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Abstra
tWe 
onsider the real-time holography on Anti-de-Sitter (AdS) and more gen-erally on Lifshitz spa
etimes for spinorial �elds. A Lifshitz spa
etime hasanisotropi
 s
aling properties for the time and spa
e 
oordinates. The equa-tion of motion for fermions on general Lifshitz spa
e is derived here for the�rst time. Analyti
ally solvable 
ases are identi�ed. On AdS spa
e we de-rived time-ordered, time-reversed, advan
ed and retarded propagators withthe 
orre
t i�-insertions. Using the Keldysh-S
hwinger 
ontour we also 
al-
ulated a propagator on thermal AdS. For massless fermions on the Lifshitzspa
etime with z = 2 we 
al
ulated the Eu
lidean 2-point fun
tion and ex-plored the stru
ture of divergen
es of the on-shell a
tion for general values ofz and m. The 
ovariant 
ounterterm a
tion whi
h 
an
els the highest orderdivergen
e is derived.
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Chapter 1Introdu
tion to AdS/CFTCorresponden
eAdS/CFT 
orresponden
e is one of the main a
hievements in theoreti
alphysi
s during the last 15 years. In short, it is a 
onje
ture saying that some
onformal gauge �eld theory (CFT) is equivalent to the string theory on thespe
ial ba
kground 
alled Anti de-Sitter spa
e (AdS). The usual interpreta-tion is that the CFT lives on the 
onformal boundary of AdS spa
e. Hen
eAdS/CFT is a realization of holographi
 prin
iple saying that for some physi-
al systems the information in the volume (bulk) is en
oded on the boundaryof the volume.For deeper understanding of this equivalen
e there was developed a holo-graphi
 di
tionary whi
h translates physi
s from the one theory to another.In this thesis we address one parti
ular pie
e of this di
tionary: how all thedi�erent real-time 
orrelation fun
tions whi
h 
an be 
omputed in CFT areen
oded in the bulk physi
s. The 
orresponding question for Eu
lidean 
or-relators was settled already in the very �rst papers on the subje
t [1�3℄, butfor real-time 
orrelators the appropriate formalism was developed only in lasttwo years by Kostas Skenderis and Balt van Rees in a series of papers [4�6℄.In this thesis the emphasis is on the generalization of this formalism to the
ase of fermioni
 �elds.The stru
ture of the thesis is as follows. The �rst two 
hapters 
onsist of7



well-known material whi
h is presented in many details in extensive litera-ture. In the �rst 
hapter we give a short introdu
tion into the broad subje
tof AdS/CFT 
orresponden
e. Se
ond 
hapter is the review of the holographi
renormalization for Eu
lidean and real-time 
orrelators. We then generalizeand apply the formalism, developed here, to the fermions in the third 
hapter.And �nally in the fourth 
hapter we address the question of the renormal-ization of fermioni
 
orrelators on Lifshitz spa
etimes. The third and fourth
hapters 
onsist of mostly new material (ex
ept se
tions 3.2 and 3.3).In this 
hapter we will give an idea of how the AdS/CFT 
onje
ture 
omesabout, what is the eviden
e for it, et
. Details and further referen
es may befound in a number of extensive reviews [7�10℄.1.1 The Idea of Holography1.1.1 D-Branes, Duality between Open and Closed Strings,Large N ExpansionsAt the heart of holographi
 duality lies the twofold interpretation of theso-
alled Dp-brane solutions in supergravity (SUGRA) or superstring the-ory. In supergravity, Dp-branes are spe
ial solitoni
 (BPS) solutions of theequations of motion. Intuitively one 
an think of them as bla
k hole - like((p+1)-dimensional) obje
ts. In parti
ular they have a horizon. What is theirmeaning in superstring theory? So far there have not been obtained su
h so-lutions for the stringy equations of motion, but supergravity is well knownto be the low-energy limit of superstring theory, in whi
h the supergravityse
tor de
ouples. The important point is that su
h solutions are believed tobe prote
ted by supersymmetry along the renormalization group (RG) �owfrom the infrared (IR) to the ultraviolet (UV) region, i.e. Dp-branes shouldbe 
onsidered as real players not only in SUGRA approximation but in thefully quantized superstring theory [11�15℄.Another important point for the later dis
ussion is that the low-energylimit of superstring theory is known even on the given non-trivial ba
kground- it be
omes the SUGRA on that ba
kground, although it is still not known8



how to 
onstru
t full 
onsistent quantized superstring theory on general non-Minkowski ba
kgrounds. Thus, the dis
ussion above applies also in the 
on-text of AdS/CFT 
orresponden
e, where the underlying spa
etime is AdS.First interpretation of the Dp-branes in supergravity theory (and hen
e insuperstring theory) is that they play the role of the sour
e for the graviton. Insuperstring theory gravitons are parti
ular ex
itations of 
losed strings. They
an be 
reated by a Dp-brane, propagate and annihilate on another Dp-brane.On the other hand, string theory itself requires non-perturbative extendedobje
ts in order to in
orporate open strings. Thus the se
ond interpretation isthatDp-branes are obje
ts whi
h implement the Diri
hlet boundary 
onditionsfor the open string. In this 
ase it is known that ex
itations of open stringatta
hed to a sta
k of N su
h obje
ts at low energy give rise to a SU(N)gauge theory living on the volume spanned by the moving brane (so-
alledbraneworld).Now 
omes the 
ru
ial point. It is believed that these two pi
tures ofDp-branes in string theory 
an be identi�ed (the eviden
e for it is based onthe BPS-properties and equality of R-
harges for both interpretations [16℄).Thus, Dp-branes play two roles in string theory, whi
h are believed to givetwo equivalent interpretations of the same physi
al reality.Another pie
e of wisdom is the dis
overy made by 't Hooft, that somequantum �eld theories may simplify, when the number of �elds goes to in-�nity (or the rank of gauge group N ! 1). The 
lassi
al examples of thisphenomenon in
lude linear sigma model [17℄ and the large N matrix theories.In the latter 
ase one 
an see, that in the large N limit the planar diagramsgive the most important 
ontribution to the theory (one 
an go even furtherand identify these diagrams with stringy worldsheets). Surprisingly, althoughthis situation is very di�erent from QCD, one 
an still draw some important
on
lusions even for �nite N theories. For instan
e, if one identi�es openstrings with mesons one �nds that they are weakly 
oupled and one 
an evenreprodu
e the Regge traje
tories.In what follows we will often mention the N = 4 Super-Yang-Mills theory.We do not need any detailed knowledge of it, but we say a 
ouple of wordsabout its properties. The N = 4 Super-Yang-Mills theory is a gauge theory9



with a gauge �eld A�, four Weyl fermions �i, and six real s
alars �I, allin the adjoint representation of the SU(4) � SO(6) group (group, whi
hrotates supersymmetry generators). Its Lagrangian 
an be written downexpli
itly, but is not very important for our purposes. It has a vanishing betafun
tion and is a s
ale invariant theory on quantum level (
onformal groupis SO(4; 2)). The S-duality (strong - weak 
oupling duality) is 
onje
turedfor this theory. In pra
ti
e, one works only with parti
ular se
tor(s) of thistheory (i.e. some subset of operators, e.g. 
hiral primaries) and thus thetheory simpli�es signi�
antly.1.1.2 Original MotivationNow we are in position to give rough idea of the original argument given byMalda
ena [1℄, leading to the AdS/CFT 
onje
ture. Let us 
onsider a sta
kof N D3-branes in type IIB Superstring theory. The �rst interpretation ofthis situation leads to the pi
ture in whi
h we have usual superstring theoryin the bulk, gauge theory (N = 4 SU(N) supersymmetri
 Yang-Mills theory)living on the brane and the intera
tions between these two families of �elds.S
hemati
ally the resulting a
tion is S = Sbulk + Sbrane + Sint. Now we takethe low energy limit. String theory provides us with the natural energys
ale: we 
an measure energy in units of inverse string length. We keep theenergy of ex
itations E bounded and take the limit ls � p�0 ! 0 (su
h thatE << 1=ls). In low energy (or large distan
e) limit bulk a
tion Sbulk be
omesfree supergravity, Sbrane gives rise to N = 4 SU(N) Super-Yang-Mills theorywhi
h de
ouples from the bulk dynami
s (Sint ! 0).But we have also the se
ond interpretation of this situation. D3-branes
an be viewed as the sour
es for the gravitational �eld (be
ause they havegeneri
ally non-vanishing tension). Taking again low energy limit we realizethat there are two kinds of massless ex
itations: massless �elds in the bulkand �elds living on the horizon of D3-branes (they appear to be masslessfor a distant observer be
ause of the redshift). Again, they de
ouple in thislimit. As a result we have two de
oupled theories: free supergravity in thebulk and Type IIB superstring theory living on the near-horizon geometry of10



