter

2Einstein himself called this time: �my struggle with the meaning of coordinates�. At the same time David
Hilbert was working on the same problem of �nding the GR �eld equations which has put even more pressure on
Einstein.

3We will make this into an exact mathematical statement in the next section.
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Assume that there is a point A inside H s.t. the geometry is �at around A and a point B

in H s.t. the geometry is not �at around B. If the equations are generally covariant, there is a

di�eomorphism f which carries A into B, but does not a�ect any point outside the hole. Further

consider a solution of the gravitational �eld equations and call it g and its pull-back under f called

g̃. Take a space-like hypersurface entirely in the past of H. In that case g and g̃ are identical

on that hypersurface, since both are solutions of the equations of motion. However, g and g̃ have

di�erent properties in the hole, obviously the scalar curvature is di�erent in point A . Therefore the

equations of GR seem not deterministic. This was the fact that has shocked Einstein and made him

and Hilbert look for non-generally covariant equations. The genius epiphany which �nally led to

the equations of GR had Einstein ,who understood the full gravity of relativity. He saw that physics

is not about distinguishable points on the manifold, but about �space-time coincidences4�. This

resolves the �hole problem� in an elegant way. Consider the previous construction, but additionally

two particles whose world-lines are geodesics determined by the geometry and intersect at the point

B (where a gravitational wave is present).

Figure 2.2: The hole with two particles traveling through it

Now an active di�eomorphism can carry B into A but leave the points outside the hole unaf-

4In his own words: �All our space-time veri�cations inevitably amount to determination of space-time coinci-
dences. If, for example, events consisted merely in the motion of material points, then ultimately nothing would
be observable but the meeting of two or more of this points. Moreover, the results of our measuring are nothing
but veri�cations of such meetings of the material points of our instruments with other material points, coincidences
between the hands of a clock and points on the clock dial, and observed point-events happening at the same place at
the same time. The introduction of a system of reference serves no other purpose than to facilitate the description
of the totality of such conditions.� [A. Einstein: Grundlage der Allgemeinen Relativitätstheorie]
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fected. The transformed solutions are again solutions of the equations of motion, but the world-lines

intersect in A now. The important realization is that the gravitational wave is now also present at

A i.e. at the point where the particles' world-lines cross. The equations describe the same physical

reality (observable events) and this is manifested in the fact that they are invariant under di�eo-

morphisms active and passive. This feature also gives the name to the Dirac observables. Those

are quantities which do not depend on the gauge chosen and in our case on the coordinate system.

At the same time Einstein realized that the points A and B a priori are not physical. In the empty

hole a �at region can be mapped on a non-�at region and this means that asking what is the

geometry around a point in the manifold without further speci�cations, is not legitimate. This is

an extremely strong statement. Expressed in the most radical form we can say that, the points on

the space-time manifold are not physical, the only observable events are relative relations between

material quantities. We will make use of this brilliant idea, which was established by Einstein and

developed further in the course of time, by introducing a physical coordinate system and using it

for the averaging procedure. The idea of relative coordinatisation will be discussed in detail in

chapter 3.

2.3 The gauge principle in physics

In this section we will give the example of quantum electrodynamics which shows how powerful

the gauge principle in physics is. Using this as a motivation we will identify the gauge symmetry

of general relativity.

Gauge principle in QED:

Dirac discovered an equation which governs the dynamics of spin-1/2 femions. This Dirac equation

can be reproduced by the variation of a Lagrange function:

L = iψ̄γµ∂µψ −mψ̄ψ (2.6)
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Where γµ denotes a vector of gamma matrices, m the mass of the fermion and ψ the spinor

wave-function describing the fermion (with ψ̄ = ψ†γ0 being the adjoint spinor). The square of

the spinor wave-function has as usually in quantum mechanics a probabilistic interpretation. And

therefore a transformation ψ → eiθψ would not a�ect our observations. In fact we do not observe

a dependence of the fermions on a continuous parameter like θ . This observational fact lets us

believe that this must be a symmetry of the theory and therefore any formal description of the

considered phenomena, should be invariant under this symmetry. We observe that (2.6) is indeed

invariant under this (global) transformation.

The fact that θ does not depend on the coordinates means that the phase change happens

everywehre at the same time. This is unphysical. A change of phase of the wave-function, if we

view it as a physical process, must happen subluminal. Therefore, the parameter θ has to have

a space-time dependence. Consider a transformation ψ → eiθ(x)ψ of (2.6), the term −ψ̄γµ∂µθψ

breaks the symmetry.

Now we will present a technique which restores gauge invariance and gives more amazing results.

Introduce the so called covaraint derivative:

Dµ = ∂µ + iAµ

Where the so called gauge �eld Aµ has a gauge symmetry Aµ → Aµ + ∂µθ (observe similarity to

classical EM). This property allows to cancel the gauge breaking term and the new Lagrangian is

gauge invariant under the local phase change:

L = iψ̄γµDµψ −mψ̄ψ = iψ̄γµ∂µψ − ψ̄γµAµψ −mψ̄ψ (2.7)

The new term ψ̄γµAµψ is a coupling between fermions and the gauge �eld. It describes correctly the

interaction of photons and charged fermions observed in experiments. Furthermore, the symmetry

gives rise to a conserved current, since (2.7) does not depend on a time derivative of Aµ:

∂L
∂Aµ

= −ψ̄γµψ = Jµ
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This current is a physical quantity and can be measured. This is one of the examples illustrating

the power of the gauge principle in physics. Let us summarize:

� The observation of an independence of the observed phenomena under certain transforma-

tions makes us assume a symmetry of nature.

� The implementation of those symmetries on the level of the action leads to conservation laws

and gives rise to gauge �elds responsible for the interactions.

� Once we are convinced of the presence of a symmetry in the theory it can serve as a criterion

for the choice of observables, since those have to be gauge invariant.

General relativity:

Einstein conjectured that physics has to be coordinate independent and therefore the equations

have to be covariant under general coordinate transformations. General covariance means that the

action has to be a scalar under passive di�eomorphisms. This is the case for the Einstein-Hilbert

action:

S =

ˆ
d4x
√
−g gµνRµν

The contracted Ricci-tensor is a scalar under passive di�eomorphism, as can be easily checked.

The invariance of the volume element under those has been already shown. The action is therefore

a passive di�eomorphism scalar and its variation yields the Einstein vacuum equation:

δS =

ˆ
d4x
√
−g Gµνδg

µν = 0

We will prove that any action which is a scalar under passive di�eomorphisms is also a scalar

under active di�eomorphisms, given that the di�eomorphism generator vanishes at the boundary.

This is the mathematical formulation of the fact which shocked Einstein at �rst.

Assume that Ψ is a scalar under passive di�eomorphisms. Since for a scalar the Lie derivative

is identical with the covariant derivative we have: LξΨ = ξµ∇µΨ. Compute �rst using (2.5):
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Lξ
√
−g =

1

2

√
−g gµνLξgµν = (∇µξ

µ)
√
−g

Now consider the transformation of the action under an active di�eomorphism in the region Ω

(generated by a Lie derivative):

δS =

ˆ
Ω

Lξ
(
Ψ
√
−g
)
d4x =

ˆ
Ω

(ξµ∇µΨ + Ψ∇µξ
µ)
√
−g d4x =

=

ˆ
∂Ω

(Ψξµ) d3σµ = 0

This transformation vanishes, since we assumed that ξ = 0 on ∂Ω. In a similar way Einstein

realized that solutions of generally covariant equations of motion for the gravitational �eld will

be mapped to valid solutions by active di�eomorphisms. This led to the hole argument described

above. We have learned in the previous section that this is not a paradox if we stop considering

points on the manifold as physical observables.

Before drawing any conclusions, let us study the implications of the active di�eomorphism

invariance of the gravitational action:

δS =

ˆ
Ω

d4x
√
−g (Gµν) δg

µν =

ˆ
Ω

d4x
√
−g (Gµν)Lξgµν =

ˆ
Ω

d4x
√
−g (Gµν) (∇µξν) =

=

ˆ
∂Ω

(Gµνξν) d
3σµ −

ˆ
Ω

d4x
√
−g (ξν) (∇µG

µν) = −
ˆ

Ω

d4x
√
−g (ξν) (∇µG

µν) = 0⇒ ∇µG
µν = 0

Investigating the symmetry of the gravitational action under the active di�eomorphisms we

observe that we get the identity (it is an identity and not a conservation law, since it holds also

of shell), known as the Bianchi identity. It is a fundamental property arising from the form

of the Riemann tensor and makes the Einstein tensor consistent with local energy momentum

conservation.
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To summarize, we followed a logic of the previous section and implemented the symmetry we

conjectured (general covariance) into our theory. We observed that this leads to an even bigger

symmetry (active di�eomorphism covariance) and this symmetry implies consistent identities for

our theory. Even if our procedure is similar to the one in QED (a theory with internal symmetries)

general relativity seems to be very di�erent (since it is based on external symmetries). Therefore,

we can not write down a gauge �eld which would give rise to interactions in the same way as

in other QFTs and we have no clear idea how to bring time into the formalism (to be discussed

later). Nevertheless, the fact that active di�eomorphisms give rise to consistent identities, suggests

that we have to identify the true gauge transformations of GR with active di�eomorphisms and

following the above logic use the invariance under those as a quality management to construct

physical observables.

The last sections motivated why an observable in GR has to be invariant under active dif-

feomorphisms (now referred to as gauge transformations) and the equations we use, have to be

covariant under those. Having established this we turn to the averaging functional and study its

gauge transformation properties.

2.4 Transformations of the averaging functional

Notation:

We de�ne the notation for the following section. Let the transformation x → x̃ = f(x) be a

di�eomorphism and S a scalar which transforms under this di�eomorphism.

We will evaluate the scalar quantity at di�erent coordinate points when we address general

coordinate transformations.

� GCT:

S̃(x̃) = S(x)

And we will evaluate the transformation law at the same coordinate point when we address

gauge transformations. This corresponds to a local �eld rede�nition.
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� GT:

S̃(x) = S(f−1(x))

Remark: The metric is a tensor �eld onM and undergoes a local rede�nition as well. Its behavior

under transformations (as discussed above) leads to the following transformation property of the

determinant of the metric with the inverse Jacobian:

g̃µν(x) =

[
∂xα

∂fµ
∂xβ

∂f ν

]
f−1(x)

gαβ(f−1(x)) ⇒
√
−q̃(x) =

∣∣∣∣∂x∂f
∣∣∣∣ f−1(x)

√
−g(f−1(x))

2.4.1 The averaging functional applied by Buchert

At �rst we make a naive attempt of averaging a scalar �eld S on a space-time manifoldMn over

a region Ω. We will see that this will not lead to a gauge invariant prescription.

F (S,Ω) =

ˆ
Ωx

√
−g S(x)dnx

The label x of the region Ωx denotes that this region depends on the coordinate choice. Regard

the transformation property of this expression under a gauge transformation, using the equations

from the last section we have:

F (S,Ω)→ F̃ (S̃,Ω) =

ˆ
Ωx

√
−g̃S̃(x)dnx =

=

ˆ
Ωx

∣∣∣∣∂x∂f
∣∣∣∣ f−1(x)

√
−g(f−1(x))S(f−1(x))dnx

This is the consequence of the volume element not being a scalar under a gauge transformation.

Hence, we rewrite F (S,Ω) and introduce a general coordinate transformation x̂ = f−1(x) (This

transformation is the inverse of the internal coordinate rede�nition of the gauge transformation),

noticing that its Jacobian cancels the inverse Jacobian from the transformation of the metrics'

determinant:

F̃ (S̃,Ω) =

ˆ
Ωx

∣∣∣∣∂x∂f
∣∣∣∣ f−1(x)

√
−g(f−1(x))S(f−1(x))dnx =
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=

ˆ
Ωx̂

√
−g(x̂)S(x̂)dnx̂ = F (S, Ω̃)

This did not cure the problem, just made it less obvious. The gauge invariance is still broken by

the integration region. To see the gauge breaking more explicitly introduce a �window� function

WΩ(x) (can be thought as a collection of theta step functions) ,such that it cuts out the region Ω

out of the space-time.

F̃ (S̃,Ω) =

ˆ
M

∣∣∣∣∂x∂f
∣∣∣∣ f−1(x)

√
−g(f−1(x))S(f−1(x))WΩ(x)dnx =

=

ˆ
M

√
−g(x̂)S(x̂)WΩ(f(x̂))dnx̂ =

ˆ
M

√
−g(x̂)S(x̂)WΩ̃(x̂)dnx̂ = F (S, Ω̃)

The observation we gain from this exercise, is that the transformation property of the integration

region -or better to say its non-transformation- is the reason for the functional to be gauge de-

pendent. The above functional is exactly the one used in [3] to perform the averaging. It was

furthermore restricted to a 3-D hypersurface of constant �time� which was itself de�ned through

the choice of foliation and therefore by gauge �xing. This approach has been criticized in the lit-

erature5, because in Buchert's formalism, presented in 1.4, the gauge is �xed before the averaging.

It is not clear though whether this gauge �xing and the averaging will commute. Furthermore a

gauge can be only chosen safely when the whole formalism is covariant. The breaking of gauge

invariance by the averaging functional violates this property and has led to the criticism and rose

doubts concerning the validity of Buchert's equations. Our goal will be to clarify this issue.

2.4.2 Gauge invariant functional:

We present here an idea proposed in [8] and developed further in [7]. In the previous subsection it

has been shown that the gauge is broken due to the properties of the integration region, which we

encoded by the window function WΩ as the support of the integration domain Ω. The problem is

that WΩ is an unphysical quantity and not a�ected by the gauge transformation. If we promote it

to a �eld the situation changes and it transforms as a scalar under the local �eld rede�nition.

W → W̃ (x) = W (f−1(x)) (2.8)

5In [8] Veneziano points out this problem and also proposes a possible solution to it, on which we will elaborate
later.
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Now the functional is set up in the following way:

F (S,Ω) =

ˆ
M4

√
−g(x)S(x)WΩ(x)d4x

And it transforms as follows:

F (S,Ω)→ F̃ (S̃,Ω) =

ˆ
M4

√
−g̃(x)S̃(x)W̃Ω(x)d4x =

=

ˆ
M4

∣∣∣∣∂x∂f
∣∣∣∣ f−1(x)

√
−g(f−1(x))S(f−1(x))WΩ(f−1(x))d4x

Introducing x̂ = f−1(x) we obtain:

F̃ (S̃,Ω) =

ˆ
M4

√
−g(x̂)S(x̂)WΩ(x̂)d4x̂ = F (S,Ω)

The gauge functional is obviously gauge invariant. And the crucial property is (2.8), which pro-

motes WΩ to scalar �eld. The question is if it is possible to construct the window-function with

the desired transformation property.