D3-branes (whi
h happens to be AdS5 � S5).Comparing these two situations, whi
h are supposed to be equivalent,and identifying the dynami
al parts one is lead to the 
onje
ture: N = 4SU(N) Super-Yang-Mills theory on Minkowski spa
e is dual to the type IIBsuperstring theory on AdS5 � S5.This statement is extremely non-trivial. But there is some additionaleviden
e, that these two apparently very di�erent theories have something in
ommon. To realize it let us think about the symmetries of these two theories.N = 4 SU(N) Super-Yang-Mills theory is well known to be a 
onformal �eldtheory. Thus, it has SO(4; 2) 
onformal symmetry group. But it is exa
tlythe isometry group of AdS5! More then this, N = 4 SU(N) Super-Yang-Millstheory has global SU(4) symmetry whi
h rotates 4 SUSY generators. Again,SU(4) is lo
ally isomorphi
 to SO(6), whi
h is the isometry group of S5!Thus, these two theories have the same global symmetries.Type IIB superstring theory on AdS5 � S5 is still quite 
ompli
ated the-ory to work with. In order to simplify it one usually 
onsiders tree levelsupergravity theory, i.e. string 
oupling is sent to zero gs ! 0. In additionone sends N !1, su
h that gsN !1. On the CFT side it 
orresponds tothe t'Hooft (or planar) limit � = g2YMN ! 1 and N ! 1, where � is thee�e
tive 
oupling 
onstant in �eld theory. This point makes the Malda
ena
onje
ture parti
ularly ex
iting. If this kind of duality is 
orre
t, then wehave an a

ess to the strong 
oupling limit of a quantum �eld theory. Inter-estingly, this QFT is dual to the 
lassi
al gravity theory. On the other hand,it makes it parti
ularly di�
ult to test this 
onje
ture, sin
e there is onlyvery limited amount of 
al
ulations we 
an do in the strong 
oupling limit inquantum �eld theory.1.1.3 Geometry of AdS Spa
esAnti-de Sitter spa
e (AdS) appears as a (part of) geometry near the horizonof D-branes. Therefore we review here some of the most important proper-ties of AdS spa
e. AdSd+1 spa
e is a homogeneous (i.e. ea
h point 
an betransformed into another one by an isometry) isotropi
 spa
e with 
onstant11



negative 
urvature. It 
an be embedded in Rd+2 as a hyperboloidX20 +X2d+1 � dXi=1 X2i = L2; (1.1)with the metri
 ds2 = �dX20 � dX2d+1 + dXi=1 dX2i : (1.2)L is 
alled the radius of AdS. (1.1) 
an be solved by settingX0 = L 
osh � 
os �; Xd+1 = L 
osh � sin �Xi = L sinh � 
i(i = 1; :::; d;Xi 
2i = 1); (1.3)with � � 0 and 0 � � � 2�. These 
oordinates 
over the hyperboloidon
e and are 
alled �global 
oordinates�. The topology of this hyperboloidis S1 � Rd, with S1 representing 
losed timelike 
urves in the � dire
tion.To obtain a 
ausal spa
etime we simply unwrap this 
ir
le and obtain theuniversal 
overing of the original hyperboloid with no 
losed timelike 
urves.We list some important properties of AdSd+1:� The isometry group is SO(2; d).� It has a d-dimensional 
onformal boundary.� The 
osmologi
al 
onstant is negative, 0 > � = � 1L2d(d� 1).� Massive �elds 
an never get to the 
onformal boundary, but massless�elds 
an go to the boundary and ba
k in �nite proper time.� Field theories involving negative mass �elds 
an still be stable (thereis the so-
alled Breitenlohner - Freedman bound on the mass of s
alar�eld: m2 � �d24 ).There are many kinds of 
oordinates for AdS spa
es. In addition to the'global' parameterization (1.3) there is another set of 
oordinates often used12



in the literature (y; t; ~x) (0 < y; ~x 2 Rd�1). It is de�ned byX0 = 12y (1 + y2(1 + ~x2 � t2));Xi = yxi;Xd = 12y (1� y2(1� ~x2 + t2));Xd+1 = yt; (1.4)where we set the radius of AdS L = 1. These 
oordinates 
over one half ofthe hyperboloid (1.1). In new 
oordinate the metri
 be
omesds2 = �dy2y2 + y2(�dt2 + d~x2)� : (1.5)For the dis
ussion of renormalization, the so-
alled Fe�erman - Graham
oordinates are very 
onvenient. One obtains them by setting u = 1=y. Inthose the metri
 takes the formds2 = du2 + �ijdxidxju2 : (1.6)The u � 0 
oordinate represents the radial dire
tion and the 
onformalboundary is at u = 0. In this form one also sees expli
itly that this metri
 iss
ale invariant (invariant with respe
t to the s
alings x! �x; u! �u).Often it is enough if the spa
etime is only asymptoti
ally AdS (AAdS),i.e. it is approa
hing AdS geometry near the 
onformal boundary. In this
ase we 
an repla
e �ij in the above expression by some more general metri
gij(x) whi
h is approa
hing �ij when u! 0.1.1.4 Pres
riptionNow it is time to 
larify in whi
h sense these theories are equivalent. Itis important to observe that N = 4 SU(N) Super-Yang-Mills theory, beinga 
onformal theory, does not possess an S-matrix, i.e. one 
an only speakabout the 
orrelation fun
tion of gauge-invariant operators (gravity 
annot13



have any 
lue about the SU(N) gauge symmetry). The basi
 idea is to iden-tify the generating fun
tional of 
onne
ted 
orrelators in the super
onformalgauge theory with the minimum of the supergravity a
tion, subje
t to someboundary 
onditions. To be more 
on
rete, think of s
alar �eld � of themass m in the bulk. Let O be its dual operator of 
onformal dimension �(whi
h is related to the mass m) on the �eld theory side (i.e. O lies in thesame representation of global symmetries as �). There are two linearly in-dependent solutions to the equation of motion for � whi
h are 
hara
terizedby their boundary behavior. One mode is normalizable and another is non-normalizable. Non-normalizable modes have some given boundary behavior�! ud���0. We identify this �0 with the sour
e for O. The basi
 pres
rip-tion then says that the supergravity partition fun
tion (whi
h is a fun
tionalof the �elds parameterizing the boundary behavior of the bulk �elds) is iden-ti�ed with the generating fun
tional of QFT 
orrelation fun
tions�exp[Z ddx�0O℄�CFT = e�Son-shell[�0℄; (1.7)where Son-shell[�0℄ is the supergravity a
tion evaluated on the regular solutionwith the given asymptoti
 behavior and is viewed as a fun
tional of theboundary value �0. This pres
ription fails in Lorentzian signature, sin
e inthat 
ase generi
ally there is no regular solution to the equation of motion.Let us summarize basi
 points of AdS/CFT pres
ription:� The ba
kground solution is asso
iated with the va
uum of the dualQFT. Perturbations around the ba
kground are asso
iated with 
orre-lation fun
tions of gauge invariant operators.� The isometries of the bulk solution 
orrespond to global symmetries ofthe boundary theory. Re
all that the AdS group in d + 1 dimensionsSO(d; 2) 
oin
ides with the 
onformal group in d dimensions.� Gauge invariant operators of the boundary theory are in one-to-one 
or-responden
e with bulk �elds. For example, the bulk metri
 
orrespondsto the stress energy tensor of the boundary theory.14



� In a spa
etime with a boundary one needs to spe
ify boundary 
ondi-tions for the bulk �elds. The leading boundary behavior of the bulk�eld is identi�ed with the sour
e �0 of the dual operator.� Correlation fun
tion 
an now be 
omputed by fun
tionally di�erenti-ating with respe
t to the sour
es. For example,hO(x)i = ÆSon-shellÆ�0(x) (1.8)hO(x1)O(x2)i = � Æ2Son-shellÆ�0(x1)Æ�0(x2) (1.9)� A naive use of these formulas however yields in�nite answers. The on-shell value of the a
tion is in�nite due to the in�nite volume of theAAdS spa
etime. Similarly, the QFT 
orrelators diverge and need tobe renormalized. The goal of holographi
 renormalization is to makesu
h formulae well-de�ned.1.2 Some Tests and Extensions of AdS/CFTCorresponden
eEquation (1.7) is the basi
 pres
ription of AdS/CFT 
orresponden
e. Sofar we gave only heuristi
 arguments for it. But there are many 
al
ula-tions whi
h 
an be done in order to test this duality. One 
an 
al
ulate2-point [2℄ and 3-point fun
tions [18℄, mat
h the spe
tra of two theories, 
al-
ulate 
onformal anomalies [19℄. The interested reader is invited to 
onsultextensive literature on this subje
t. Here we want to note that 
al
ulationsin strongly 
oupled N = 4 SU(N) Super-Yang-Mills theory 
an generi
allybe done only for the quantities whi
h are prote
ted by the supersymmetri
non-renormalization theorems. Then one 
an perform perturbative 
al
ula-tions in the weak 
oupling limit. So far there was found no mismat
h whenthese 
al
ulations were 
ompared with gravitational ones. Gravity produ
esalways the 
orre
t results for the quantities we 
an 
al
ulate on CFT side.15



The numerous tests of the AdS/CFT 
orresponden
e made people believethat this duality should hold also in some other situations. Several extensionsof AdS/CFT 
orresponden
e proved to be very plausible and useful. Indi�erent settings 
onformal symmetry or some amount of supersymmetryis broken. In this 
ontext one talks generally about gauge/gravity duality.For example one 
an introdu
e the �nite temperature by putting a bla
k holein the bulk [20℄. The Hawking temperature of the bla
k hole 
orresponds tothe temperature on the �eld theory side. Giving a 
harge to the bla
k holeresults in introdu
ing 
hemi
al potential in the �eld theory. Using standardte
hniques su
h as latti
e gauge theory, it is so far nearly impossible to getany numeri
al results for dynami
al pro
esses in strongly 
oupled systemswith �nite temperature and 
hemi
al potential. Hen
e gauge/gravity is sofar the only sour
e of reliable results for su
h systems. One of the mostfamous results is the bound on the shear vis
osity - entropy density ratio:�s � 14� [21,22℄. Holographi
 realizations of further e�e
ts (e.g. di�erent phasetransitions, 
hiral symmetry breaking [23℄, super�uidity and super
ondu
tors[24�26℄, et
.) were also found.In re
ent years there was a lot of work devoted to the fermions in gauge /gravity duality. It was found, that holographi
 models open a window to theunderstanding of many interesting phenomena in strongly 
oupled 
ondensedmatter physi
s, su
h as super
ondu
tivity, super�uidity, quantum 
riti
ality,et
 [27,28℄. On the sear
h of holographi
 dual to quantum 
hromodynami
s(the so-
alled AdS/QCD 
orresponden
e) fermions also play an importantrole. Clearly fermioni
 �elds deserve the attention we pay to them in thisthesis.

16



Chapter 2Holographi
 RenormalizationIn this 
hapter we give a brief review of the formalism of holographi
 renor-malization. Simultaneously we provide the pre
ise re
ipe, how to 
al
ulaterenormalized QFT 
orrelation fun
tions using the physi
s in the bulk. Forthe 
ase of Eu
lidean signature we follow mostly the pedagogi
al introdu
-tion of [29℄. The appropriate formalism for real-time renormalization wasintrodu
ed in [4, 5℄.2.1 Eu
lidean Signature2.1.1 Basi
 Idea and Example(s)As already mentioned the pres
ription (1.7) is only a formal equality. Gener-i
ally both sides of it are in�nite. To 
ure this obsta
le we must subtra
t thein�nities adding 
ovariant 
ounterterms. The short re
ipe is provided in [29℄:1. Compute the most general asymptoti
 solution of the bulk �eld equa-tions.2. To regulate the divergen
es we restri
t the radial 
oordinate to have a�nite range u � �, and evaluate the boundary term at u = � on theregular solution: Sreg[�; �℄ = Son-shell[�(u = �)℄ (2.1)17



3. We evaluate the a
tion on the asymptoti
 solutions and isolate theterms whi
h diverge as �! 0.4. We subtra
t the in�nite terms by adding suitable 
ovariant 
ountert-erms SCT : SCT [�(x; u = �)℄ = �divergent terms ofSreg[�; �℄; (2.2)where SCT must be expressed in terms of the �elds living on regulatingsurfa
e u = � and the indu
ed metri
 
ij = gij(x; �)=�. This is neededto ensure the 
ovarian
e.5. We de�ne a subtra
ted a
tion at the 
uto�Ssub[�(x; u = �)℄ = Sreg[�; �℄ + SCT [�(x; u = �)℄: (2.3)It has a �nite limit as �! 0.6. The renormalized a
tion is then given bySren[�0℄ = lim�!0 (Sreg[�; �℄ + SCT [�(x; u = �)℄) (2.4)We need to distinguish between Ssub and Sren be
ause the variationsrequired to obtain 
orrelation fun
tions are performed before the limit�! 0 is taken.7. Exa
t 1-point fun
tion is obtained by di�erentiating the subtra
teda
tion with respe
t to the �eld on the regulating boundary and thentaking the limit �! 0:hO(x)i = lim�!0� 1� d2�m 1p
 ÆSsubÆ�(x; u = �)� ; (2.5)where 
 is the determinant of the indu
ed metri
 and m is the diver-gen
e degree of the sour
e.8. From the renormalized 1-point fun
tion all the other renormalized n-point fun
tions 
ontaining the same operator O 
an be obtained by the18



di�erentiation with respe
t to the sour
e �0.For 
ompleteness we would like to mention, that there is yet anotherte
hnique of holographi
 renormalization whi
h is based on Hamiltonian for-mulation and is extremely useful for pra
ti
al 
al
ulations [30, 31℄.2.1.2 ExampleNext, we want to illustrate this re
ipe on a simple example: Massive s
alaron pure AdS (see [29℄ for more details). We take the metri
 of AdS in theform ds2 = d�24�2 + 1�dxidxi; (2.6)where we put � = u2 in (1.6). The a
tion for the massive s
alar �eld � isS = 12 Z dd+1xpG(G�������� +m2�2): (2.7)The equation of motion is(��G +m2)� = � 1pG��(pGG�����) +m2� = 0: (2.8)This equation 
an be solved analyti
ally on pure AdS but we �rst outline theholographi
 pro
edure on asymptoti
ally AdS (AAdS) spa
etime.First, we write the asymptoti
 expansion for a solution. The equation ofmotion is se
ond order, hen
e we look for a solution of the form�(x; �) = � d��2 �(x; �)= � d��2 (�(0)(x) + �(0)(x)� + :::+ �n(�(2n)(x) + ln � (2n)(x)) + :::);(2.9)where �(0)(x) 
orresponds to a sour
e (boundary 
ondition), �(2n)(x) - to arespon
e, and  (2n)(x) - to the matter 
onformal anomaly [19℄. Setting this
19



solution ba
k into the equation of motion we get(m2 ��(�� d))�� �(�0�+ 2(d+ 2� 2�)���+ 4��2��) = 0; (2.10)where �0 = Æij�i�j is the D'Alambertian on the boundary. The easiest wayto solve (2.10) is to su

essively di�erentiate with respe
t to � and then set� = 0. In this way we obtain m2 = �(�� d); (2.11)whi
h is the well-known relation between the mass of the s
alar �eld in thebulk and the 
onformal weight of the dual operator in the bulk. (2.10) redu
esto �0�+ 2(d+ 2� 2�)���+ 4��2�� = 0: (2.12)Setting � = 0 we get an algebrai
 equation for �(2), whi
h is solved by�(2) = 12(2�� d� 2)�0�(0): (2.13)Di�erentiate (2.12) with respe
t to � and then set � = 0. The result is�(4) = 14(2�� d� 4)�0�(2): (2.14)Continuing this way we 
an obtain almost all the 
oe�
ients �(2j). Thispro
edure stops, however, when 2� � d � 2n = 0. At this order we haveto introdu
e the logarithmi
 term to obtain a solution. For 
on
reteness
onsider the 
ase 2�� d� 2 = 0, i.e. � = d2 + 1. The asymptoti
 expansionis given by �(x; �) = �(0) + �(�(2) + ln � (2)) + ::: (2.15)
20