2.4.3 The window function

The window function is a scalar if it is a function constructed out of scalar �elds. Consider a

scalar �eld B with a space-like gradient and a scalar �eld A with a time-like gradient. The window

function can be constructed by building a cylinder-like region in space time (here Θ is the Heaviside

function):

WΩ(x) = Θ(A(x)− A1)Θ(A2 − A(x))Θ(r0 −B(x))

Now consider the limit of A2 → A1 = A:

WΩ(x)→ WΩ(x) = Θ(r0 −B(x))δ(A− A(x))
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Figure 2.3: The Window function

Since A and B are scalars i.e. they transform according to S̃(x) = S(f−1(x)) , the constructed

window function will have the desired transformation property (2.8). And hence the averaging

functional constructed with W is gauge invariant. It can be de�ned as:

〈S〉{A,r0} =
F (S,Ω)

F (S, 1)
=

´
M4

√
−g(x)S(x)Θ(r0 −B(x))δ(A− A(x))d4x´

M4

√
−g(x)Θ(r0 −B(x))δ(A− A(x))d4x

Modi�ed window function:

The window function can be constructed in a more formal way. Instead of taking the limit of

A2 → A1 = A in the construction of the window function, it is possible to formulate the choice of

the spatial slice as the derivative of the Heavyside function along the time generating vector �eld

nµ =
−∂µA√
−∂µA∂µA

i.e.:

WΩ = nµ∇µθ(A(x)− A0)θ(r0 −B(x)) = − −∂µA√
−∂µA∂µA

δ(A(x)− A0)∂µAθ(r0 −B(x)) =
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= δ(A(x)− A0)
√
−∂µA∂µAθ(r0 −B(x))

This mechanism is analogue to the above one, but more formal since it avoids taking the limit of

the theta function to obtain the delta distribution. The averaging functional will be de�ned in the

same way displayed above just using this new window function.

Remark:

The problem of construction of the gauge invariant functional transforms into the problem of �nding

these inhomogeneous �elds for the construction of the window function. In [8] it is proposed to use a

physical �eld for A, but the author claims that there are no �elds with a spatial gradient in an FRW

universe and therefore the spatial boundary has to be extended to in�nity. Because of that, his

approach can not be applied to �nite volumes. It is clear that there are no spatially inhomogeneous

�elds in an FRW universe. On the other hand the studied system is not a perfect FRW universe,

but an inhomogeneous model which contains inhomogeneous �elds. From the physical point of

view there must be such �elds in nature since averaged quantities can be observed in experiments

and hence must have a gauge invariant description.

2.5 Summary Chapter 2

In this Chapter we have seen what crucial role di�eomorphism invariance plays for GR. In a

historical section Einstein's path to the theory has been sketched. Also we have found that for a

quantity to be a physical observable it has to be active di�eomorphism invariant and hence gauge

invariant in our language. The gauge transformation property of Buchert's averaging functional has

been studied and it was found that it actually breaks the gauge invariance, as has been criticized by

Veneziano. Furthermore an alternative gauge invariant functional has been presented. Veneziano's

idea of introducing a window function to maintain gauge invariance has been discussed and also

the problem of �nding scalar �elds for the construction of the window function was stated. In [7]

a scalar �eld A with a time-like gradient is used, which is a scalar but is not interpreted in the

physical sense in his approach. Furthermore the B �eld in Veneziano's scheme is not a physical

scalar and breaks gauge invariance at the boundary. Therefore the spatial boundary of the domain
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ΣA0 has to be extended to in�nity. In the following chapters we will construct a gauge invariant

averaging functional for �nite volumes as well as give physical meaning to the �elds A and B.



Chapter 3

Observables and deparametrisation

In the following chapter we will discuss the di�erence between relative and absolute coordinatiza-

tion. The key idea of relative coordinatization will be useful to address the problem of constructing

physical observables as well as the problem of time in general relativity. The Brown-Kuchar method

will be presented where the studied system is enlarged by a compatible system, which serves as a

coordinate system and de�nes the time �ow [2].

3.1 On relative coordinatization and compatibility

In the previous chapter we have seen that the a priori choice of points on a manifold has no physical

meaning. The properties of the gravitational �eld around a chosen point A are not determined and

can change by application of di�eomorphisms as was shown in the hole argument. The solution to

this problem was also found by Einstein who introduced particles with their world-lines into the

system and postulated that only the relative events w.r.t those particles , like the intersections of

the world-lines, are of physical signi�cance. Keeping this idea in mind we will discuss two ways of

coordinatizing a manifold. Let us begin again with an illustrative example.

Consider the surface of the earth as a manifold. One way of coordinatizing it would correspond

to drawing the longitude and latitude lines on a globe and give positions of points relative to them.

This way is abstract and arti�cial since we don't see the lines existing on our earth. This procedure

would correspond to a formal gauge �xing with respect to an unphysical coordinate system and

the coordinate values on earth obtained in such a way would of course depend on the arbitrary

choice of coordinates and hence be not physical observables.

The other method would be to consider all rivers on earth and use this grid (assuming that it

covers the surface in a dense enough way) to give the relative position of any point with respect

46
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to this grid. A convenient reference are the intersection points of the rivers. This is not a formal

gauge �xing, since the rivers themselves are physical objects. Therefore the statement that a city

is located on earth at the site where the Elbe �ows into the North sea is gauge invariant.

This principle described above allows us to make measurements and predictions without a

formal gauge �xing. We describe all events as coincidences in space-time. Our system has to

describe the coordinate system as part of it in a dynamical way and consider its backreaction.

The backreaction has to be smaller than the e�ect of interest, we call the laboratory in this case

compatible with the measurement. To elaborate on the problem of compatibility, let us consider

an example. Let's think of the measurement of the �eld in electrodynamics. In order to measure or

even describe a �eld we need a test charge. A real physical or a mind experiment would use a charge

for this purpose which is small enough so that its backreaction on the �eld could be neglected.

Mathematically one would like to take the limit q → 0 (note that the charge is quantized in nature

and one has to be careful with such limit statements). However, in the case of a classical �eld

it is possible to make sense of this idea. So once one places the probe charge into the �eld, one

wishes to observe it with respect to the position of an observer. This observer has to be electrically

neutral in order to avoid backreaction and also to distinguish the action of the �eld on the test

charge from the action on him. Actually, the very notion of a �eld arises from the fact that there

is a neutral observer.

Now, let us consider a gravitating system. In this case the situation is more subtle, since

there are no neutral observers with respect to gravity. This was the fundamental idea which led

to relativity and distinguishes gravity from all our �eld theories. Nevertheless, it is possible to

�nd compatible measurement systems for certain GR experiments. In this thesis we deal with the

cosmological problem of isotropy. We know that at the time of decoupling of photons the space

used to be isotropic to a very high precision and so was well described be an FRW metric. Now

the inhomogeneities give rise to perturbations about this background, but we have the belief that

on horizon scales the metric is still close to FRW. Therefore for the measurement we need a system

compatible with the FRW symmetries. The dust which will be used in the following section ful�lls

this property since its energy momentum tensor is the special case of vanishing pressure of the

most general tensor compatible with the FRW symmetries: the tensor of a perfect �uid. Hence,

if one would add a dust of very low energy density the FRW space-time would not be strongly

a�ected. A Minkowski background, for instance, would be immediately destroyed, no matter how

low the dust density is. The problem that the dust is added everywhere and hence there is no
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smooth limit to empty space.

In the course of this work we will go even one step further, we conjecture that in the cosmological

context it is reasonable to assume an energy momentum tensor of the universe, the energy density

of which never vanishes completely. This enables us to separate from the existing tensor a pressure-

less �uid tensor of low energy density without changing the system at all. In chapter 4 this dust

will be used as a reference frame to perform the averaging without a formal gauge �xing.

3.2 Explicit construction of observables

As Einstein pointed out it in his hole argument the notion of a point in GR is a priori mean-

ingless. It is washed away by general covariance. However, mostly in physics one is interested in

describing the nature of some interacting objects and not just the geometry. The matter helps to

solve this paradox. In this section we will describe how matter can be used to construct physical,

local observables.

As already mentioned, GR has redundant degrees of freedom to ensure general covariance.

This is represented by the presence of constrains which restrict the trajectories in the phase space

to the physical ones. This constraints are also generators of di�eomorphisms which leave physics

invariant. This is explicitly formulated as:

∂A

∂Xµ

= {Hµ, A }

Hence, if we want to construct physical observables i.e. quantities which do not depend on the co-

ordinate choice, we have to �nd quantities which commute with the constraints. We will use matter

to achieve that. First we will discuss the oldest example which helped Einstein understanding the

meaning of general covariance.

3.2.1 Single particle as reference frame

Following the example of [15], we take a single particle X freely falling in space-time, coupled to

gravity and also carrying a clock. There is a variable T attached to the particle and monotonically

growing along its trajectory. In a certain coordinate system O the universe will be described by

{M, gµν(y) , Xµ(τ) , T (τ)}

Where y = (t , ~y). We can construct the function X̃ from X and T by:
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X̃µ(T (τ)) := Xµ(τ)

If we take X̃(0) in the universe, this point is a physical one. We could for instance say that the

geometry in this point is �at and it will be a gauge invariant statement. Consider a scalar function

of the metric and let R(y) be its values in the origin O. Then the quantity R̃ := R(X̃(0)) is a

physical observable. To see that, regard an in�nitesimal change of coordinates induced by a vector

�eld f . We will have:

δR(y) = −fµ(y)∂µR(y)

δXµ(τ) = fµ(X(τ))

δT (τ) = 0

from that we get:

δR̃ = −fµ(X̃(0))∂µR(X̃(0)) + ∂µR(X̃(0))δX̃µ(0) = ∂µR(X̃(0)) [fµ(X(0))− fµ(X(0))] = 0

Now we would like to implement the idea in a more formal way, as was done in [15]. First

starting with the simplest system. A freely falling particle with a clock. Therefore the particles

trajectory has to ful�ll the geodesic equation.

d2Xµ

ds2
+ Γµνρ(X)

dXν

ds

dXµ

ds
= 0

d2T

ds2
= 0

and the proper time s(τ) given by:

ds(τ)

dτ
=

√
−dX

µ

dτ

dXν

dτ
gµν(X(τ)) =: r(τ)

This equations have to be added to the gravitational equations, which have to be Einstein equations

with the energy momentum tensor of the particle on the right side. So it means we have to include

the particle's Lagrangian into the total Lagrangian. There are several Lagrange functions yielding

this equations. Several have been proposed by Kuchar. A possible choice would be:
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Spart = −m
ˆ [
−dX

µ

dτ

dXν

dτ
gµν(X(τ))−

(
dT

dτ

)2
]1/2

dτ =: −m
ˆ
rT (τ) dτ

So the total action is then:

S[g , X , T ] =
1

8πGN

ˆ
dt

ˆ
d3y
√
g R−m

ˆ
rT (τ) dτ (3.1)

In order to �nd the Dirac observables Hamiltonian analysis of the system is needed. The technique

to perform a Hamiltonian analysis of a GR system was developed by Richard Arnowitt, Staneley

Deser and Charles Misner and is called the ADM formalism1.

The problem is that both terms in (3.1) have di�erent evolution parameters. To express the

second evolution parameter in terms of the �rst it is convenient to �x the parametrization invariance

by requiring that X0(τ) = τ . Now we can identify τ with t the particles degrees of freedom will

be described by Xa(t), a = 1, 2, 3 without redundancy. The action reads as following:

S[g , X , T ] =
1

8πGN

ˆ
dt

ˆ
d3y
√
g R−m

[
−ẊaẊbgab(X(t))− 2Ẋaga0 − g00(X(t))− Ṫ 2

]1/2

In ADM coordinates {hab(y), Nµ(y)}, the metric takes the form:

ds2 = −N²dt² + hab(dy
a +Nadt)(dyb +N bdt)

The action expressed in these coordinates is:

S =

ˆ
dt

[ˆ
d3y LADM [g, ġ, N ]−m

(
(N(X))2 − (Ẋa +N b(X))2 − Ṫ 2

)1/2
]

To compute the Hamiltonian we need to perform a Legendre transform and therefore �rst to

compute the conjugate momenta:

pab(y) :=
∂L

∂ġab(y)
= pabADM(y)[h, ḣ, N ]

pa :=
dL

dẊa
= −m ( ˙Xa +Na)[

N2 − (Ẋa +Na)2 − Ṫ 2
]1/2

1Consult appendix A for a brief description of the ADM formalism.
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P :=
dL

dṪ
= −m Ṫ[

N2 − (Ẋa +Na)2 − Ṫ 2
]1/2

πµ(y) :=
∂L

∂Ṅµ(y)
= 0

Here pabADM [h, ḣ, N ] are the momenta of the ADM theory as for instance described in [19]. So the

Hamiltonian is:

H =
1

8πGN

ˆ
d3y Nµ(y)HADM

µ [h, p](y)−Na(X)pa −N(X)
√
m2 + p2 + P 2

By considering the quantities multiplying the lapse and shift (N, Na) we get the constraints:

Ha(y) = HADM
a (y)− δ3(y −X)pa

H0(y) = HADM
0 (y)− δ3(y −X)

√
m2 + p2 + P 2

As discussed above the Hamiltonian vanishes on shell and the dynamics is described by the con-

straints. Having �nished the Hamiltonian analysis of the system we can turn to the construction

of the Dirac variables. We can consider any scalar function of the metric, like the Ricci scalar:

R̃ := R(X)

This quantity commutes with the momentum constraints. To prove it writeH(f) =
´
d3yfa(y)Ha(y)

and compute the Poisson brackets:

{
R̃, H(f)

}
=
{
R(X), HADM(f)

}
− {R(X), fa(X)pa} =

= δfR(y)y=X − ∂bR(X)
{
Xb, fa(X)pa

}
=

= −fa(X)∂aR(X) + fa(X)∂aR(X) = 0

Here a class of variables has been found invariant under the three-dimensional di�eomorphisms.

In the next step we are going to deal with the Hamiltonian constraint. Consider the two

observables R̃ and T on the phase space
{
hab p

ab, Xa, pa , T, P
}
with any scalar density f , the
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Hamiltonian �ow of the constraint H(f) =
´
d3y f(y)H0(y) generates orbits in the phase space.

Along those the evolution of the observables is given by:

dR̃

dt
=
{
R̃,H(f)

}
dT

dt
= {T, H(f)}

Assume R̃(t) and T (t) are solutions of the above equations. For every solution we de�ne R̄(T (t)) =

R̃(t) or R̄ = R̃ ◦ T−1 so by construction the quantity R̄ for every value of T is t-invariant and

hence commutes with H(f). Furthermore R̄ does not depend on f .