Inserting this equation into (2.12) gives (2) = �14�0�(0) (2.16)and we �nd that �(2) is not determined by the asymptoti
 analysis. It 
anbe found using the regular analyti
 solution to the equation of motion.We are now in position to evaluate the regularized a
tion on the asymp-toti
 solution,Sreg = 12 Z���dd+1xpG(G�������� +m2�2)= 12 Z���dd+1xpG�(��G +m2)�� 12 Z�=�dxpGG������: (2.17)The bulk term vanishes on the solution to the equation of motion and we
an isolate the divergent termsSreg = Z�=�ddx(���+ d2a(0) + ���+ d2+1a(2) + :::� ln �a(2��d)); (2.18)where the 
oe�
ients a(2i) are lo
al fun
tions of the sour
e �(0):a(0) = �12(d��)�2(0); a(2) = �(d��+ 1)�(0)�(2):::a(2��d) = � d22��d�(2�� d)�(2�� d+ 1)�(0)(�0)2��d�(0): (2.19)Now we want to �nd the 
ovariant 
ounterterms SCT whi
h 
an
el thedivergen
es in Sreg. For this we need to reexpress �(0) in terms of �(x; �) (for
ovarian
e). To se
ond order we obtain�(0) = �� d��2 ��(x; �)� 12(2�� d� 2)�
�(x; �)� ;�(2) = �� d��2 �1 12(2�� d� 2)�
�(x; �); (2.20)where �
 is the Lapla
ian of the indu
ed metri
 
ij = Æij� at � = �. It issu�
ient to rewrite a(0) and a(2) in terms of �(x; �). The 
ounterterm a
tion21



is then given bySCT = Z ddxp
�d��2 �2 + 12(2�� d� 2)��
� + higher derivatives�:(2.21)Noti
e, that when � = d=2+1 the 
oe�
ient of ��
� is repla
ed by �14 ln �.Similarly, when � = d=2+k there is a k-derivative logarithmi
 
ounterterm.Sren is now given by (2.4). We still 
an add �nite 
ounterterms to it. This
orresponds to the s
heme dependen
e on the �eld theory side.Renormalized 1-point fun
tion ishO�i = lim�!0� 1��2 1p
 ÆSsubÆ�(x; �)� : (2.22)For 
on
reteness we dis
uss the � = d2 + 1 
ase. Now,ÆSsub = ÆSreg + ÆSCT= Z���dd+1xpGÆ�(��G +m2)�+ Z�=�ddxp
Æ���2���� + (d��)�� 12 ln ��
�� :(2.23)On shell ÆSsubÆ� = p
(�2���� + (d��)�� 12 ln ��
�): (2.24)Substituting for � the expli
it asymptoti
 expansion we �nd that the diver-gent terms 
an
el, as promised, and the �nite part equalshO�i = �2(�(2) +  (2)): (2.25)Here we see that, indeed, �(2) 
orrespond to the respon
e to the perturbationand is not determined by the asymptoti
 analysis. This is very generi
 featureof su
h 
al
ulations: to �x 1-point fun
tion we need regular solution.  (2)22



term is a
tually s
heme dependent. One 
an remove it 
ompletely by addingto the SCT a �nite term proportional to the 
onformal anomaly.So far we investigated only near-boundary behavior. Holographi
 1-pointfun
tion involves a 
oe�
ient whi
h is not determined by asymptoti
 analysis.Now we solve the equation of motion analyti
ally, impose regularity in thebulk and get this 
oe�
ient. For de�niteness we work in d = 4 and 
onsiderthe 
ase � = d=2 + 1 = 3. We 
hange radial variable � = u2 and � = ud=2�,and we also Fourier transform in boundary dire
tions (we have Eu
lideansignature on the boundary theory). The equation for � isu2�2u�+ u�u�� (k2u2 + 1)� = 0: (2.26)The regular solution is� = K1(ku) = 1ku + �14(�1 + 2
) + 12(� ln 2 + lnku)� ku+ :::; (2.27)where we have expanded the modi�ed Bessel fun
tion K near the boundaryof the bulk u = 0 (k = jkj). Converting ba
k to � 
oordinate we get�(k; �) = � d��2 �(0)(k)�1 + ��(14(�1 + 2
) + 12 ln k2)k2 + 14k2 ln ��� + ::::(2.28)We now read o� (2)(k) = 14k2�(0)(k)!  (2)(x) = �14�0�(0)(x); (2.29)�(2)(k) = �(0)(k)�14(�1 + 2
) + 12 ln k2� k2: (2.30)Noti
e that the exa
t solution 
orre
tly reprodu
es the value for  (2) as de-termined by the near boundary analysis. We found also that �(2) is relatednon-lo
ally to the sour
e �(0). That is why it is impossible to get it from theasymptoti
 analysis.
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Inserting lst two equations ba
k in (2.25) we gethO�(k)i = �2�(0)(k) ��14(�1 + 2
)� 12 ln 2 + k24 � + k24 ln k2� : (2.31)The terms in parenthesis lead to 
onta
t terms in the 2-point fun
tion and
an be dropped out. When the renormalized 1-point fun
tion is known as afun
tional of the sour
e all the other renormalized 
orrelation fun
tions 
anbe obtained by di�erentiating 1-point fun
tion with respe
t to the sour
e.We get hO�(k)O�(�k)i = Æ hO�(k)iÆ�(0)(�k) = 12k2 ln k2: (2.32)This is the 
orre
t form for the 2-point fun
tion of the operator of the 
on-formal dimension � = d=2 + 1 = 3.2.2 Lorentzian SignatureFirst 
al
ulations in AdS/CFT 
orresponden
e relied on the re
ipe providedin [2,3℄ for the Eu
lidean 
orrelators. Working in the Eu
lidean signature is a
ommon and 
onvenient pra
ti
e, sin
e usually one 
an analyti
ally 
ontinueEu
lidean 
orrelators to the 
ase of Minkowski signature. In many 
ases,however, it is desirable to extra
t the real-time 
orrelators dire
tly fromgravity. Many important and interesting properties of gauge theories at �nitetemperature and �nite density, most notably the response of the thermalensemble to small perturbations that drive it out of equilibrium, 
an only belearned from real-time Green's fun
tions.From the more theoreti
al point of view one would like to understand theinterplay between 
ausality and holography. Sin
e bulk and boundary light
ones di�er from ea
h other it is not a priori 
lear that bulk 
omputationprovide the 
orre
t 
ausal stru
ture. More spe
i�
ally, we want to studydynami
al pro
esses (or pro
esses on time-dependent ba
kgrounds) su
h asgravitational 
ollapse.For some years it was a real 
hallenge to generalize the Eu
lidean re
ipe24



for real-time 
orrelators. The main di�
ulty is the following: in Eu
lideansignature the requirements of the regularity in the bulk and normalizabil-ity on the boundary determine the solution to the bulk equation of motionuniquely. When we 
onsider the boundary Lorentzian signature, this is notthe 
ase anymore. Generi
ally, in order to 
onstru
t regular solution onemust sum in�nitely many normalizable solutions. A related issue is that inLorentzian 
ase one also has to spe
ify initial and �nal 
onditions for the bulk�elds. These 
onditions should be related to a 
hoi
e of in- and out-state inthe Lorentzian boundary of QFT.It leads to the question: whi
h 
ondition one has to impose in the interiorof the bulk? Already in late 1990s it was 
onje
tured that di�erent 
ondi-tions in the bulk 
orrespond to the manifold of di�erent 
orrelators one 
an
al
ulate in real-time QFT [32�34℄. There is one parti
ular 
hoi
e of su
h a
ondition whi
h looks espe
ially natural: look for an infalling wave solution,i.e. for a solution whi
h des
ribes a wave moving toward the horizon. Su
ha 
hoi
e should 
orrespond to the time-ordered (Feynman) 
orrelator on the�eld theory side. This re
ipe was �rst put forward in [35℄ and sin
e thenused widely for performing real-time 
al
ulations. In spite of its power ithas a 
ouple of serious drawba
ks. First, this pres
ription 
an be appliedonly for the 
al
ulation of 2-point fun
tions. Se
ond, the existen
e of a hori-zon is assumed in the bulk. This is somewhat unsatisfa
tory, sin
e from theholographi
 point of view all the information should be en
oded only on theboundary of the spa
etime.Re
ently, new approa
h to this problem was developed in [4, 5℄. Thestarting point there is the observation, that di�erent real-time 
orrelators 
anbe spe
i�ed by the 
hoi
e of the 
ontour in a 
omplex time plane. Examplesare given in the �gure 2.2. In [6℄ it was explained when the new 
onstru
tionis equivalent to the imposing infalling boundary 
ondition at the horizon.Taking prin
iples of the holography seriously one should re�e
t the 
hoi
eof the 
ontour on the gravitational side too. The ingenious idea in [4℄ is tostart with a QFT time 
ontour and '�ll it in' with a bulk manifold. It is, realsegments of the 
ontour are asso
iated with the Lorentzian spa
etime, andimaginary segments - with Eu
lidean solutions. The Eu
lidean bulk solution25



whi
h is asso
iated with the initial state on the QFT side 
an also be thoughtof as providing a Hartle-Hawking wave fun
tion for the bulk theory [36℄.In next subse
tions we dis
uss the real-time pres
ription of Skenderis andvan Rees in some more detail. For a 
omprehensive review 
onsult [5℄.2.2.1 Real-time QFTWe shall illustrate the main idea on the example of a s
alar �eld. Considera �eld 
on�guration with initial 
ondition ��(~x) at t = �T and �nal 
on-dition �+(~x) at t = T . To get the transition amplitude h�+; T j��;�T i onehas to integrate over all the �eld 
on�gurations 
onstrained to satisfy these
onditions h�+; T j��; T i = Z�(�T )=�� D�eiS[�℄ (2.33)If we are interested in va
uum amplitudes we multiply this amplitude byh0j�+; T i and h��; T j0i and integrate over intermediate 
on�gurations �+and ��. The multipli
ations with these va
uum wave fun
tions 
orrespondto extending the �elds in the path integral to live on the verti
al segments inthe 
omplex time plane as shown if �gure 2.1. Indeed, the in�nite verti
al seg-ment starting at �T 
orresponds to an amplitude lim�!1 
��;�T je��H j	�for some state 	 whi
h is irrelevant, sin
e the limit proje
ts it onto the va
-uum state. Similarly we obtain h0j�+; T i from the verti
al segment startingat t = T .Thus, we 
an use the Eu
lidean path integral in order to 
reate the va
-uum state whi
h is then used to 
onstrain the Lorentzian path integral. Or,we 
an 
ompute 
orrelators in non-trivial states. Similarly, in 
onformal �eldtheory there is the notion of operator - state 
orresponden
e: inserting a lo
aloperator O at the origin of spa
e Rd and then performing the path integralover the interior of the sphere Sd�1 that surrounds the origin results in the
orresponding quantum state 	O on Sd�1. In parti
ular, the va
uum stateis generated by inserting the identity operator.Suppose that we want to 
ompute 
orrelators h	jTO1(x1):::On(xn)j	i of26
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Figure 2.1: This 
ontour in the time plane produ
es the time-ordered 
orre-lator. The �gure is taken from [4℄.gauge-invariant operators Oi in a given initial state 	 (T is time-orderingsymbol). We 
an write a generating fun
tional in the formZQFT [JI ;C℄ = Z D� exp��i ZCdtZ dd�1xp�g �LQFT [�℄ + JIOI(�)��;(2.34)where JI are the sour
es 
oupling to gauge-invariant operators OI . The pathintegral is performed for the �elds living on the 
ontour C in the 
omplextime plane.In fa
t, the 
hoi
e of the 
ontour C determines, what kind of 
orrelator weare 
al
ulating. Some examples of the 
ontours are presented on the �gure2.2. For instan
e, for real-time thermal 
orrelators one 
an use the 
losedKeldysh - S
hwinger 
ontour in �gure 2.2
. The verti
al segment now repre-sents the thermal density matrix �̂ = exp(��Ĥ), with � = 1=T . The pointsindi
ated by 
ir
le should be identi�ed, and the thermal 
orrelators shouldsatisfy periodi
 / antiperiodi
 periodi
ity 
onditions for bosons / fermions.Depending on whi
h of two verti
al segments we put the sour
es we get theKeldysh-S
hwinger matrix of thermal propagators.2.2.2 Pres
riptionAfter short re
apitulation of basi
 �eld theoreti
 fa
ts we turn to the formu-lating of holographi
 pres
ription. The 
ontour dependen
e dis
ussed in theprevious subse
tion should be re�e
ted in the bulk. Within the saddle-pointapproximation we asso
iate to a QFT 
ontour C a supergravity solution ('�llin' the QFT 
ontour). The horizontal segments must be �lled with Lorentzian27
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Figure 2.2: Several possible 
ontours 
an be used in the time plane to produ
ea) time-ordered 
orrelator, b) Wightman fun
tion, 
) thermal 
orrelators.The �gure is taken from [5℄.solutions, while verti
al segments - with Eu
lidean solutions. These segmentsare then glued together along bulk hypersurfa
es that end on the 
orners ofthe 
ontour. The entire manifoldMC obtained in this way has a metri
 whosesignature jumps at the 
orners.Given this manifold MC , the next step is to 
ompute the 
orrespondingsupergravity on-shell a
tion. This a
tion is then identi�ed with the gener-ating fun
tional of 
orrelators in non-trivial states dis
ussed in the previoussubse
tionZQFT [JI ;C℄ = exp�i ZMCdd+1xp�GLSUGRA['; '(u! 0) = JI ℄� ; (2.35)where G is the determinant of the bulk metri
 and JI is the boundary value ofthe bulk �eld ' dual to gauge-invariant operator O. On Eu
lidean segmentstime is imaginary and after Wi
k rotation t ! �it one gets standart signin front of the a
tion. The sour
es JI that are lo
alized on the 
onformalboundary of Eu
lidean segments are related to the initial and �nal state(identity operator 
orresponds to the va
uum). Whereas on the boundary ofLorentzian segments they 
orrespond to the real physi
al sour
es and the n-point 
orrelation fun
tions 
an be produ
ed via the fun
tional di�erentiation28