Consider:

{
R̄H(f + δf)

}
=
{
R̄,H(f)

}
+
{
R̄, H(δf)

}
=
{
R̄, H(δf)

}
We know:

{
H(f), H(~f)

}
= H(L~f f)

Where ~f is a vector �eld, which induces the Lie derivative of the scalar density f and H(~f) =´
d3y faHa(y) with Ha being the three-di�eomorphism constraints. We have always such a vector

�eld that:

{
R̄, H(f + δf)

}
=
{
R̄,
{
H(f), H(~f)

}}
Since R̄ commutes with H(~f) (it is de�ned in terms of 3-di� invariant quantities) and it commutes

with H(f) by construction, it follows that R̄ also commutes with H(f + δf) and hence does not

depend on the choice of f . So given any scalar function of the metric R and any real number

T . R̄(T ) de�nes an observable which commutes with all constraints and is a Dirac observable.

The interpretation of the quantity is very physical. It is the value of the scalar R (for instance

the curvature) at the point where the particle is and at the moment the clock shows the value T .

We could also take just one of the particles coordinate functions and the values it assumes are

also in the same way Dirac observables. We will use this idea later not only for a single particle,

but for a continuum of geodesic observers. It will be the analogy to the introduced dust in the

Brown-Kuchar model. Now let us generalize the above discussion to a continuum of dust.
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3.2.2 Observables with respect to dust

Imagine we would take many particles and use their world lines as references. The particles'

coordinates would carry a particle index. Now let us take the continuum limit and take arbitrary

many particles being arbitrary close together in such a way that the particle density is constant.

We arrive at the notion of a �eld with the particles' continuous index Zk k ∈ {1, 2, 3} , in fact

three functions assigning the particle-labels uniquely. The Lagrangian variables are now:

{gµν(~y, t), Xµ(Z, τ) , T (Z, τ)}

The action reads (We will analyze the action for a dust �eld in the next section. At this point we

just take it as a given):

S =

ˆ
dt

[ˆ
d3y LADM [g, ġ, N ]−m

ˆ
d3Z

(
(N(X(Z)))2 −

[
Ẋa(Z) +N b(X (Z))

]
2 − Ṫ (Z)2

)1/2
]

Here LADM is the standard ADM Lagrangian for GR. The corresponding constraints read:

H(~f) = HADM(~f)−
ˆ
d3Z fa(X(Z))pa(Z)

H(f) = HADM(f)−
ˆ
d3Z f(X(Z))

√
m2 + p(Z)2 + P (Z)2

Now we generalize the observations made for a single particle. Analogously a scalar quantity

R̃(Z) := R(X(Z)) commutes with the three-di� constraints. It is also possible to construct an

other 3-di�. invariant quantity, namely:

h̃ab(Z) = ∂aX
c(Z)∂bX

d(Z)hcd(X(Z))

This satis�es:

{
h̃ab(Z), H(~f)

}
= 0

In the same way as for the singe particle, let us de�ne h̄ab(Z, T ):

h̄ab(Z, T (Z, t) := h̃ab(Z , t)
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Here the following equations de�ne the functions h̃ and T :

d

dt
T (Z, t) = {T (Z, t) , H(f)}

d

dt
h̃ab(Z, t) =

{
h̃ab(Z, t) , H(f)

}
The quantity h̄ab(Z, T ) is a physical observable for any given Z and T which commutes with all

constraints, as has been also shown in [15]:

{
h̄ab(Z, T ) , Hµ(y)

}
= 0

The physical interpretation is here also very intuitive. This quantity expresses the geometry of the

manifold of the points de�ned by the particles at the moment when all clocks display the value T .

In the next chapter we will use this geometry to form scalars out of the coordinates of the dust

particles.

3.3 The problem of time

By the �problem of time� in GR it is meant that the theory is completely parametrized. The

space-time manifold describes everything in the space-time, there is no natural time evolution in

the theory. The discussed di�eomorphism invariance is the reason why there is apparently no

time. If the canonical Hamiltonian is derived in the ADM formalism one discovers that it is a

linear combination of the Hamiltonian- and di�eomorphism constraints and generates in�nitesi-

mal space-time di�eomorphisms on shell. Since all the constraints vanish, so does the canonical

Hamiltonian and is therefore not a generator of physical time evolution. Furthermore we already

discussed that observables have to commute with the constraints and will also commute with the

physical Hamiltonian. This is especially problematic if one wishes to set up a quantum mechanical

formalism, since it seems that �nothing is happening in quantum gravity�. An other interesting

observation is that the Friedmann equations contain a time evolution. The time dependent quan-

tities are represented by functions on the phase space which do not Poisson commute with the

constraints2 and hence should not be observable. At this point we have two options:

2T. Thiemann pointed out this di�culty in [17] and proposed a deparametrization mechanism based on one
extra scalar �eld, �counting� the time. The scalar �elds have similar properties as dust, if the potential term is
appropriate.
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� Drop Dirac's postulate, that observable quantities should be gauge invariant. This postulate

worked astonishingly well in theories known so far.

� Admit that there is something in gravitational physics what we do not understand and use

this hint to look for knew physics and new ideas to describe gravity.

We will follow the second trail and present a formalism which allows us to introduce the notion of

time in GR.

3.4 Canonical description of dust

Before describing the Brown Kuchar mechanism, we will introduce the Lagrangian method to

describe dust. There are many Lagrangian functions which describe a pressure-less �uid, the one

presented here is most natural for the later discussion. Furthermore the notation for the dust

coordinates will be established.

The Action:

First we show that the proposed action indeed yields the correct equations for a self gravitating,

pressure-free �uid. The same action has been used in [9] to perform gauge independent perturbation

theory. Furthermore the variation will enable us to give physical meaning to the introduced �elds.

The action reads:

S =

ˆ
d4x
√
−g
{
− 1

8πGN

R + ρ (uµuνgµν + 1)

}
The velocity �ow U of the dust is de�ned in components as:

uµ = −∂µT +Wj∂
µZj

The action is a functional of the �elds: {T ,Wj , Z
j , gµν , ρ} .

Now we vary the action S w.r.t the �elds:

δS =

ˆ
d4x
√
−g
{(
−1

2
gµνρ (uµuνgµν + 1) +

−1

8πGN

(
Rµν −

1

2
gµνR

)
+ ρuµuν

)
δgµν

}
+ (3.2)

+

ˆ
d4x
√
−g {(uµuνgµν + 1) δρ+ 2ρuµgµνδu

ν} = 0
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The Lagrange multiplier (variation w.r.t ρ) ensures that uµuµ = −1 and so the �rst term in the

variation w.r.t. gµν vanishes, resulting in:(
Rµν −

1

2
gµνR

)
= 8πGN ρuµuν = 8πGN Tµν

Which is Einstein's equation for a pressure-less �uid. This justi�es already the choice of the action.

We will study the variation with respect to the other �elds to understand how the dust �elds furnish

a suitable coordinate system. We analyze further the last term of (3.2):

ˆ
d4x
√
−g {2ρuµgµνδuν} = (3.3)

=

ˆ
d4x

{
∂ν
(√
−g 2ρuµgµν

)
δT − ∂ν

(√
−g 2ρuµgµνWj

)
δZj +

(√
−g ρuµgµν∂νZj

)
δWj

}
= 0

This results in three independent equations. Assuming ρ 6= 0 we take the third term:

uµgµν∂
νZj = LUZj = 0 (3.4)

The Lie derivative of Zj along U vanishes, this indicates that the �elds Zj are constant along the

integral curves of U . Furthermore (3.4) implies:

LUT = uµ
(
∂µT −Wj∂µZ

j
)

= −uµuµ = 1

We observe that T is the proper time along the dust �ow lines.

The second term of (3.3) gives:

∂ν
(√
−g ρuµgµνWj

)
=
√
−g∇ν (ρuνWj) = 0 (3.5)

And the �rst reads:

∂ν
(√
−g ρuµgµν

)
=
√
−g∇ν (ρuν) = 0 (3.6)
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Which is the continuity equation for the ideal �uid. Inserting (3.6) into (3.5) one arrives at:

uν∇ν (Wj) = ∇UWj = 0 (3.7)

Together with (3.4), (3.7) shows that U is a time-like �eld and hence the following holds:

uνδ∇ν (xµ) = ∇uδx
µ = δuµ

So we can rewrite ρuµgµνδu
ν = 0 and since this expression is still under the integral, partial

integration can be performed:

ρuµgµνδu
ν = ρuµuλgµνδ∇ (xν)λ = −∇λ

(
ρuµuλgµν

)
δxν = 0

Now using the continuity equation (3.6) one obtains:

∇λ

(
ρuµuλgµν

)
= uν∇λ

(
ρuλ
)

+ ρuλ∇λ (uν) = ρ∇uuν = 0⇒ ∇UU = 0

Obviously the integral curves of U are a�nely parametrized geodesics. T is the proper time

along the geodesics and each integral curve is determined by a constant value of Zj. So using the

variational principle we have found the physical meaning of all the relevant �elds. Now the dust

coordinates can be set up.

The dust coordinates:

The dust is completely described by eight scalar �elds: The eigentime T , the density �eld ρ ,

the spatial coordinates Zk and the velocity �elds Wl k, l ∈ {1, 2, 3}. The condition det(ZK , α) 6= 0

(where ZK = (T, Zk)) , ensures that the coordinate lines do not intersect. The velocity �ow is

de�ned as: uα = −∂αT +Wk∂αZ
k.

We have seen that U is a future directed unit vector �eld and the scalar �elds Zk are constant

along the �ow lines. Which are geodesics parametrized by T . The congruence of the dust �ow lines

introduces a preferred reference frame into the space-time manifoldM which is a physical space-

time and hence has topology R × Σ. So to represent any point y on the manifold it is su�cient

to know the coordinate Zk on Σ of the dust �ow line which goes through y and the coordinate T ,

representing the eigentime when the dust �ow line intersects with y.



CHAPTER 3. OBSERVABLES AND DEPARAMETRISATION 58

Figure 3.1: Dust �ow

This gives us the mappings τ = T (y) as well as z = Z(y). This maps can be inverted (since

the non zero determinant condition from above holds) and one gets a map (τ, z) → y = Y (τ, z).

The vectors uα := ∂τY
α and ∂kY

α form a basis of the tangent space TM.

To point out the important facts once more: Any solution of the dust equations, coming from

the dust action, describes the motion of the dust that allows the space time manifold M to be

split into the space and time manifolds, S and T . An instant of T and a �ow line of S intersect

at a unique event y ∈ M. The space-time manifoldM is thus a Cartesian product T × S of the

space and time dust manifolds. The mappings are summarized as:

T (y)× Z(y) : M→ T × S

Y (τ, z) = T × S →M

This is also the reason why dust can serve as a standard of space-time, as shown by Brown and

Kuchar in [2].

3.5 The Brown Kuchar mechanism

As discussed above the canonical Hamiltonian in GR is constraint to vanish and hence can

not serve as a true time translation generator. In this section we will show how a system can

be enlarged by a suitable subsystem (the dust). This makes it possible to construct an abelian

algebra of constraints. Furthermore observables, which Poisson commute with the constraints can

be constructed and evolve in time under the action of a physical Hamiltonian. This method is
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called the Brown Kuchar mechanism and was �rst published in [2]. Especially we are interested

in the physical Hamiltonian to give a meaning to the notion of time inside the theory.

The procedure is as follows. We study the dust, described by the above action, minimally

coupled to gravity. Consider the map Y as introduced in the previous section. It de�nes the

foliation of the space-time as well as a lapse function N and a shift vector N i. After introducing

Nα := ∂tY
α which describes the transition from one leaf of the foliation to the next, we read o�

the lapse and shift:

Nα := N nα +N i∂iY
α

Here nα is the unit normal to the spatial hypersurface and ∂iY
α are the tangents. With this

de�nition the pull back under Y of a scalar-�eld from the manifold to R× Σ can be written as:

∂αZ
k nα =

Żk − ∂αZkNα

N

Now the dust Lagrangian can be written as:

LD =
1

2

√
gρ

[
1

N

(
−Ṫ +WkŻ

k − uiN i
)2

−N
(
gijuiuj + 1

)]
Derive the conjugate momentum to Ṫ (where dot denotes derivative w.r.t. coordinate time t):

P :=
∂LD

∂Ṫ
=
√
gρ

1

N

(
Ṫ −WkŻ

k + uiN
i
)

Perform the Legendre transformation:

PṪ − LD = −PkŻk +N HD
⊥ +N iHD

i

Here Pk := −PWk , the momentum constraint is HD
i := −Pui = P∂iT + Pk∂iZ

k and the Hamil-

tonian constraint reads:

HD
⊥ :=

1

2

P 2

ρ
√
g

+
1

2

ρ
√
g

P 2

(
P 2 + gijHD

i H
D
j

)
The dust action has now the following form, and its variation w.r.t ρ makes it possible to eliminate

the density from the Hamiltonian constraint:

SD =

ˆ
R

dt

ˆ
Σ

d3x
(
PṪ + PkŻ

k −N HD
⊥ −N iHD

i

)
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0 =
δSD

δρ
= −N ∂HD

⊥
∂ρ

⇒ ρ =
1
√
g

P 2√
P 2 + gijHD

i H
D
j

HD
⊥ =

√
P 2 + gijHD

i H
D
j

The total constraints, in our case the gravity plus dust constraints, are equal to zero.

H⊥ = HG
⊥ +HD

⊥ = 0 (3.8)

Hi = HG
i +HD

i = 0 ∀i (3.9)

The constraints (3.8) and (3.9) of dust coupled to gravity satisfy the following algebra:

{H⊥(x) , H⊥(x′)} = gij(x)Hi(x)∂jδ(x, x
′)− gij(x′)Hi(x

′)∂jδ(x
′, x) (3.10)

{H⊥(x) , Hi(x
′)} = −H⊥(x′)∂i′δ(x, x

′) (3.11)

{Hi(x) , Hj(x
′)} = Hj(x)∂iδ(x, x

′)−Hi(x
′)∂jδ(x

′, x) (3.12)

Equation (3.12) shows that Hi(x) are the generators of spatial di�eomorphisms (Di�Σ). Equa-

tion (3.11) tells that H⊥(x) is a scalar density of weight 1 under spatial di�eomorphisms. From

the fact that the right hand side of (3.10) contains the dynamical variable gij we conclude that

the total system is not a true Lie algebra. And especially H⊥ is not the true generator for time

translations.

To resolve this problem the equations (3.8) and (3.9) can be used to get new operators, which

we will call new constraints. The new constraints are completely equivalent to the old constraints,

but have a physical behavior which we will discuss below.

De�ne the new Hamiltonian constraint:

H↑ = P −
√
G = 0 (3.13)

with:
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G = (HG
⊥ )2 − gijHG

i H
G
j

And the new Momentum constraint:

H↑k = Pk + hk = 0 (3.14)

with:

hk = Zi
kH

G
i +
√
G∂iT Z

i
k

where Zi
k is the inverse matrix of ∂iZ

k i.e. ∂iZ
l Zi

k = δlk .

The old constraints and the new constraints are equivalent. Nevertheless there is a di�erence.

The momenta PK = (P, Pk) in (3.13) and (3.14) are separated from the rest of the canonical

variables. Now, since the old and new constraints are equivalent and the Poisson brackets of the

old constraints vanish on shell, so must do the Poisson brackets of the new constraints. However,

since the momenta PK appear in the new constraints without coe�cients, their Poisson brackets

can not depend on PK . Therefore the new constraints can not help to make these brackets vanish

and hence they must vanish strongly i.e. even o� shell. So we see that the new constraints Poisson

commute:

{H↑J , H↑K} = 0 for H↑K := (H↑, H↑k)

The new constraints generate an abelian algebra. Now we smear the new constraints with scalar

functions N↑K(x) =
(
N↑(x), N↑k(x)

)
:

H[N↑] =

ˆ
Σ

d3xN↑(x)H↑(x)

H[ ~N↑] =

ˆ
Σ

d3xN↑k(x)H↑k(x)

The smeared constraints generate through their Poisson brackets the changes of the �elds:

{
T, Zk, P, Pk, gij, p

ij
}
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Of particular interest is H[N↑], since it displaces the hypersurface of proper time by N↑ along the

�ow lines of the dust. This can be seen from the following equations:

Ṫ (x) :=
{
T (x), H[N↑]

}
= N↑

Żk(x) :=
{
Zk(x), H[N↑]

}
= 0

From the vanishing of the Poisson brackets of the new constraints and (3.13) it follows that

the quantities
√
q G(x) (with q being the metrics' determinant) mutually Poisson commute at

di�erent space time points. Similarly as in [17] we can construct Observables, which experience

time evolution trough the operator H =
´
d3xH(x), where H(x) =

√
q G(x).

De�ne using a function f (invariant under spatial di�eomorphisms):

Of (τ) :=
∞∑
n=0

1

n!
{Hτ , f }(n)

with:

Hτ =

ˆ
Σ

d3x [τ − T (x)]H(x)

It has been shown in [17] that H is the non vanishing Hamilton which describes the time evolution

of Of , namely:

dOf (τ)

dτ
= {H, Of (τ)}

The details of the proof of this relation are beyond the scope of our discussion. The important

message is that dust can introduce a physical coordinate system and can also be used to construct

observables which evolve w.r.t a non vanishing physical Hamiltonian.

3.6 Summary Chapter 3

In this Chapter it has been shown, how matter coupled to gravity can be used to construct

observable quantities. This idea which goes back to the father of relativity has been developed in
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the recent years, since it is of great interest for quantum gravity models.

A single freely falling particle has been studied. This idea has been generalized to a �eld of freely

falling observers, the dust �eld. In the last part of this Chapter the Brown Kuchar mechanism

has been discussed. It was shown that dust can introduce a preferred coordinate system into the

manifold, with the help of geodesic trajectories of the dust particles. The crucial property here of

course is that the particles do not interact. In that manner the theory can be deparametrized and a

physical Hamiltonian can be found. Furthermore with this method gauge independent observables

can be constructed, which evolve in time under the action of the physical Hamiltonian.

In the following chapter, the philosophy will be to introduce the dust into the gravitating

system and use the dust coordinates and their combinations to construct physical scalars needed

for the averaging procedure.



Chapter 4

Gauge invariant averaging for �nite

volumes

In this chapter an obviously gauge invariant formalism for averaging over �nite volume regions

of space-time will be presented and applied to traces of Einstein's equations. This model will

use dust to represent a physical coordinate system. At this point it is important to mention the

compatibility of the dust as coordinate system with a deformed FRW universe, as already discussed

in 3.1. We know that our universe used to be homogeneous to a very high precision and hence was

described well by the FRW universe. However, nowadays there are large inhomogeneities locally

present in the universe. Nevertheless we belief that the underlying geometry is not drastically

di�erent on horizon scales. Therefore it is sensible to use a laboratory which does not destroy the

FRW space-time, since it has the appropriate symmetries. The dust we are going to use ful�lls

this criterion.

4.1 The model

We consider a space-time �lled with matter and demand that the energy density of this matter

should never vanish. This assumption helps, to avoid the hole problem discussed in 2.2. Demanding

a non vanishing matter content we are able to give physical meaning to every point in space-

time. This is also a reasonable assumption on physical grounds, since even the voids contain little

amounts of cosmic dust or radiation. Furthermore it is speculated that there is matter present in

the universe, which interacts only (or almost only) with gravity. The dark matter is considered to

be �cold� i.e. non- relativistic in the standard model of cosmology, hence it can be well described

by dust. There are no observations which would contradict the assumption that this dark dust is

spread everywhere in the universe.

64
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The distribution of matter in our model though is not homogeneous, since it is supposed to

represent an anisotropic universe. This is the di�erence to the approach in [8, 7], we allow for

matter to exist which is distributed inhomogeneously and hence it is possible to �nd physical �elds

with a space-like gradient.

Within our model the energy momentum tensor can be decomposed in the way described below,

since we have demanded for the energy density never to vanish. We can view this in two ways.

Either the dust of low energy is formally separated from the total energy momentum tensor, or it

is added to it, which would not a�ect the system strongly.

T µν = T µνdust + T̃ µν

Where the T µνdust = ε uµuν is the dust energy momentum with in�nitesimal ε. And T̃ µν is the

energy momentum tensor of the rest of the system.

Figure 4.1: Matter distribution

Consequently the Lagrangian of the theory is as follows:

L = Lgravity + L̃+ Ldust

The gravitational Lagrangian is the Ricci scalar multiplied by the square root of the metric deter-

minant. The dust Lagrangian is as presented in Chapter 3.

L =
√
−g ε {vµvνgµν + 1}

With the following eight �elds, ε being the energy density, T eigentime , Wl velocity �eld and Zk

coordinate �eld, where k, l ∈ {1, 2, 3}:
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vµ = −∂µT +Wk∂
µZk

T has a time-like gradient and the Zk 's have obviously space-like gradients. This �elds will be

used for the construction of a window function which transforms as a scalar. We will restrict

our analysis to the Lagrangian formalism and not be concerned with the form of the physical

Hamiltonian. On the other hand we know that a physical Hamiltonian exists, since the system

with dust deparametrizes, as has been shown in [9, 17, 6].

4.1.1 Time

The eigentime of the dust particles is a map into the dust-time manifold:

T : (R× Σ)→ T

As was discussed in 3.2 at each �xed value T = τ , T is a scalar w.r.t. coordinate changes on the

manifoldM in the sense:

T̃ (X) = T (X̃)

where X̃ = f−1(X). On the dust-time manifold T is trivially a scalar. This will be scalar with the

space-like gradient which will be used for the construction of the window function. We take the

eigentime T of the dust particles as the scalar �eld which generates the time �ow. Therefore the

unit time-like vector is:

nµ =
−∂µT√
−∂µT∂µT

The foliation is de�ned as the hypersurfaces on which T takes constant values. It is the physical

time of the dust �eld. This de�nes a time-space split with the projector orthogonal to the time

�ow:

hµν = gµν + nµnν

4.1.2 Space

The dust is a collection of geodesic observers, freely falling on M. Each particle carries a

label, at any instant of time τ a particle has a position, so this position of the labeled particle

is a physical value and hence a Dirac observable. Taking the continuum limit, while keeping the

particle density constant we obtain a �eld, where the indices of the particles can be viewed now

as three dimensional coordinates Zi , i ∈ {1, 2, 3}. Z is a map from the hypersurface of constant
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time into the dust-space manifold of constant T = τ :

Z : Σ→ S(τ)

De�ne the quantity: Z̄i(T (τ)) := Zi(τ) . The Z̄i are for evry �xed pair of values Zi and T

scalars onM, as shown in chapter 3 (omit the bar in the coming discussion):

Z̃k(X) = Zk(X̃)

where X̃ = f−1(X). On the other hand they are three vectors on S. To construct a quantity

which is a scalar onM and S, more work is required. The basic idea is to construct a scalar on

S out of the coordinate �elds of the dust, a quantity like ZkZ
k. Therefore we need the induced

metric on the hypersurfaces hij. To get this object we pull back the orthogonal projector hµν on

the hypersurface of constant T denoted by Σ. To stay general we introduce coordinates on Σ called

xa which represent a map:

Z−1 : S(τ)→ Σ

Furthermore, the coordinates onM are denoted by Xµ(xa) and represent a map:

X : Σ →M

The combined map which we are going to use for the pull-back is ρ, de�ned as:

ρ := X ◦ Z−1 ⇒ ρ : S(τ)→M

We could visualize the interrelations as follows:
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Figure 4.2: Interrelations

With the pull backs of the maps given as:

X∗ =
∂Xµ

∂xa
=: Xµ

a

Z−1
∗ =

∂xi

∂Zj
=: (Z−1)aj

ρ∗ =
∂Xµ

∂Zj
= Xµ

a (Z−1)aj

The choice of the X and Z−1 maps corresponds to the gauge choice. Later we will pick the so

called ADM gauge where ρ = X and Z−1 = id therefore Σ = S. After clarifying the maps we

come back to the main goal and pull-back on the dust space:

hij(Z) = ρ∗hµν = Xµ
a (Z−1)aiX

ν
b (Z−1)bj hµν =

∂Xµ

∂Zi

∂Xν

∂Zj
hµν =

=: Xµ
i X

ν
j hµν = Xµ

i X
ν
j gµν +Xµ

i X
ν
j nµnν =

= Xµ
i X

ν
j gµν = Xµ

a (Z−1)aiX
ν
b (Z−1)bj gµν

Here the property has been used that nµ is orthogonal to the tangents of S : ∂iX
µ , i.e. Xµ

i nµ =

0 ∀ i .
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Note: For the construction we have used the orthogonality of the time �ow to the spatial

hypersurfaces. To ensure this we can pick the dust velocity �eld Wk to vanish. This is simply

assuming that the dust we consider is rotation free, which is reasonable for all practical purposes.

This quantity commutes with the 3-di�eomorphism constraints and in the next step following

the logic from chapter 3 we construct the observable, using the dynamic equation with t being X0

from the ADM split:

∂hij(Z)

∂t
= {hij(Z) , H(f)}

Here H(f) =
´
d3xH0(x)f(x) with f some scalar density and H0 the total Hamiltonian constraint

of the system (Compare to section 3.2.2). Even if an analytic solution to this equation can not

be obtained, we can set initial values by �eld re-de�nition and perform a series expansion. The

solution of this equation hij(Z, t) is used to de�ne the observable h̄ij(Z, T ):

h̄ij(Z , T (Z, t)) := hij(Z, t)

This quantity commutes for �xed T and Z with all constraints and is hence an observable (as has

been shown in chapter 3). In the following we will omit the bar for simplicity. So we have found

the tensor quantity on S which is needed for the contraction with the vectors.

Now we can write:

Z2 = Zkhkl Z
l =: B

So the dust vectors are contracted with a tensor on the dust manifold and one obtains a physical

scalar onM and on S. It transforms as:

B̃(X) = B(X̃)

and:

B̃(x, T ) = B(x̃, T )

where onM: X̃ = f−1(X) and correspondingly on S: x̃ = f−1(x).
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Proof:

� The induced metric on the hypersurface Xµ
a (Z−1)aiX

ν
b (Z−1)bj gµν is a scalar under coordinate

changes on the manifold by construction, an explicit calculation shows it in components:

h̃ij(X) =
∂

∂Zi

∂X̃µ

∂Xλ
Xλ∂X

λ

∂X̃µ

∂

∂Zj

∂X̃ν

∂Xρ
Xρ ∂X

ρ

∂X̃ν
gλρ =

∂Xλ

∂Zi

∂Xρ

∂Zj
gλρ = hij(X̃)

� The constructed quantity B = Z2 is a scalar on S since the 3-vectors Zk are contracted with

a rank two tensor on S. Again explicit calculation shows:

B(~Z) = ZkhklZ
l =

(
∂Zk

∂xa
xa
)
h̃kl

(
∂Z l

∂xb
xb
)

=

=

(
∂Zk

∂xa
xa
)(

hab
∂xa

∂Zk

∂xb

∂Z l

)(
∂Z l

∂xb
xb
)

= xa hab x
b = B(~x)

� The connecting relation which makes the whole object invariant under coordinate transfor-

mations on the manifold is that the Zk s are the dust labels and hence scalars on M as

discussed above:

Z̃k(X) = Zk(X̃)

where X̃ = f−1(X).

Now we have shown that B = Z2 is a scalar onM and on the dust manifold S. Since the Z2 is

a scalar on S we can express it in arbitrary coordinates xa on Σ, the ADM split hypersurface of

constant T . This coordinate representation is also convenient for the Window function discussed

in the following section.

4.1.3 Window function

Having the desired physical scalars at hand we write the window function as:

WΩ = δ(T (x)− T0)
√
−∂µT∂µT θ(r0 −B(x))
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Which is again a scalar onM and S, so the integral of a scalar over a domain Ω is gauge invariant

as has been shown in 2.4.2. Write the integral as:

F (Ω) =

ˆ
M4

√
−g(x)

√
−∂µT∂µT Θ(r0 −B(x))δ(T0 − T (x))d4x

Now the averaging functional can be de�ned in the following way and simpli�ed integrating out

the delta function:

〈S〉 {A,r0} =
F (S,Ω)

F (S, 1)
=

´
M4

√
−g(x)

√
−∂µT∂µTS(x)Θ(r0 −B(x))δ(T0 − T (x))d4x´

M4

√
−g(x)

√
−∂µT∂µTΘ(r0 −B(x))δ(T0 − T (x))d4x

=

=

´
Σ0

´
RN

√
h(~x)

√
−∂µT∂µTS(x)Θ(r0 −B(x))δ(T0 − T (x))d3x dT´

Σ0

´
RN

√
h(~x)

√
−∂µT∂µTΘ(r0 −B(x))δ(T0 − T (x))d3x dT

=

=

´
Σ0
N
√
h(x)

√
−∂µT∂µT |T=T0S(x)Θ(r0 −B(x))d3x´

Σ0
N
√
h(x)

√
−∂µT∂µT |T=T0Θ(r0 −B(x))d3x

Where Σ0 is the hypersurface on which T (x) = T0 , h the determinant of the induced spatial metric

discussed above and N the lapse function for a general not synchronous gauge. The average is

manifestly a gauge independent quantity, since T (x) and B(x) are scalars under Di�(M) and

also Di�(S) and so the window function is also a scalar. Hence, the average of S is obviously an

observable.