with respe
t to them. In the bulk of this thesis we will be interested only inva
uum 
orrelators, although this formalism 
an be applied also to 
orrelatorsin non-trivial states.2.2.3 Mat
hing Conditions and CornersPie
ewise straight 
ontours have 
orners, where either verti
al segment meetshorizontal one or two horizontal segments running in opposite dire
tions join.These 
orners extend to hypersurfa
es in the bulk. We impose following
ondition on them: the indu
ed metri
 and all the �elds and their 
onjugatedmomenta must be 
ontinuous a
ross the 
orner. Note, that momenta arede�ned with respe
t to 
omplexi�ed time variable. These 
onditions giverise to the mat
hing equations whi
h allow us to �nd the unique 
orrelationfun
tion 
orresponding to the given 
ontour.This mat
hing 
ondition 
an be justi�ed in the following way. Imagine,that we have string theory on some manifold M . The generating fun
tionalis given by the path integral over all possible �eld 
on�gurations. This pathintegral 
an be written in a di�erent way: split initial manifold M in twopie
es M1 and M2 along some hypersurfa
e S. Then initial path integral
an be repla
ed by the produ
t of two path integrals over all possible �eld
on�gurations on M1 and M2 with the given boundary value of the �eldtimes the integral over all possible boundary data, i.e. �eld 
on�gurationson the hypersurfa
e S. The 
ontinuity of the �elds is imposed by the fa
tthat all �elds must have the same value on the boundaries of M1 and M2. Insaddle-point approximation the path integrals redu
e to the exponentiatedon-shell a
tions. Then perform the se
ond saddle-point approximation withrespe
t to the boundary data, i.e. vary on-shell a
tions with respe
t to theboundary value of the �elds. Variation of the on-shell a
tion with respe
t tothe �eld gives pre
isely the 
onjugate momentum, i.e. momenta must alsobe 
ontinuous a
ross the gluing surfa
e S.
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2.2.4 RenormalizationThe fundamental relation (2.35) is a bare relation, sin
e both sides are gener-i
ally in�nite. On the QFT side there are UV divergen
es, but on the grav-itational sides the divergen
es appear be
ause of the in�nite volume e�e
ts.To make this relation well-de�ned both sides need to be renormalized appro-priately. This renormalization pro
edure is a priori more 
ompli
ated thenin Eu
lidean 
ase.In the Eu
lidean 
ase the renormalization is done by introdu
ing a set oflo
al 
ovariant 
ounterterms. They are needed in order to make the on-shella
tion �nite and the variational prin
iple to be well-posed. In the Lorentziansetup there might appear new divergen
es. First, there is an additional non-
ompa
t dire
tion: time. This di�
ulty is over
ome by gluing Eu
lideanmanifold near timelike in�nities. E�e
tively it repla
es dangerous part ofthe Lorentzian manifold by the radial boundary of Eu
lidean AdS, whoseasymptoti
 stru
ture is well known. The se
ond and the last problem arethe possible in�nities at the 
orners. In prin
iple, there 
an be new 
ornerin�nities whi
h would require new 
ounterterms. The absen
e of su
h isguaranteed by the mat
hing 
onditions (
ompare [5℄).2.2.5 ExampleWe are going to illustrate this formalism by an relatively easy low-dimensionalAdS3/CFT2 example of s
alar �eld (for more details 
onsult [4℄. BoundaryCFT lives on the 
ylinder S1 � R (where R represents time dire
tion) andhen
e we expe
t the spe
trum to be dis
rete. We are going to 
omputetime-ordered va
uum-to-va
uum 
orrelator. We start with the 
ontour inthe time plane in �gure 2.1. The 
orners of the 
ontour are two 
ir
les whi
hwe denote as C�. The 
orresponding 
omposed manifold 
onsists of threepie
es: a segment ML of Lorentzian AdS3 and two `
aps' M� 
onsisting ofhalf of Eu
lidean AdS3 (see �gure 2.3). One 
an view these 
aps as providinga Hartle-Hawking wave fun
tion on the hypersurfa
es S� (where �S� = C�).
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− Mδ LFigure 2.3: The CFT2 '�lled in' 
ontour for the 
al
ulation of the time-ordered propagator. The �gure is taken from [4℄.By the AdS/CFT 
onje
tureh0jT exp �� i ZÆMLddxp�g�(0)O�j0i= exp �iSL[�(0); ��; �+℄� SE[0; ��℄� SE[0; �+℄�: (2.36)with ÆML the 
onformal boundary ofML as in �gure 2.3, SL[�(0); ��; �+℄ theon-shell Lorentzian a
tion for ML that depends not only on �(0) but also oninitial and �nal data ��, and SE[�(0;�); ��℄ the Eu
lidean on-shell a
tions onthe half Eu
lidean spa
es M� with sour
es �(0;�) and boundary 
ondition ��at S�. In (2.36) we set the sour
es �(0;�) to zero sin
e we are interested inva
uum-to-va
uum 
orrelators. Nonzero values for �(0;�) would 
orrespondto 
hanging the initial and/or �nal state, as it does in the CFT.�� are �xed by imposing 
ontinuity of �elds and 
onjugated momentaat the 
orners. Se
ond one is equivalent to the stationarity of the on-shella
tion with respe
t to boundary values ��:ÆÆ���iSL[�(0); ��; �+℄� SE[0; ��℄� SE[0; �+℄� = 0 (2.37)whi
h should be read as an equation for ��.We now spe
ialize to a free massive s
alar �. The relevant part of thesupergravity a
tion is:S = 12 Z d3xpjGj(��������m2�2): (2.38)
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Dual operator O has 
onformal dimension � = 1 + p1 +m2 = 1 + l withl 2 f0; 1; 2; : : :g.We take the metri
 for AdS3 spa
e in the formds2 = �(r2 + 1)dt2 + dr2r2 + 1 + r2d�2: (2.39)The mode solutions to the equation equation of motion on this ba
kgroundare e�i!t+ik�f(!;�k; r) withf(!; k; r) = C!kl(1 + r2)!=2rkF (!̂kl; !̂kl � l; k + 1;�r2)= rl�1 + : : :+ r�l�1�(!; k; l)[ln(r2) + �(!; k; l)℄ + : : : (2.40)where !̂kl = (!+k+1+ l)=2, C!kl is a normalization fa
tor 
hosen su
h thatthe 
oe�
ient of the leading term equals 1 and in the last line we omittedterms of lower powers of r and some terms polynomial in ! and k (whi
hwould lead to 
onta
t terms in the 2-point fun
tion). Furthermore,�(!; k; l) = (!̂kl � l)l(!̂kl � k � l)l=(l!(l � 1)!) ;�(!; k; l) = � (!̂kl)�  (!̂kl � ! � l) ; (2.41)where (a)n = �(a+n)=�(a) is the Po
hhammer symbol and  (x) = d ln�(x)=dxis the digamma fun
tion. Note also that f(!; k; r) = f(�!; k; r). Only thef(!; k; r) with k � 0 are regular for r ! 0, so the modes we use below areof the form e�i!t+ik�f(!; jkj; r).We would now like to obtain the most general solution whose leadingasymptoti
 (� rl�1 as r ! 1) 
ontain an arbitrary sour
e �(0)(t; �) for thedual operator. Clearly, it will 
onsist of non-normalizable mode with givenasymptoti
 behavior plus eventually some normalizable modes. Thus our
32



ansatz for the solution is�(t; �; r) = 14�2 Xk2ZZCd! Z dt̂Z d�̂e�i!(t�t̂)+ik(���̂)�(0)(t̂; �̂)f(!; jkj; r)+X� Xk2Z 1Xn=0 
�nke�i!�nkt+ik�g(!nk; jkj; r); (2.42)where C represents a 
ontour in the 
omplex !-plane whi
h de�nes how dowe go around the poles at:! = !�nk � �(2n+ k + 1 + l) ; n 2 f0; 1; 2; : : :g: (2.43)We are now 
ompletely free to spe
ify any 
ontour that 
ir
umvents the poles(�gure 2.4). The di�eren
e between two di�erent 
ontours is a sum over theresidues: g(!nk; k; r) = I!nk d!f(!nk; k; r)� r�l�1�(!nk; k; l)�I!nk d!�(!; k; l)�: (2.44)The g(!nk; k; r) are the `normalizable modes'. Sin
e a 
hange of 
ontour 
anbe undone by also 
hanging the 
�nk, let us �x the 
ontour to be the Feynman
ontour (solid line in �gure 2.4).Now 
onsider the solution on the `initial 
ap', so on the spa
e spe
i�edby the metri
, ds2 = (r2 + 1)d� 2 + dr2r2 + 1 + r2d�2 (2.45)with �1 < � � 0, so that we have half of Eu
lidean AdS spa
e. On thissegment there are no sour
es and only normalizable modes are allowed. Sin
ethe solution should vanish at � ! �1, the most general Eu
lidean solution
ontains only negative frequen
ies,�(�; �; r) =Xn;k d�nke�!�nk�+ik�g(!nk; jkj; r) ; (2.46)33



0

ω

Figure 2.4: There are many ways to de�ne the integration 
ontour in the !plane. The �gure is taken from [4℄.with thus far arbitrary 
oe�
ients d�nk.We 
an now 
onsider the mat
hing at � = t = 0, whi
h will �x theinitial data. From the 
ontinuity �L(0; �; r) = �E(0; �; r) we �nd, usingorthogonality and 
ompleteness of the g(!nk; jkj; r) (for some more detailssee [4℄): �(0)(!�nk; k) + 
�nk + 
+nk = d�nk (2.47)Equation (2.37) yields a relation between 
onjugate momenta,�i�t�L = ���E : (2.48)Substituting the solutions we �nd�!�nk�(0)(!�nk; k)� !�nk
�nk � !+nk
+nk = �!�nkd�nk ; (2.49)so that 
+nk = 0. Similarly, the mat
hing to the out state determines 
�nk = 0,and indeed all the freedom in the bulk solution is �xed. Had we 
hosen anyother 
ontour in (2.42), we would have found nonzero values of some of the
�nk, e�e
tively throwing us ba
k to the Feynman 
ontour in �gure 2.4.Finally, the two-point fun
tion is obtained from the r�l�1 term in theasymptoti
 expansion of (2.42) (with 
�nk = 0):h0jTO(t; �)O(0; 0)j0i = l4�2iXk ZCd!e�i!t+ik��(!; jkj; l)�(!; jkj; l): (2.50)with the 
ontour C being the same as for the bulk solution, thus the standard34