Equipped with this functional we can address the problem of averaging the scalar parts of

Einstein's equations of the model of the universe presented above, where the coordinate system,

the dust, is included into the studied system. We will perform a similar analysis as in [7], but in

a more general way, since our formalism applies also to �nite volumes.

4.1.4 Time derivative of the average

To average the dynamic equations of our model it is also necessary to compute time derivatives

of the averaged quantities. In this case the time derivative means partial derivative w.r.t T0 the

eigentime of the homogeneous dust used for the deparametrisation. Let us begin with the derivative

of F (S,Ω). The strategy will be to choose certain coordinates in which the computation will be

easier and then to generalize our result to an arbitrary frame.

The eigentime T is the function that de�nes the space as hypersurfaces on which it assumes

a constant value. Therefore it is spatially homogeneous. In this case we can choose coordinates,

in future referred to as ADM coordinates, such that: nµ = N (−1, 0, 0, 0) and nµ = 1
N

(1, −N i)
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where N is the lapse and N i the shift. The metric reads:

ds2 = −N²dt² + hij(dx
i +N idt)(dxj +N jdt)

Furthermore since we have set the velocity �eldW k of the coordinate dust to zero, which implies

the orthogonality of nµ to the spatial hypersurfaces, the shift vectors vanish. In this coordinates we

compute the time derivative. The partial derivative commutes past the integral and the derivative

of the δ distribution we understand in the weak sense.

∂F (S,Ω)

∂T0

= −
ˆ
M4

√
−g(x)

√
−∂µT∂µTS(x)Θ(r0 −B(x))

∂

∂T
{δ(T0 − T (x))}d4x =

= −
ˆ
M4

√
−g(x)

√
−∂µT∂µTS(x)Θ(r0 −B(x))(∂0T )−1∂0{δ(T0 − T (x))}d4x

In the coordinates chosen we can read of from the form of nµ the only component of ∂µT which

is not zero: ∂0T and −∂µTgµν∂νT = −(∂0T )2g00 with g00 = −N−2 therefore the above equation

simpli�es to:

−
ˆ
M4

√
−g(x) S(x)Θ(r0 −B(x))

√
−g00∂0{δ(T0 − T (x))}d4x =

=

ˆ
M4

∂0

{√
−g(x) S(x)Θ(r0 −B(x))

√
−g00

}
δ(T0 − T (x))d4x =

=

ˆ
M4

√
|h| {Θ(r0 −B(x)) (NθS + ∂0S)− δ(r0 −B(x))S∂0B(x)} δ(T0 − T (x))d4x

Here h = det(hij) and θ = 1
N
∂0log(

√
h), since θij = 1

2
Lnhij = ∂Thij = 1

N
∂0hij in this gauge and

the trace θ = 1
N
hijḣij = 1

N
∂0log(

√
h) . Having this we can rewrite the expression in a covariant

way, so that it reduces to our result when the ADM coordinates are �xed.

∂F (S,Ω)

∂T0

= F

(
∂µT∂

µS√
−∂µT∂µT

,Ω

)
+ F

(
Sθ√

−∂µT∂µT
,Ω

)
− 2F

(
∂µT∂

µB√
−∂µT∂µT

S δ(r0 −B),Ω

)
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The last term vanishes in case nµ∂µB = 0 i.e. the spatial coordinates do not depend on the

time variable. This is indeed the case in our model since nµ is orthogonal to the space such that

∇nZ
k = 0 which implies the above relation. Hence the time derivative reads:

∂F (S,Ω)

∂T0

= F

(
∂µT∂

µS√
−∂µT∂µT

,Ω

)
+ F

(
Sθ√

−∂µT∂µT
,Ω

)
(4.1)

Now we can calculate the time derivative of the average of a scalar 〈S,Ω〉 = F (S,Ω)
F (1,Ω)

.

∂ 〈S,Ω〉
∂T0

=
∂F (S,Ω)

∂T0

1

F (1,Ω)
− 〈S,Ω〉 1

F (S,Ω)

∂F (1,Ω)

∂T0

=

=

(
F (∂T0S,Ω) + F (

N S θ

∂0T
,Ω)

)
1

F (1,Ω)
− 〈S,Ω〉 1

F (1,Ω)
F (

N θ

∂0T
,Ω) =

= 〈∂T0S,Ω〉+

〈
N S θ

∂0T
,Ω

〉
− 〈S,Ω〉

〈
N θ

∂0T
,Ω

〉
Covariantly expressed we obtain the general form of the Buchert, Ehlers (compare to [3]) commu-

tation rule:

∂ 〈S,Ω〉
∂T0

=

〈
∂µT∂

µS

∂µT∂µT
,Ω

〉
+

〈
S θ√
−∂µT∂µT

,Ω

〉
− 〈S,Ω〉

〈
θ√

−∂µT∂µT
,Ω

〉
(4.2)

4.1.5 The e�ective scale factor

In order to be interpreted as a domain dependent scale factor analogous to the a of the FRW

model, a quantity has to be considered which is gauge independent. As any physical observable

must not depend on the coordinates chosen.

To accomplish this we use the gauge independent averaging functional to de�ne the quantity s

to be the e�ective scale factor:

1

s

∂s

∂T0

:=
1

3

1

F (1,Ω)

∂F (1,Ω)

∂T0

Using (4.1) one sees that

∂F (1,Ω)

∂T0

= F

(
θ√

−∂µT∂µT
,Ω

)
and hence:
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1

s

∂s

∂T0

=
1

3

〈
θ√

−∂µT∂µT

〉
(4.3)

Remark:

A more pictorial way of looking at this, is to write:

s =

(
F (1,Ω)T0
F (1,Ω)0

) 1
3

Therefore:

∂s

∂T0

=
1

3
(s³)−

2
3

1

F0

∂F (1,Ω)T0
∂T0

=
1

3
s

〈
θ√

−∂µT∂µT

〉
We see from that calculation that s has indeed a property of a scale factor, but its de�nition above

circumvent the necessity of introducing a normalization at a certain time zero.

4.2 Einstein's equations

This part will be similar to 1.4.3, but in this case the nµ which chooses the time is the �ow of the

coordinate dust already present in the model and not an arbitrary choice. The time arises natural

and there is no need of arti�cial gauge �xing. We describe the time �ow without formally choosing

a gauge.

4.2.1 Gauge independent averaging

Normal projection of the equations of motion:

The Einstein tensor multiplied with the time �ow vectors (which is equivalent to the Hamiltonian

constraint density) gives:

Gµνnµnν =
1

2
Rs +

1

3
θ²− σ²

Where the expansion rate and the shear are de�ned w.r.t nµ, the Rs is the spatial curvature

associated with the projector on the hypersurface orthogonal to nµ.



CHAPTER 4. GAUGE INVARIANT AVERAGING FOR FINITE VOLUMES 75

On the other hand one has from the matter contribution:

T µνnµnν = (T µνdust + T̃ µν)nµnν

T̃ µνnµnν

T µνdustnµnν = ε(vµn
µ)² = ε(−∂µTnµ)² = ε(−∂µT∂µT )

With vµ =
√
−∂µT∂µT nµ since we said that the velocity �eld W k vanishes. Now the Hamil-

tonian constraint density can be averaged. For normalization divide it �rst by −3 ∂µT∂
µT apply

the averaging functional introduced above and insert the identity by adding and subtracting the

average of θ squared:

〈
1

6

Rs

−∂µT∂µT
+

1

9

θ²

−∂µT∂µT
− 1

3

σ²

−∂µT∂µT

〉
+

1

9

〈
θ√

−∂µT∂µT

〉2

− 1

9

〈
θ√

−∂µT∂µT

〉2

= (4.4)

=
8πGN

3

〈
T̃ µνnµnν
−∂µT∂µT

+ ε

〉
Using: (

1

s

∂s

∂T0

)2

=
1

9

〈
θ√

−∂µT∂µT

〉2

And de�ning the backreaction:

QD =
1

3

〈 θ²

−∂µT∂µT

〉
−

〈
θ√

−∂µT∂µT

〉2
− 2

〈
σ

−∂µT∂µT

〉
We rewrite (4.4) as:

(
1

s

∂s

∂T0

)2

= −1

6

〈
Rs

−∂µT∂µT

〉
− 1

6
QD +

8πGN

3

〈
T̃ µνnµnν
−∂µT∂µT

+ ε

〉

This is the e�ective equation describing the velocity of the expansion of the domain dependent

scale factor. It is the analogue to the �rst Friedmann equation. With the de�nitions comparable
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to those in [3] we can write the cosmological energy balance:

HD :=
1

s

∂s

∂T0

Ωm :=
8πGN

3H2
D

〈
T̃ µνnµnν
−∂µT∂µT

〉

Ωε :=
8πGN

3H2
D

〈ε〉

Ωk := − 〈R〉
6H2

D

ΩQ := − QD

6H2
D

Ωk + ΩQ + Ωε + Ωm = 1

From the energy balance equation we see that the backreaction term ΩQ as well as the coordinate

mass term Ωε enter the balance and the backreaction term opens the possibility of contributing to

an e�ective cosmological constant term.

Raychaudhuri's equation:

Combining the Hamiltonian constraint density with the trace of the Einstein equations pro-

jected orthogonal to the time �ow, one gets1:

Rµνn
µnν = Tµνh

µν − 1

2
T

Which is equivalent to:

−nµ∇µθ = 2σ² +
1

3
θ²−∇ν(nµ∇µnν) + (Tµν −

1

2
gµνT )nµnν (4.5)

In our model the last term gives:

1 The interested reader can consult the appendix B for a derivation
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(Tµν −
1

2
gµνT )nµnν = T dustµν nµnν + T̃µνn

µnν +
1

2
T = T̃µνn

µnν +
1

2
T̃ + ε(−∂µT∂µT ) +

1

2
(−ε)

Now we will need the second time derivative of the scale factor s:

1

s

∂2s

∂T 2
0

=
∂

∂T0

(
1

s

∂s

∂T0

)
+

(
1

s

∂s

∂T0

)2

We will use the commutator (4.2) and eqn. (4.3) to get:

1

s

∂2s

∂T 2
0

=
1

3

〈
∂µT

−∂µT∂µT
∂µ
(

θ

(−∂µT∂µT )1/2

)〉
+

1

3

〈
θ2

−∂µT∂µT

〉
− 3

9

〈
θ√

−∂µT∂µT

〉2

=

= −1

3

〈
∂µT ∂

µθ

(−∂µT∂µT )3/2

〉
+

1

3

〈
θ2

−∂µT∂µT

〉
− 2

9

〈
θ

(−∂µT∂µT )1/2

〉2

− 1

6

〈
∂µT∂

µ(∂νT∂
νT )

(−∂µT∂µT )5/2

〉
Rewriting :

∂µT∂µθ = ∇T θ = −(−∂µT∂µT )1/2nµ∇µθ

We can insert (4.5) into the �rst term:

1

s

∂2s

∂T 2
0

=
1

3

〈
θ2

−∂µT∂µT

〉
− 2

9

〈
θ

(−∂µT∂µT )1/2

〉2

− 1

6

〈
∂µT∂

µ(∂µT∂
µT )

(−∂µT∂µT )5/2

〉
+

−1

3

{
2

〈
σ2

−∂µT∂µT

〉
+

1

3

〈
θ2

−∂µT∂µT

〉
−
〈
∇µ(nµ∇µnν)

−∂µT∂µT

〉}
+

+
8πGN

3

{〈
T̃µνn

µnν + 1
2
T̃

(−∂µT∂µT )1/2

〉
+

1

2

〈
ε

∂µT∂µT
+ 2ε

〉}

This is the e�ective Raychaudhuri equation for the domain. There is an analogy to the second

Friedman equation, since it describes the acceleration of the domain dependent scale factor s.
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4.2.2 Evaluation in the ADM gauge

In this subsection we will evaluate the general equations in the ADM gauge, which was intro-

duced above, and compare them to the e�ective equations obtained by T. Buchert. As a reminder

in the ADM gauge nµ = N (−1, 0, 0, 0) and nµ = 1
N

(1, −N i) where N is the lapse and N i the

shift. The metric reads:

ds2 = −N²dt² + hij(dx
i +N idt)(dxj +N jdt)

Since we have chosen nµ to be orthogonal to the spatial hypersurfaces the shift vectors vanish i.e.

the metric reads: ds2 = −N²dt² + hijdx
idxj. Especially we get for:

−∂µT∂µT = −∂0T g
00∂0T =

1

N2
(∂0T )2

and:

∂0T0 = 1

Since T0 de�nes the hypersurface of constant physical time.

The Hamiltonian constraint reduces to:(
1

s

∂s

∂T0

)2

= −1

6

〈
RsN

2
〉
− 1

6

{
2

3

(〈
N2θ2

〉
− 〈N θ〉2

)
− 2

〈
N2σ2

〉}
+

+
8πGN

3

〈
N2 T̃µνn

µnν + ε
〉

=

= −1

6

〈
RsN

2
〉
− 1

6
QD +

8πGN

3

〈
N2 T̃µνn

µnν + ε
〉

And the Raychaudhuri equation to:

−1

s

∂2s

∂T 2
0

= −2

9

(〈
N2θ2

〉
− 〈Nθ〉2

)
+

2

3

〈
N2σ2

〉
− 1

3
〈θ∂0N〉 −

1

3

〈
N hij∇i∇jN

〉
+

+
8πGN

3

〈
N2

(
T̃µνn

µnν +
1

2
T̃

)
+ ε

〉
=

= −1

3
QD −

1

3
〈θ∂0N〉 −

1

3

〈
N hij∇i∇jN

〉
+

8πGN

3

〈(
T̃µνn

µnν +
1

2
T̃

)
+ ε

〉
Setting N = 1 we obtain:

The Hamilton constraint density:
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(
1

s

∂s

∂T0

)2

= −1

6
〈Rs〉 −

1

6

{
2

3

(〈
θ2
〉
− 〈θ〉2

)
− 2

〈
σ2
〉}

+

+
8πGN

3

〈
T̃µνn

µnν + ε
〉

=

= −1

6
〈Rs〉 −

1

6
QD +

8πGN

3

〈
T̃µνn

µnν + ε
〉

And the Raychaudhuri equation to:

−1

s

∂2s

∂T 2
0

= −2

9

(〈
θ2
〉
− 〈θ〉2

)
+

2

3

〈
σ2
〉

+

+
8πGN

3

〈(
T̃µνn

µnν +
1

2
T̃

)
+ ε

〉
=

= −1

3
QD +

8πGN

3

〈(
T̃µνn

µnν +
1

2
T̃

)
+ ε

〉

Note: The coordinate dust energy ε has a negative e�ect on the acceleration.