Feynman pres
ription leading to time ordered 
orrelators. We emphasizeagain that C was 
ompletely �xed by the mat
hing to the 
aps. Integratingover C is equivalent to integrating over the real axis and shifting ! ! !(1+i�). The Fourier transform of this expression then givesh0jTO(t; �)O(0; 0)j0i = l2=(2l+1�)[
os(t� i�t)� 
os(�)℄l+1 : (2.51)This is the expe
ted form for a time-ordered two-point fun
tion on a 
ylinderand the normalization 
oe�
ient 
an be shown to agree with the standardAdS/CFT normalization of 2-point fun
tions.
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Chapter 3Holographi
 Renormalization forFermions on AAdSWe begin with some general remarks 
on
erning fermions on asymptoti
allyAdS spa
etimes [37, 38℄.A Dira
 �eld  in the bulk with 
harge q is dual to a fermioni
 operator Oin CFT of the same 
harge. O is a Dira
 spinor for d odd, and a 
hiral spinorfor d even. In both 
ases the dimension of the boundary spinor O is half ofthat of  . For AdS spa
e the 
onformal dimension � of O is given in terms ofthe mass m of  by � = d2�m. � 
annot be negative, therefore for m > d=2one has only one possibility: � = d2+m. For 0 < m < d=2 there are two waysto quantize  by imposing di�erent boundary 
onditions at the boundary,whi
h 
orresponds to two di�erent CFTs. Usual interpretation is that oneof them is stable and another is unstable, i.e. there exists a deformation bysome operator whi
h makes it �ow towards the stable theory [39℄.In the bulk of the thesis we will assume that the mass m of the fermionis positive. Negative mass 
orresponds to the opposite 
hirality.
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3.1 Equation of Motion for Fermions on Lif-shitz (AdS) Spa
etimeAdS spa
etime is well known to be parti
ular 
ase of the so 
alled Lifshitzspa
etime whi
h in turn is de�ned by the metri
ds2 = �dt2u2z + du2 + dx2u2 : (3.1)z is 
alled the dynami
al exponent. For the 
ase of z = 1 the metri
 (3.1)redu
es to the AdS spa
e. We derive the equation of motion on generalLifshitz spa
etimes. Later we will spe
ialize to parti
ular 
ases. We 
onsiderthe quadrati
 part of the a
tionS = Z dd+1xp�gi(	�MDM	�m		) + Sbdy; (3.2)where DM = �M + 14(!M)AB[
A; 
B℄ (3.3)is the 
ovariant derivative and (!M)AB are the spin 
onne
tion 
oe�
ients.Letters from the beginning of the alphabet denote the tangent frame indi
esand those from the middle of the alphabet - spa
etime indi
es. The 
Asatisfy the Cli�ord algebra �
A; 
B	 = 2�AB. Sbdy is the boundary a
tionneeded for the variational prin
iple to be well posed. It is not importantfor the moment, sin
e it does not 
ontribute to the bulk dynami
s. We will
onstru
t it in the next se
tion. Non-vanishing spin 
onne
tion 
oe�
ientsare (!t)tu = z=uz and (!x)xu = �1=u. Di�erent gamma-matri
es are relatedthrough the inverse vielbein �M = eMA 
A. We get the Dira
 operator�MDM = uz
t(�t + 14 zuz [
t; 
u℄) + u
u�u + u
i(�i � 14 1u [
i; 
u℄)= uz
t�t + u
i�i + u
u�u � d+ z � 12 
u (3.4)37



After Fourier transforming the spinor in boundary dire
tions	 = ei!t�ikx (u)the Dira
 equation be
omes(i!uz
t + iku
i + u
u�u � d+ z � 12 
u �m) = 0: (3.5)Applying (�MDM)2 �m2 to 	(u) yields�u2�2u � (d+ z � 1)u�u + �(z � 1)i!uz
u
t + !2u2z � ~k2u2+ �d+ z2 �2 � 14 �m2 +m
u�� (u) = 0: (3.6)We were not able to �nd the derivation of this result in the literature. Onegets the equation of motion for Eu
lidean signature just by repla
ing !2 !�!2. Now there are two interesting 
ases for whi
h we 
an solve this equationanalyti
ally. First, on pure AdS (z = 1) the term 
ontaining the produ
t 
u
tvanishes identi
ally and we 
an de�ne the Weyl proje
tor �� = 12(1 � 
u).Then 	� = ��	 satisfy 
u	� = �	�. The 
urrent 
hapter will be devotedmostly to this 
ase. Another solvable 
ase is z = 2 and m = 0. Then we
an de
ompose the Dira
 spinor using �� = 12(1 � 
u
t). The solution andanalysis of this 
ase is given in 
hapter 4.3.2 Boundary TermThe AdS/CFT in its weakest form is based on the stationary phase approxi-mation for supergravity, i.e. we evaluate the a
tion SSUGRA on-shell. For thestationary phase approximation it is 
ru
ial that the 
lassi
al solution is in-deed the stationary point for the a
tion. For the spa
etimes with boundariesthis observation leads to some important 
onsequen
es. Due to the possibleboundary terms 
lassi
al solution does not ne
essary is a stationary point.The point is that if even the variation of the bulk a
tion on the solution van-ishes, the variation of the boundary a
tion 
an be di�erent from zero. Thisproblem 
an be 
ured by adding appropriate boundary term to the bulk a
-tion. For the spin - 2 �eld this term is 
alled Hawking - Gibbons term [40℄.38



Now we are going to show how one 
onstru
ts appropriate boundary a
tionfor the fermioni
 �eld [38, 41℄.We begin with the Dira
 a
tion (3.2) whi
h we write here on
e again (inEu
lidean signature) for 
onvenien
eSbulk = � Z dd+1xpg�12	D=	�m		�: (3.7)Variating this a
tion and using the equations of motion for 	 and 	 we getÆSbulk = � Z dd+1xpg �Æ	D=	 +	D=Æ	�mÆ		�m	Æ	�= � Z 10 duZ ddxpg �	D=Æ	�m	Æ	�= 12 Z ddxpgindu
ed	
uÆ	= 12 Z ddxpgindu
ed �	�Æ	+ � 	+Æ	��; (3.8)where we have used proje
tors �� = 12(1� 
u) to de�ne 	� = ��	.As we will see in the next se
tion 	� and 	+ are not independent. Infa
t 	+ 
an be expressed in terms of 	�, i.e. we are not allowed to vary 	+freely. In other words we must set Æ	+ = 0.Now it is easy to see that ÆSbulk is itself the variation of a surfa
e termat the boundary ÆSbulk = �ÆSbdy; (3.9)with Sbdy = Z ddxpgindu
ed	+	�: (3.10)This boundary a
tion Sbdy must be added to the Dira
 a
tion in order tomake variational prin
iple well-posed.For the Lifshitz spa
etimes the derivation is 
ompletely analogous andthus the boundary term has the same form.39



3.3 Eu
lidean SignatureWe begin by reviewing the renormalization pro
edure for fermions on the AdSwith Eu
lidean signature [38,42℄. Here we shall already see many importantfeatures whi
h were not relevant for the bosons. Firstly, the equation ofmotion for the fermions is the �rst order equation. Be
ause of it we shouldpose the Diri
hlet problem parti
ularly 
arefully. This 
ompli
ation is relatedto the other obvious problem: fermions in the bulk and those in the boundarytheory have di�erent numbers of 
omponents. Se
ondly, to set the variationala
tion prin
iple for the fermions in the bulk we must add a boundary term(see se
tion 3.2), whi
h will guarantee, that the a
tion is extremized on theequation of motion [41℄.The 
lassi
al AdS/CFT pres
ription says that the on-shell bulk a
tion isthe generator of 
onne
ted 
orrelators in the boundary theory:�exp[Z ddx�O +O�℄� = e�SSUGRA[�;�℄; (3.11)where � and � are the boundary values of the bulk fermions and SSUGRAmust be evaluated on the solution to the equation of motion (saddle pointapproximation). Note, that so far it is very formal equation, sin
e generi
allyboth sides are in�nite. In order to be able to extra
t �nite result we mustperform renormalization. But so far we shall work formally, as if everythingis �nite and well-de�ned.Taking on both sides the fun
tional derivative with respe
t to � we get
O� = �ÆSÆ� = ���; (3.12)where �� is the momentum 
onjugate to �. How do we de�ne the fermioni
Eu
lidean propagator (or fermioni
 Eu
lidean 2-point fun
tion)? The answeris given by the linear response theory:
O� = G(k)
t�: (3.13)Thus, the Eu
lidean propagator is given by the matrix relating the (renor-40