The averaging functional with the window function reduces in this gauge to:

〈S,Ω〉 =

´
Σ0

√
h(x)S(x)Θ(r0 −B(x))d3x´

Σ0

√
h(x)Θ(r0 −B(x))d3x

4.2.3 The average functional in the ADM gauge:

To perform integration in general we need a push forward from the manifold into the Rn , in our

case a map from the dust space into Rn is required. De�ne: Ψ := Φ ◦X ◦Z−1 s.t. Ψ : S(T )→ Rn

where Φ is the map Φ : M → Rn, Z−1 the map Z−1 : S(T ) → Σ, X the map X : Σ → M and

S(T ) the dust space slice.
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Figure 4.3: Dust Map

It was already shown that Z2 is gauge invariant so now it is legitimate to �x a gauge. A

legitimate choice would be Z−1=id the identity, X the map from the hypersurface coordinates

xa = Zi to the manifold coordinates Xµ and therefore S = Σ. In the ADM gauge the coordinates

are t and xa as read of from the metric ds2 = −dt2 + habdx
adxb. This leads to:

Z2(x) = ZihijZ
j = xahab x

b

Rewriting the average functional one obtains:

〈S,Ω〉 =

´
Σ0

√
h(x)S(x)Θ(r0 − Z2(x))d3x´

Σ0

√
h(x)Θ(r0 − Z2(x))d3x

=

´∞
0

´ 2π

0

´ π
0
drdφdθsin(θ)r2

√
hS(r, φ, θ)Θ(r0 − r2)´∞

0

´ 2π

0

´ π
0
drdφdθsin(θ)r2

√
hΘ(r0 − r2)

=

=

´ r20
0

´ 2π

0

´ π
0
drdφdθsin(θ)r2

√
hS(r, φ, θ)´ r20

0

´ 2π

0

´ π
0
drdφdθsin(θ)r2

√
h

Which is a volume integral over a sphere of radius r2
0.

4.2.4 Comparison to Buchert equations:

The di�erence between our formalism and the averaging applied by T. Buchert in [3] is that

we did not choose a gauge from the beginning but deparametrized the manifold with dust. This

introduced a time in the theory. Furthermore we found a way to perform gauge invariant averages

over �nite volumes. Hence the averaged quantities {s ṡ s̈ 〈ε〉} became physical observables and we

obtained equations governing their dynamics. The equations we get after �xing the ADM gauge
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are slightly di�erent to the ones in Buchert's paper. We rediscover Buchert's equations in our

general formalism if we set the rest energy momentum T̃µν to zero. Therefore one could think that

in Buchert's formalism just the geometry is averaged. The problem with this point of view is that

even an in�nitesimal energy density ε leads to a geometry arbitrary far away from the vacuum

geometry, since there is no smooth limit ε→ 0 .

Hence Buchert's equations describe correctly the evolution of a cosmology �lled with one type

of pressure-free �uid in the rest frame of the �uid. We see that in this special case the procedures

of gauge �xing and averaging commute. Our formalism allows to generalize the averaging to an

almost arbitrary energy momentum tensor. The only restriction is that the energy density must

not vanish anywhere. Especially it is not possible to apply this formalism to vacuum.

4.2.5 Example: Ideal �uid cosmology

A cosmology equipped with an energy momentum tensor of an ideal �uid will be studied. This

is a reasonable choice for the energy momentum, since it is the most general tensor ful�lling the

symmetries of an isotropic universe and since we know from the CMB that the universe has been

extremely isotropic this model is a reasonable choice. This procedure can be easily generalized to

an arbitrary number of ideal non interacting �uids.

Normal projection of the equations of motion:

The Einstein tensor multiplied with the time �ow vectors (which is equivalent to the Hamilto-

nian constraint density) gives:

Gµνnµnν =
1

2
Rs +

1

3
θ²− σ²

Where the expansion rate and the shear are de�ned w.r.t nµ, the Rs is the spatial curvature

associated with the projector on the hypersurface orthogonal to nµ. On the other hand one has

from the matter contribution:

T µνnµnν = (T µν�uid + T µνdust)nµnν

T µν�uidnµnν = (ρ+ p)(uµnµ)²− p = ρ+ (ρ+ p) sinh²(αT )

T µνdustnµnν = ε(vµn
µ)² = ε(−∂µTnµ)² = ε(−∂µT∂µT )

With the tilt angle αT de�ned via sinh²(αT ) := (uµnµ)² − 1. Furthermore as discussed above

vµ =
√
−∂µT∂µT nµ since we said that the velocity �eld W k vanishes. Now the Hamiltonian
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constraint can be averaged. For normalization divide it �rst by −3 ∂µT∂
µT and apply the averaging

functional introduced above:

〈
1

6

Rs

−∂µT∂µT
+

1

9

θ²

−∂µT∂µT
− 1

3

σ²

−∂µT∂µT

〉
+

1

9

〈
θ√

−∂µT∂µT

〉2

− 1

9

〈
θ√

−∂µT∂µT

〉2

= (4.6)

=
8πGN

3

〈
ρ+ (ρ+ p)sinh²(αT )

−∂µT∂µT
+ ε

〉
As above we rewrite (4.6) as:

(
1

s

∂s

∂T0

)2

= −1

6

〈
Rs

−∂µT∂µT

〉
− 1

6
QD +

8πGN

3

〈
ρ+ (ρ+ p)sinh²(αT )

−∂µT∂µT
+ ε

〉
This is the e�ective equation describing the velocity of the expansion of our domain-dependent

scale factor. With the de�nitions as above we can write the cosmological balance equation as:

HD :=
1

s

∂s

∂T0

Ωm :=
8πGN

3H2
D

〈
ρ+ (ρ+ p)sinh²(αT )

−∂µT∂µT

〉

Ωε :=
8πGN

3H2
D

〈ε〉

Ωk := − 〈R〉
6H2

D

ΩQ := − QD

6H2
D

Ωk + ΩQ + Ωε + Ωm = 1

From the energy balance equation we see that the backreaction term ΩQ opens the possibility of

contributing to an e�ective cosmological constant term in this model, which is in principle close

to Λ-CDM.
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Raychaudhuri equation:

Combining the Hamiltonian constraint with the trace of the Einstein equations projected or-

thogonal to the time �ow, one gets:

Rµνn
µnν = Tµνh

µν − 1

2
T

Which is equivalent to:

−nµ∇µθ = 2σ² +
1

3
θ²−∇ν(nµ∇µnν) + (Tµν −

1

2
gµνT )nµnν (4.7)

In our model the last term gives:

(Tµν−
1

2
gµνT )nµnν = T �uid

µν nµnν+T dust
µν nµnν+

1

2
T = ρ+sinh2(αT )(ρ+p)+ε(−∂µT∂µT )+

1

2
(3p−ρ−ε)

Again we will use the commutator (4.2) and eqn. (4.3) to get:

1

s

∂2s

∂T 2
0

=
1

3

〈
∂µT

−∂µT∂µT
∂µ
(

θ

(−∂µT∂µT )1/2

)〉
+

1

3

〈
θ2

−∂µT∂µT

〉
− 3

9

〈
θ√

−∂µT∂µT

〉2

=

= −1

3

〈
∂µT ∂

µθ

(−∂µT∂µT )3/2

〉
+

1

3

〈
θ2

−∂µT∂µT

〉
− 2

9

〈
θ

(−∂µT∂µT )1/2

〉2

− 1

6

〈
∂µT∂

µ(∂νT∂
νT )

(−∂µT∂µT )5/2

〉
Rewriting :

∂µT∂µθ = ∇T θ = −(−∂µT∂µT )1/2nµ∇µθ

We can insert (4.7) into the �rst term:
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1

s

∂2s

∂T 2
0

=
1

3

〈
θ2

−∂µT∂µT

〉
− 2

9

〈
θ

(−∂µT∂µT )1/2

〉2

− 1

6

〈
∂µT∂

µ(∂µT∂
µT )

(−∂µT∂µT )5/2

〉
+

−1

3

{
2

〈
σ2

−∂µT∂µT

〉
+

1

3

〈
θ2

−∂µT∂µT

〉
−
〈
∇µ(nµ∇µnν)

−∂µT∂µT

〉}
+

+
8πGN

3

{〈
(ρ+ p)sinh2(αT ) + ρ

(−∂µT∂µT )1/2

〉
+

1

2

〈
3p− ρ− ε
−∂µT∂µT

+ 2ε

〉}
This is the e�ective Raychaudhuri equation for the domain in the case of the energy momentum

tensor being that of an ideal �uid.

4.2.6 Evaluation in the ADM gauge

In this subsection we will evaluate the equations of 4.2.5 in the ADM gauge, which was intro-

duced above.

The Hamiltonian constraint density reduces to:(
1

s

∂s

∂T0

)2

= −1

6

〈
RsN

2
〉
− 1

6

{
2

3

(〈
N2θ2

〉
− 〈N θ〉2

)
− 2

〈
N2σ2

〉}
+

+
8πGN

3

〈
N2 (ρ+ (ρ+ p)sinh²(αT )) + ε

〉
=

= −1

6

〈
RsN

2
〉
− 1

6
QD +

8πGN

3

〈
N2 (ρ+ (ρ+ p)sinh²(αT )) + ε

〉
And the Raychaudhuri equation to:

−1

s

∂2s

∂T 2
0

= −2

9

(〈
N2θ2

〉
− 〈Nθ〉2

)
+

2

3

〈
N2σ2

〉
− 1

3
〈θ∂0N〉 −

1

3

〈
N hij∇i∇jN

〉
+

+
4πGN

3

〈
2N2((ρ+ p)sinh2(αT )) +N2(ρ+ 3p) + 2ε

〉
=

= −1

3
QD −

1

3
〈θ∂0N〉 −

1

3

〈
N hij∇i∇jN

〉
+

4πGN

3

〈
2N2((ρ+ p)sinh2(αT )) +N2(ρ+ 3p) + 2ε

〉
Setting N = 1 we obtain:
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The Hamilton constraint density:(
1

s

∂s

∂T0

)2

= −1

6
〈Rs〉 −

1

6

{
2

3

(〈
θ2
〉
− 〈θ〉2

)
− 2

〈
σ2
〉}

+

+
8πGN

3
〈(ρ+ (ρ+ p)sinh²(αT )) + ε〉 =

= −1

6
〈Rs〉 −

1

6
QD +

8πGN

3
〈ρ+ (ρ+ p)sinh²(αT ) + ε〉

And the Raychaudhuri equation:

−1

s

∂2s

∂T 2
0

= −2

9

(〈
θ2
〉
− 〈θ〉2

)
+

2

3

〈
σ2
〉

+

+
8πGN

3

〈
2 ((ρ+ p)sinh2(αT )) + (ρ+ 3p) + 2ε

〉
=

=
8πGN

3

〈
2 ((ρ+ p)sinh2(αT )) + (ρ+ 3p) + 2ε

〉
− 1

3
QD

Observations:

� Both the Hamiltonian constraint and the Raychaudhuri equation contain the energy density

of the coordinate dust. In the second equation it contributes negatively to the acceleration

of the scale factor.

� The fact that generically the �ow of the coordinate dust is not parallel to the �ow of the �uid

which is averaged, is manifested in the sinh2(αT ) term. This as well contributes negatively

to the acceleration of the scale factor s.

� After the gauge choice the spatial integral is an ordinary 3-dimensional integral.

� The backreaction QD has the potential to contribute to the acceleration. This has been

addressed in the literature [4, 10, 19, 14] and will be discussed in more detail later on.

4.3 Summary Chapter 3

A manifestly gauge invariant averaging formalism for �nite volumes was presented in this
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chapter. At this point the problem of the gauge dependence of the backreaction was solved. The

model used just required the assumption of a non-vanishing energy density. In this case a dust

energy momentum tensor can be separated from the total energy density. The coordinate �elds of

the dust were used as a reference frame to perform averaging.

The so derived equations for the average of an arbitrary energy momentum tensor were evalu-

ated in the ADM gauge, which corresponds to choosing the rest frame of the dust. Furthermore

as an example the equation is evaluated for an energy momentum tensor of an ideal �uid. The

resulting equation was also studied in the ADM gauge. An interesting phenomenon was observed.

It appears that �tilt� e�ects (i.e. non-co-linearity of the dust �ow and the �uid's �ow) contribute

negatively to the acceleration pf the domain dependent scale factor.

The derived equations in the ADM gauge were compared to the Buchert equations. So we are

able to interpret the Buchert equations in the gauge independent framework. It turned out that

they describe the averaged behavior of a pressure-free �uid, using this �uid itself as a reference and

choosing it's rest frame. It turns out that in this special case gauge �xing and averaging commute.

By deriving gauge independent equations for the cosmological backreaction, we proved that

it is in principle an observable. Now we are ready to study cosmological data and can trust the

derived equations to correctly describe the observations. Of course the �nal goal is to test the

results experimentally, since a theory which has no physical evidence might be not even wrong,

but is irrelevant.



Chapter 5

Experimental Opportunities

After developing a gauge invariant formalism and showing that now the quantities are observ-

able and a gauge can be safely chosen, the question which is really interesting to address is, whether

we can observe any of the e�ects due to the inhomogeneities.

5.1 Redshifts and introduction to observational methods

One of the striking realizations while thinking about relativity is that we can not experience

volumes as we think of them i.e. space-like volumes on cosmological scales. Since we have to wait

until light arrives at our position from every point of the observed volume we would have to wait

for thousands of years to get relevant information about the cosmos. However for relatively close

events we can neglect the e�ect of the light-cone and assume that the observed light-like volumes

are close to they space-like version. This will be discussed in more detail below. In this section we

will discuss how the light propagates in a dynamical FRW space-time, following the pedagogical

introduction of [13]. Since in the previous sections we have seen that there are Friedmann type

equations governing the domain dynamics the FRW light propagation is a sensible approximation

for observational studies.

5.1.1 Light Geodesics:

Light travels on geodesics i.e. it de�nes the shortest distance connecting two points on the

space-time manifold. In terms of the proper time it means that:

ds = 0

The space-time interval along the trajectory vanishes. This statement holds in any local inertial

frame and since ds is invariant it should be true along the light geodesics in any space-time. In

most cases radial propagation is studied and hence it is convenient to introduce the so called
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conformal time. De�ned as:

η :=

ˆ
dt

a(t)

With this coordinate change the FRW metric takes the form:

ds² = a²(η) (dη²− dχ²− Φ²(χ) (dθ² + sin²θ dφ²))

with:

Φ²(χ) =


sinh²χ k = −1

χ² k = 0

sin²χ k = 1

The trajectory of constant φ, θ is a geodesic. The radial coordinate along the trajectory is then

entirely determined by dη² = dχ² so the radial light geodesic is described by :

χ(η) = ±η + const

5.1.2 Redshifts:

The space dynamics leads to a change of the wavelength of a photon. For example in an ex-

panding space the photon experiences a reddening. We consider a source with comoving coordinate

χem, emitting the signal at ηem of conformal duration ∆η therefore the trajectory of the signal is

χ(η) = χem−(η−ηem). It reaches the detector at χobs = 0 at time ηobs = ηem+χem . The conformal

duration of the signal is the same at the point of emission and detection, but the physical length

di�ers.

∆tem = a(ηem) ∆η

∆tobs = a(ηobs)∆η

If light is emitted with the wavelength λem = ∆tem and it is observed with λobs = ∆tobs such that:

λobs
λem

=
a(ηobs)

a(ηem)

We observe that the wavelength of the light changed proportional to the scale factor and its

frequency proportional to the inverse of the scale factor. This e�ect can be viewed at distances
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much smaller than the Hubble scale as a Doppler shift, resulting from the velocity of the source

moving away from the ob sever due to the expansion of space. So if the distance between the

source and observer is ∆l � H−1, then there is a local inertial frame in which space-time can

be considered quasi �at. Now according to the Hubble law, the relative recessional speed of the

objects is v = H(t)∆l � 1. Hence we can introduce the notion of the Doppler shift by:

∆ω := ω(t1)− ω(t2) w ω(t1)H(t1)∆l

The time delay between measurements is ∆t = ∆l and we can rewrite the equation in a di�erential

form:

ω̇ = −H(t)ω = − ȧ(t)

a(t)
ω

This has the solution:

ω v
1

a

The above derivation has been performed in a local inertial frame, but it can also be applied

piecewise to any space-time. The di�erence is that the interpretation of the red-shift as Doppler

shift becomes ill de�ned.

5.1.3 The redshift parameter

The redshift parameter is de�ned as the fractional shift in wavelength of the light emitted by

a distant source at time tem and observed on Earth today:

1 + z =
λobs − λem

λem

Therefore:

1 + z =
a0

a(tem)
(5.1)

Where a0 is the scale factor at present time. The redshift can be used instead of time to parametrize

the history of the universe. A value of z corresponds to a time when the universe was 1 + z times

smaller than now.

For later purposes a di�erential equation between time and the redshift will be very useful.

Di�erentiating (5.1) one obtains:

dz = − a0

a2(t)
ȧ(t) dt = −(1 + z)H(t) dt (5.2)
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And the integral relation is:

t =

ˆ ∞
z

dz

H(z)(1 + z)

A constant of integration has been chosen in such a way that z → ∞ corresponds to the initial

moment of time t = 0. Obviously we need the red shift history of the scale factor to perform this

integration and this is the big problem in the end of the day.

However, knowing the redshift from a distant source one can determine its separation from us.

The comoving distance to a source that emitted a light at time tem which arrives today is:

χ = η0 − ηem =

ˆ t0

tem

dt

a(t)

Substituting a(t) = a0/(1 + z) and (5.2) one �nds:

χ(z) =
1

a0

ˆ z

0

dz

H(z)

So observing characteristic lines from spectral transitions say in Hydrogen atoms one can measure

the redshift of a distant star with great accuracy. Of course assuming the local physical laws

governing the micro physics of a distant star are the same as on Earth. So we assume a universality

of the laws of physics. On the other hand if would let this assumption go we could not discuss

anything in cosmology and therefore it is the only chance we have to assume this universality.

5.1.4 Luminosity-redshift relation

An other important method to study the expansion history of the universe is the Luminosity-

redshift relation. Consider a source of radiation of total luminosity (emitted energy per unit time)

L located at comoving distance χem from us. The total energy released by the source at time tem

within a conformal time interval ∆η is:

∆Eem = L∆tem(∆η) = La(tem)∆η

All the photons are located in a shell of constant conformal width ∆η = ∆χ. The radius of the

shell grows with time and the photons' frequencies are reddened. Therefore when the photons

reach an observer at a time t0, the total energy in the shell is:

∆Eobs = ∆Eem
a(tem)

a0

= L
a²(tem)

a0

∆η

The area of the surface of the shell is at this moment:
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Ssh(t0) = 4πa²0Φ²(χem)

(With the Φ de�ned above. ) And the physical width:

∆lsh = a0∆χ = a0∆η

The shell passes the observer's position over a time interval ∆tsh = a0∆η. And the bolometric �ux

energy (energy per unit area per unit time) is:

F :=
∆Eobs

Ssh(t0)∆tsh
=

L

4πΦ²(χem)

a2(tem)

a4
0

And as a function of redshift:

F :=
∆Eobs

Ssh(t0)∆tsh
=

L

4πa2
0Φ2(χem(z))(1 + z)2

Where dL(z) = Φ(χem(z))(1+z) is the luminosity distance. Instead of F in astronomy the apparent

bolometric magnitude is often used. It is de�ned as:

mbol(z) = −2.5 log10F = 5 log10(1 + z) + 5 log10(Φ(χem(z))) + const

For the z � 1 one can expand the expression and �nds that irrespective of the curvature and

matter composition of the universe the result is:

mbol(z) = 5 log10(z) +
2.5

ln(10)
(1− q0) +O(z²) + const (5.3)

With:

q0 := −
(

ä

aH²

)
0

Therefore the second derivative of the scale factor becomes experimentally assessable. The mea-

surements of Type IA supernovae (stellar events with well known luminosity) have shown that the

universe is accelerating and expanding. This indicates a domination of the cosmological constant

in the Λ-CDM model, discussed in the �rst chapter. To obtain more precise results especially

distant sources are of interest and there the above expansion becomes meaningless as soon as one

approaches redshifts of order one. This problem will be also discussed later in greater detail.
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5.2 Model dependence of our interpretations

The cosmological data are interpreted assuming the FRW model and this means isotropy. For

instance if we refer to standard candles we mean that the collapses of binary star systems have

been well studied at low red shifts and a certain averaging has been performed to obtain the

�standard� value. At this point we should mention that those red shift distances are below the

isotropy scale, which is estimated to be about ' 100 Mpc. Therefore, this sample might be

atypical. We need to identify the valid isotropy scale and reconsider the calibration.

Not only the calibration su�ers from the model dependence, the observation of the distant

supernovae is the most relevant for the detection of the accelerated expansion. To interpret the

red shift luminosity relations of distant supernovae at red shifts larger than one, we need to assume

a certain expansion history in the FRW model. The luminosity distance is related to the comoving

distance r(z) as dL(z) = a0r(z)(1 + z). Let us rewrite the �rst Friedmann equation, taking into

account the di�erent scaling properties for di�erent equations of state, as:

ȧ

a
= H0

√
ΩΛ + Ωm

(a0

a

)3

+ ΩR

(a0

a

)4

+ Ωk

(a0

a

)2

Hence we can write:

t(z) =

ˆ 1
1+z

0

1

H0

 da

a
√

ΩΛ + Ωm

(
a0
a

)3
+ ΩR

(
a0
a

)4
+ Ωk

(
a0
a

)2


To compute r(z) we have to pick the parameters {ΩΛ,Ωm,ΩR,Ωk} as de�ned above. De�ne �rst:

Fk(r1) =

ˆ r1

0

dr√
1− kr2

=


r1 k = 0

arcsin(r1) k = 1

arcsh(r1) k = −1

From the light propagation we know that Fk(r) = t(z) + c, we solve for r, setting x = a
a0
:
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r(z) = F−1
k

[
1

a0H0

ˆ 1

1
1+z

dx

x (ΩΛ + Ωkx−2 + Ωmx−3 + ΩRx−4)
1
2

]
So, we can predict the bolometric �ux energy of a distant source according to the energy �budget�

of the universe:

F :=
L

4πa2
0d

2
L(z)

The observations of the apparent bolometric �ux energy of standard candles at di�erent red-

shifts and the theoretical predictions allow to restrict the parameter space of the omegas. This

observations give rise to the blue contures in the graph below.

Figure 5.1: Observations of the CMB, BAO and SNe

The blue and green areas are deduced from experiments independent from the supernovae. The

CMB inhomogeneities and typical distances in the distribution of the galaxies are thought to be

manifestations of the same phenomenon, the barion acoustic oscillations. The BAOs have their

name from the similarity to sound waves. In the primordial plasma the barions felt essentially two

forces, the gravitational force pointing inwards a region of space and the photon pressure pointing

outwards of this region. The oscillatory counter play of these forces caused wavelike propagations

in the plasma. Furthermore the matter, which was not interacting strongly with light and did not

feel the photon pressure, collapsed faster in the regions and enhanced the gravitational attraction.
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At the time of recombination of electrons and protons the photon pressure vanished and the

oscillations stopped, leaving behind a �dark matter� core and a barionic shell. This process leads

to a very speci�c shape of the power spectrum of the CMB. From this spectrum it can be concluded,

that the space was very close to �at and furthermore it gives an estimate of the contribution of non

relativistic matter to the energy budget, also under the FRW assumption. The study of the CMB

anisotropies gives rise to the yellow band above. It is assumed that these early inhomogeneities

have provided seeds for the structure formation in the course of time and therefore the speci�c

distance (radius of the barionic shell) is still imprinted in the universe. This distance can be

estimated studying in a statistical way the intergalactic separations. The results of this study

are represented by the green band above. Also the study of galactic distances, sometimes called

�standard rulers� , is a process where for the estimation of large distances an FRW model has to

be assumed.

To summarize, we have seen what important role the assumption of isotropy has for the in-

terpretation of cosmological observations. Now that we have developed a method to estimate

corrections to the homogeneous model and the possibility to determine the isotropy scale we have

to reconsider the observations and their interpretation. Furthermore the ΩQ parameter can con-

tribute to the total budget equation and the above graph might drastically change after taking

into account the backreaction. We have seen that studying inhomogeneities opens a wide �eld of

research within conservative physics.

5.3 E�ective theory approach

In the course of chapter 4 it has been sown that an averaging can be performed in a gauge

independent manner. This is a result which could be expected, since it means that averaged

quantities are physical observables and can be measured. The daily experience suggests exactly

the same result. So after formally showing this statement it is important to underline the fact that

now such quantities as {s, ṡ , s̈ , 〈ε〉 , QD} can be viewed as (gauge independent) �elds governed

by e�ective equations (5.4) and therefore must be observable. To test the theory, especially the

dynamics predicted by the e�ective equations, experiments would be desired. In the following

sections we will consider possible experimental opportunities and try to �nd those which are most
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physically signi�cant. Note that in [4] the above �elds are also viewed as physical �elds of an

e�ective theory, even though they were not derived in a gauge independent way. With our results

[4] has a better foundation concerning the gauge invariance.

5.4 Averaging of space-like domains

Since it has been observed that in the universe at the present time the contribution from radiation

is only very small, it is reasonable to view all the luminescent matter as a pressure free �uid and

hence dust. Since we as observers sitting in the solar system, which also can be viewed as a dust

grain, are geodesic observers we can choose the dust coordinate system as a reasonable system to

perform our measurements in. So in this case we are averaging the dust �lled universe using this

dust itself as a reference frame.

Now domains over which the averaging will be performed have to be de�ned. This can be

done by choosing angles under which the observations will take place furthermore a splitting in

red shifts has to be performed to distinguish distances, since so far we deal with averages over

space-like domains and therefore we have to average over domains of nearly constant red shift.

The combination of the observations of the Microwave background with the Barion Acoustic

oscillations and the Supernovae data suggest that the total curvature of our visible universe is �at,

or very close to �at[12]. We can conjecture that if the scale of averaging allows it, the averaged

spatial curvature of the domain in the above equations can be set to zero. In the following work we

will also suggest a test for this hypothesis using a light cone construction. Here setting 〈R〉D = 0

one �nds:

QD = −6

(
1

s

∂s

∂T0

)2

+
8πGN

3
〈ε〉 (5.4)

QD = 3

(
1

s

∂2s

∂T 2
0

)
+ 16πGN 〈ε〉

The observation of the luminescent matter gives now an estimate for the energy density. A factor

may be needed to get close to the real value of the energy density since not all matter emits

radiation. So this correction to �dark� matter might become unavoidable. The expansion rate

in the domain under observation can be computed from the observations of the redshifts. For

redshifts su�ciently smaller one, one can use the measurement of apparent bolometric �ux (5.3) to

estimate the acceleration of the domain. It is important to notice that this procedure is restricted



CHAPTER 5. EXPERIMENTAL OPPORTUNITIES 96

to small redshifts.

So in principle it is possible to measure the domain dependent parameters on the right hand

sides of the equations (5.4). Interesting questions one could ask would be:

1. Do these equations give the same result for QD, the backreaction parameter?

2. How does this results depend on the choice of the domain size and position?

3. Measuring the averaged values at di�erent red shifts, how big has the domain size has to be

to get the same averaged values in all domains? How big is the isotropy scale?

4. How does the isotropy scale depend on the red shift?

If the results of both equations are compatible and disappear in the limit of observing large

domains, we could conclude that indeed there is a geometrical, domain dependent quantity which

is a possible source for the observed dynamics in the universe. Furthermore if we observe that

the equations are closed and QD is a physical quantity we can ask the question, whether there

is a scale where QD is the same in all domains and whether there is a scale where QD vanishes.

This we could de�ne as the isotropy scale, which would be a mathematically exact statement.

Unfortunately the above results are restricted to small z as will be discussed below.

5.5 The problem of space-like domains

As mentioned above the observation of a space-like domain on cosmological scales is impossible,

so one always has to deal with approximations. At redshifts much smaller than one, the observation

of a light-like domain gives a result which is close to the result one would obtain from observing

the real space-like domain, since the e�ect of the light-come and the expansion of the space during

the signal transmission are relatively small. At large redshifts and big domain sizes though the

situation is di�erent. For instance as pointed out in [10] the distribution of stars in a domain

approaches a stable, domain independent value at domain sizes about 100 Mpc, this is just two

orders of magnitude smaller than the Hubble patch, i.e. the observable universe and therefore

the light-cone and expansion history e�ect have to be taken into account if one actually wants to

make isotropy statements. At this point it is important to mention that our results strengthen the

theoretical foundation [10] is based on.



Chapter 6

Conclusion:

In this work the technique of relational coordinatization was used to perform gauge independent

averaging of a deformed FRW space-time with inhomogeneous matter distribution. The added

physical coordinate system is a pressure-less �uid -the dust- , which does not disturb the FRW

geometry and is hence a compatible �laboratory�. A motivation was given to study the traces of

Einstein's equations with our averaging framework. By performing the averaging two equations

were derived. The averaged version of the Hamiltonian constraint and the Raychaudhuri equation.

Both contain a term, which appears as a result of averaging and was called backreaction in [3]. We

have hence solved the dispute about gauge dependence of the backreaction, since our formalism is

not perturbative and manifestly gauge independent.

The Buchert equations were rediscovered as a special case of averaged equations of a pressure

less �uid which are evaluated in the �uid's rest frame. Therefore we have shown that in this case

gauge �xing and averaging commute and hence the proceeding in [3] is legitimate, even if this was

not obvious so far, as pointed out in [8]. Our work shows the correctness of Buchert's equations

(under the described conditions) and gives theoretical back up to the papers, which made use of

them, as [10] ,[4] ,[18] and [14]. Of course it has to be ensured that the prerequisites of a single

ideal �uid are ful�lled in this cases. Otherwise one has to make use of our, more general approach.

These matters are, which have to be investigated.

It is worth noticing that the dust system corresponds to freely falling geodesic observer and
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such an observer has a privileged position from our point of view, since it represents to a good

approximation our position on earth. We observed that the property of the observer to follow a

geodesic is a gauge independent quality, as was also shown in [11] in a perturbative method (up

to second order). This is a hint that our general result is correct.

After showing the gauge independence of the backreaction, it is of greatest interest to develop

experimental techniques to study its e�ects on the dynamics of space-time. At this point it is

important to underline, that the backreaction as it appears as a pure averaging e�ect, is the correct

measure of inhomogeneity and worth studying to identify the isotropy-scale of the universe. Some

observational methods have been proposed in chapter 5 . Also it was pointed out that we will

have to expect corrections to our space-like averaging procedure due to light-cone e�ects on large

scales. A technique to address those has to be developed.

The question whether backreaction can account for the accelerated expansion of our universe

can not yet be answered. It has been shown in toy-models in [14], that the backreaction has the

potential to induce an apparent acceleration. A possible mechanism as described in [14] is the

following: Suppose an expanding universe with one over-dense region A with volume V (A) and

one under-dense region B with volume V (B). The average expansion velocity would be roughly

ȧ = V (A+B)−1 (ȧAV (A) + ȧBV (B)). Now due to attractive forces of matter the expansion of the

over-dense region A is slowed down. So, since B expands faster than A its volume will become

larger than the volume of A and also its relative contribution to the average expansion rate ȧ will

grow. This e�ect can result in an acceleration of the averaged scale factor, with gravity acting

purely attractive. Unfortunately, so far no realistic models for the universe have been developed

to test this hypothesis in a simulation. This will be a big challenge for computational physics in

the future.

The bottom line is that backreaction remains a hot topic and its e�ects have to be studied

theoretically, numerically and of course with the help of observations. This work has proven that

backreaction can be studied in a gauge independent way and hence is an observable from the

theoretical point of view. The next step, regarding the progress of this work, will be to apply our

averaging functional to observational data and investigate whether the e�ects of backreaction can

be detected in nature.



Appendix A

The ADM formalism

The Hamiltonian approach to general relativity was developed by Richard Arnowitt, Staneley

Deser and Charles Misner and is called the ADM formalism. The crucial di�erence to the obviously

covaraint Lagrangian method and the great di�culty is the necessity to de�ne a pre�ered time

direction. This choice is not unique and we will see its consequences at the end of our discussion.

For now we assume that the manifold is physical in the sense, that it has topology R × Σ. So a

coordinate function t can be de�ned s.t. it determines the Σ slices as the sets on which t takes a

constant value. The �time �ow� corresponding to t is the vector �eld which obeys the relation:

tµ∇µt = ∇~t t = 1

At this point t
µ
and t can not be interpreted in physical terms, since the metric is unknown. It is

the dynamical �eld the equations of motion have to be solved for.

It is convenient to split the �time� vectors into its parts normal to the hypersurfaces and its

projections on them. Therefore we de�ne the lapse function and shift vector respectively:

N = −gµνtµnν

Nµ = hνµt
µ
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Here nν is the unit normal to the hypersurfaces of constant t and hµν = gµν + nµnν the projector

orthogonal to nν . The interpretation of the introduced notions is as following; Consider an in-

�nitesimal step from one leaf of the foliation to the next. In this case N measures the (physical)

proper time τ that lapses during this step. And Na measures the shift one experiences inside the

hypersurface �owing the �ow of the coordinate time t .

Figure A.1: Lapse and Shift

The leafs of the foliation are submanifolds with an induced metric, which can be derived from

hµν by pulling it back under the map Xµ : Σ→M:

hab :=
∂Xµ

∂xa
∂Xν

∂xb
hµν = Xµ

aX
ν
b hµν

Now the shift can be rewritten and solved for nν :

Na = hνµX
a
ν t
µ = gνµX

a
ν t
µ − nνnµXa

ν t
µ = ta − naN ⇒ na =

1

N
(ta −Na) (A.1)

With the new de�nitions the metric can be written as:
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ds2 = gµνdx
µdxν =

(
−N2 +NaN

a
)
dt2 + 2Nadx

a dt+ habdx
adxb (A.2)

Note that from now on we will omit the explicit pull back notation, but it is always implicitly

meant when objects with 3 indices multiply 4 index objects (so we do not distinguish Latin and

Greek indices in the following).

Viewing {hab, N, Na} as �elds we see that they contain the same information as the metric,

which is usually solved for. The reason is that habh
bd = δda and hab∇bt = 0 allows knowing hab to

solve for hab and hence compute Na = habNb. We observe that indeed the considered �elds allow

to compute (A.2). Note further that
√
−g = N

√
h.

Having de�ned those notions, we can proceed towards the Hamiltonian. The �rst step would

be to express the Lagrange function in the new variables, (we neglect the boundary terms in the

Lagrangian, since this would only complicate the discussion), hence we regard the Hilbert action:

S =

ˆ
d4xLG with LG =

√
−g R

.

To express the action in the new variables a de tour is needed to connect the curvature of the

3-surfaces to the total curvature. To calculate this relation a Lemma is handy:

Lemma:

Let {M, gµν} be a space-time and let Σ be a smooth spacelike hypersurface inM. Let hab denote

the induced metric on Σ, and let Da denote the derivative operator associated with hab. Then Da

is given by the displayed formula, where ∇µ is associated with gµν :

DcT
a1...ak

b1...bl
= ha1µ1 ...h

νl
bl
h
λ

c ∇λ T
µ1...µk

ν1...νl

Or using the implicit pull-back notation:

DcT
a1...ak

b1...bl
= ha1d1 ...h

el
bl
h
f

c ∇f T
d1...dk

e1...el
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Proof:

It is straight forward to verify thatDa satis�es Linearity, Leibniz rule, Commutativity with contrac-

tions, consistency with tangents and torsion freedom. Remains to show the metric compatibility.

Check, using ∇µgνλ = 0 and haµn
µ = 0 the compatibility:

Dahbc = h µa h
ν
b h

λ
c ∇µ (gνλ + nνnλ) = 0

So, Da is the unique derivative associated with hab.

Coming to the task of relating the 3 curvature to the total curvature, write the 3 curvature

with the help of the new derivative operator, with ω being a dual vector on Σ, as:

(3)R d
abc ωd = DaDbωc −DbDaωc (A.3)

Furthermore we have using the Lemma and the fact that h b
ah

d
c ∇bh

e
d = h b

ah
d
c ∇b (g ed + ndn

e) =

h b
ah

d
c ∇b (nd)n

e = Kacn
e:

DaDbωc = Da

(
h db h

e
c ∇dωe

)
= h f

a h
g
b h

k
c ∇f

(
h d
g h

e
k∇dωe

)
= (A.4)

= h fa h
d
b h

e
c ∇f∇dωe + h e

c Kabn
d∇dωe + h d

b Kacn
e∇dωe

Noting that h d
b n

e∇dωe = h d
b ∇d (ωen

e) − ωeh d
b ∇dn

e = −ωeh d
b ∇dn

e = −K e
b ωe we insert (A.4) in

(A.3) and rewrite simplifying terms:

(3)R d
abc = h fa h

g
b h

k
c h

d
j R

j
fgh −KacK

d
b +KbcK

d
a

Using this result we compute the following quantity:

2Gabn
anb =(4) R+2Racn

anc = Rabcd (gac + nanc)
(
gbd + nbnd

)
= Rabcdh

achbd = (K a
a )2−K a

b K
b
a +(3)R
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Additionally from the de�nition of the Riemann tensor we have:

Rabn
anb = R c

acb n
anb = −na (∇a∇c −∇c∇a)n

c = (∇an
a) (∇cn

c)− (∇cn
a) (∇an

c) +

−∇a (na∇cn
c) +∇c (na∇an

c) = (K a
a )2 −KacK

ac −∇a (na∇cn
c) +∇c (na∇an

c)

Note that the last two terms are divergences and hence can be neglected under an integral. For

later purpose we will need the local expression and those therms can not be dropped any longer.

We rewrite the equation in terms of the local expansion rate and the shear (introduced in chapter

1) for the derivations in the next section:

Rabn
anb = 2σ2 +

1

3
θ2 + na∇aθ −∇c (na∇an

c) (A.5)

Having developed the above formulae we can express the total scalar curvature, de�ning K :=

(K a
a ), as:

(4)R = 2
(
Gabn

anb −Rabn
anb
)

=(3) R +KabK
ab −K2

The Hilbert action reads in terms of this:

SG =

ˆ
d4x
√
hN

{
(3)R +KabK

ab −K2
}

(A.6)

Recalling the de�nition of the extrinsic curvature in the �rst chapter we rewrite it in terms of the

�time� derivative of the metric using A.1:

Kab =
1

2
Lnhab =

1

2
{nc∇chab + hac∇bn

c + hcb∇an
c} =

1

2N
{N nc∇chab + hac∇b (N nc) + hcb∇a (N nc)} =
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=
1

2
N−1h c

ah
d
b {Lthcd − LNhcd} =

1

2
N−1

{
ḣab −DaNb −DbNa

}
Substituting this form of the extrinsic curvature the in (A.6) we obtain the Gravitational action

in the ADM form. First we calculate the conjugate momenta:

πab =
∂LG
∂ḣab

=
√
h
(
Kab −K hab

)
Note that the conjugate momenta of N and Na are zero, this already indicates that those are not

true dynamical variables.

Now we are ready to compute the Hamiltonian using the Legendre transformation:

HG = πab ˙hab − LG =

=
√
h

{
N

[
−(3)R +

1

h
πabπab −

1

2h
π2

]
− 2Nb

[
Da

(√
h
−1
πab
)]

+ 2Da

(√
h
−1
Nbπ

ab
)}

The last term is a divergence and will be therefore dropped.

Interesting results can be obtained by varying the action w.r.t N and Na, this gives the con-

straint equations:

−(3)R +
1

h
πabπab −

1

2h
π2 = 0 (A.7)

Da

(√
h
−1
πab
)

= 0 (A.8)

Those are exactly the Hamiltonian and Di�eomorphism constraints discussed in the �rst chapter.

Here we see explicitly that the canonical Hamiltonian is a linear combination of the constraints and

therefore it vanishes. The Hamiltonian constraint density (A.7) expresses the freedom of choice of

the time slicing and generates an in�nitesimal gauge transformation which connects one slicing to

an other.
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The Hamilton equations are equivalent to the Einstein vacuum equations, here again divergence

terms have been dropped and (A.8) has been used:

ḣab =
δHG

δπab
= 2
√
h
−1
N

(
πab −

1

2
habπ

)
+ 2D(aNb)

π̇ab = −δHG

δhab
= −N

√
h

(
(3)Rab − 1

2

(3)

Rhab
)

+
1

2
N
√
h
−1
hab
(
πcdπ

cd − 1

2
π2

)
+

−2N
√
h
−1
(
πacπ b

c −
1

2
πabπ

)
+
√
h
(
DaDbN − habDcDcN

)
+
√
hDc

(√
h
−1
N cπab

)
− 2πc(aDcN

b)

These equations have been derived by Arnowitt, Deser and Misner in 1962. The astonishing obser-

vation is that even though these equations are equivalent to Einstein's equations, the Hamiltonian

vanishes and can not generate true time evolution. This situation seems to be similar to Maxwell's

theory where constraints appear as a result of a gauge freedom. So, similarly to Electromagnetism

we can rede�ne the con�guration space on which these equations are operating. The new space

consists of equivalence classes of Riemann metrics h̃ab and is called the super-space. All metrics

which can be converted from one into an other by pull-backs under spatial di�eomorphisms belong

in one equivalence class. Therefore the elements of the super-space automatically obey (A.8). This

is a good news, unfortunately the Hamiltonian constraint remains. This shows that the time was

included into the theory in an arti�cial manner. The question of time is a great challenge and is

discussed in detail in chapter three. For a more detailed discussion of the ADM formalism consult

[19].



Appendix B

The Raychaudhuri equation

The equation we will derive in this section is a general result of Einstein's theory of relativity

and was discovered independently by Amal Kumar Raychaudhuri and Lev Landau. It describes

the motion of nearby bits of matter in general relativity and has the intuitive interpretation that

gravity acts as an attractive �force� between any two units of mass-energy. The derivation is

kept general, except for neglecting the torque in the system. Consider a foliation of space-time

as described above, where na is the unit normal to the hypersurfaces Σ and hab the projector

orthogonal to na. First setting 8πGN = 1 we trace Einstein's equation:

Tr

(
Rab −

1

2
Rgab = Tab

)
⇒ T = −R

Now rewrite the Einstein equation as:

Rab = Tab −
1

2
T gab

Project it on the the unit normal na and use to rewrite the lhs. (A.5) from the last section:

Rabn
anb = 2σ2 +

1

3
θ2 + na∇aθ −∇c (na∇an

c)

Combining this we obtain the �nal result, the Raychaudhuri equation (4.5) as used in chapter 4:

106
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2σ2 +
1

3
θ2 + na∇aθ −∇c (na∇an

c) =

(
Tab −

1

2
gabT

)
nanb (B.1)

Now suppose we are studying a system of non interacting dust particles, freely falling in the

gravitational �eld. So, ua is the �ow of proper time for the dust and the energy-momentum tensor

reads Tab = ρuaub. Evaluate (B.1) with the dust energy-momentum tensor :

2σ2 +
1

3
θ2 + na∇aθ −∇c (na∇an

c) =

(
ρuaub +

1

2
gabρ

)
nanb = ρ (uan

a)2 − 1

2
ρ

We now identify na and ua, what physically means to choose the rest frame of the dust. Denoting

with dot the derivative w.r.t proper time of the dust we rewrite:

2σ2 +
1

3
θ2 + θ̇ −∇c (u̇c) = 4πGN ρ

(Here units have been restored.) Furthermore assuming that the dust is irrotational, which is

consistent with the claim that its �ow is orthogonal to the hypersurfaces, we get:

2σ2 +
1

3
θ2 + θ̇ = 4πGN ρ

This is the form of the Raychaudhuri equation used in [3] and described in the �rst chapter as

equation (1.9). For a more detailed discussion of the physical interpretation of the Raychaudhuri

equation consult [5].
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