malized) 1-point fun
tion of the dual boundary fermioni
 operator O andthe sour
e �. These in turn 
an be identi�ed with the leading 
oe�
ients inthe power expansions of the normalizable and non-normalizable mode 
orre-spondingly. 
t appears be
ause G = 
OOy� = 
OO� 
t.After giving the rough idea let's look how it really works on the example:fermions on asymptoti
ally AdS. The equation of motion we get by plug-ging z = 1 in the (3.6) and repla
ing !2 by �!2 (be
ause of the 
hange insignature)��2u � du�u + 1u2 ��m2 �m + d24 + d2�� k2� � = 0; (3.14)where we have introdu
ed k2 = !2 + ~k2 and de�ned  � = 12(1� 
u) . Thegeneral solution for m not a half-integer is � = u d+12 fC�1 (k)Im�1=2(ku) + C�2 (k)I�m�1=2(ku)g: (3.15)When m is a half-integer we need to introdu
e the modi�ed Bessel fun
-tion of the se
ond kind K as a se
ond linearly independent solution and thegeneral solution takes the form � = u d+12 fC�1 (k)Im�1=2(qu) + C�2 (k)Km�1=2(qu)g: (3.16)Using the series expansion of modi�ed Bessel fun
tions (Appendix A) we�nd the leading behavior of (3.15) + = 
+1 (k)u d2+m + 
+2 (k)u d2�m+1 (3.17) � = 
�1 (k)u d2+m+1 + 
�2 (k)u d2�m (3.18)The questions arises: how should we impose boundary 
onditions. Naively,we 
ould impose Diri
hlet boundary 
onditions on both proje
tions 	�. Butin this 
ase we would �x the solution uniquely and generi
ally it will not beregular in the bulk. The right thing to do is to impose �rst the regularity
ondition in the bulk, then solve for 	� and re
ognize the sour
e as the41



leading 
oe�
ient of the non-normalizable mode. We immediately see thatnear the boundary the dominant term has 
oe�
ient 
�2 . Thus, it 
orrespondsto the sour
e on the CFT side and we should impose the boundary 
ondition
�2 � �. The normalizable mode of  + goes with the 
+1 (k) 
oe�
ient (beingthe response of the dual operator O). We want to �nd the matrix whi
hrelates 
+1 (k) and 
�2 (k).Now we 
onstru
t the on-shell a
tion [42℄. Let us 
onsider m not half-integer. We have	� = e�i!t+i~k~xu d+12 fC�1 (k)Im�1=2(ku) + C�2 (k)I�(m�1=2)(ku)g= 
�1 u d2 +m� 12 + 12(1 + s�a (u; k))+ 
�2 u d2 �m� 12 + 12(1 + s�b (u; k)); (3.19)where we rede�ned C's multiplied with some fa
tors by 
's and we havede�ned the series s�a (u; k) � 1Xj=1 a�j (m)(�k2)ju2j;a�j (m) � (�1j)j!22j �(1 + (m� 12))�(j + 1 + (m� 12)) : (3.20)sb and bj are de�ned similarly, but with (m� 12)! �(m� 12). We write 	+and 	� separately	+ = 
+1 u d2+m(1 + s+a (u; k)) + 
+2 u d2�m+1(1 + s+b (u; k)); (3.21)	� = 
�1 u d2+m+1(1 + s�a (u; k)) + 
�2 u d2�m(1 + s�b (u; k)); (3.22)and identify the sour
e as the term multiplying the 
�2 
oe�
ient and therespon
e as the term multiplying 
+1 
oe�
ient (when m > 1=2). The 
oef-�
ients 
�1;2 are not a
tually independent. If we plug the solution ba
k into
42



(3.5) (with z = 1) and 
olle
t powers of u we get (if m is not integer)0 = [(�2m + 1)
+2 + i 6 k
�2 ℄u d2�m+1 (3.23)+ [(�2m + 1)
�1 + i 6 k
+1 ℄u d2+m+1 + ::: (3.24)where we have generalized k
i !6 k. It follows that
�1 = 12m+ 1 i 6 k
+1 ; (3.25)
+2 = 12m� 1 i 6 k
�2 (3.26)(now it is again 
lear, that we were not allowed to impose boundary 
ondi-tions on both  + and  �).Now we repeat the same exer
ise for half-integer m.	� = e�i!t+i~k~xu d+12 fC�1 (k)Im�1=2(ku) + C�2 (k)K(m�1=2)(ku)g= 
�1 u d2+m� 12+ 12 lnu(1 + s�a (u; k)) + 
�2 u d2�m� 12+ 12 (1 + s�d (u; k)): (3.27)Note that we are using the units in whi
h the radius of AdS is equal to 1.The argument of the logarithm in
ludes fa
tors of the radius to render themdimensionless. The dj 
oe�
ients are de�ned di�erently from aj and bj, butthe spe
i�
 expressions for them is not important for us at the moment.Written separately	+ = 
+1 u d2+m lnu(1 + s+a (u; k)) + 
+2 u d2�m+1(1 + s+b (u; k)); (3.28)	� = 
�1 u d2+m+1 lnu(1 + s�a (u; k)) + 
�2 u d2�m(1 + s�d (u; k)): (3.29)Again, the 
oe�
ients are not independent. In fa
t, when m 6= 1=2 they arerelated in the same way as for not half-integer m. For m = 1=2 one gets
+1 = �i 6 k
�2 : (3.30)Now we turn to the evaluation of the on-shell a
tion. As already men-tioned the bulk term vanishes when evaluated on a solution. The nonzero43




ontribution 
omes from the boundary term Sbdy. We split Sbdy into twoterms Sbdy = Svar + SCT ; (3.31)where Svar are terms required for the variational prin
iple and SCT in
ludes
ounterterms whi
h will 
an
el the divergen
es. As we already knowSvar = Z ddxp
	+	� (3.32)where the integration is over u = � surfa
e and 
 is the determinant of theindu
ed metri
.For m not half-integerSvar = Z ddx 1�d (
+1 
�2 �d(1 + fa+b�)+ 
+2 
�1 �d+2(1 + fb+a�)+ 
+1 
�1 �d+2m+1(1 + fa+a�)+ 
+2 
�2 �d�2m+1(1 + fb+b�)); (3.33)where we have de�nedfa+b� = s+a (�; k) + s�b (�; k) + s+a (�; k)s�b (�; k)�; (3.34)and similarly for fa+a� , fb+a� , fb+b�, all of whi
h are the power series in�2 starting with �2. We now see that only the fourth term 
an diverge ifm > 1=2. We want to rewrite Svar in terms of the 
+1 and 
�2 (response andsour
e). Using (3.26) we getSvar = Z ddx 1�d [
+1 
�2 �d 12m� 1
�2 i 6 k
�2 �d�2m+1(1 + fb+b�) +O(�d+2)℄:(3.35)After having isolated the divergen
es we must write an SCT whi
h must
an
el the divergen
es and has to respe
t the symmetries of the theory, i.e.44



must be 
ovariant in the sour
e - boundary value of 	�. The appropriateSCT is given by SCT = Z ddxp
 1Xj=0 �j(m)	� 6 ���j�	�= Z ddx 1�d 1Xj=0 �1+2j�j(m)	� 6 ��j	�; (3.36)where 6 �� = � 6 � (the power of � 
omes from the inverse vielbein evaluatedat u = �) and �j� is some power j of the s
alar Lapla
ian �� on the u = �surfa
e, whi
h in our 
ase is simply �� = �2�2. Coe�
ients �j(m) are stillto be determined. When we take 	 = eikx and plug in the solution, the
ounterterms be
omeSCT = Z ddx 1�d 1Xj=0 �1+2j�j(m)	� 6 k(�k2)j	�= Z ddx 1�d 1Xj=0 �1+2j�j(m)(�d+2m+2
�1 i 6 k(�k2)j
�1 (1 + fa�a�)+ �d+1
�1 i 6 k(�k2)j
�2 (1 + fa�b�)+ �d+1
�2 i 6 k(�k2)j
�1 (1 + fb�a�)+ �d�2m
�2 i 6 k(�k2)j
�2 (1 + fb�b�)): (3.37)The 
oe�
ients �j(m) are determined by the requirement that the last termmust 
an
el potential divergen
es in Svar, i.e.12m� 1(1 + fb+b�) + 1Xj=0 �j(m)(��2k2)j(1 + fb�b�): (3.38)must vanish order by order in ��2k2 up to order �2m�1. From this equationall the �j(m) 
an be determined re
ursively and thus SCT is �xed. Expli
itexpressions for the �rst of them one 
an �nd in [42℄.The similar story for half-integer m 
an be found in [42℄.Now we 
al
ulate the 2-point fun
tion for the easiest 
ase: pure AdS with45



not half-integerm. For that we impose the regularity 
ondition on the (3.15).Regularity is a
hieved only if C+1 (k) = �C+2 (k). Note, that In � I�n � Kn.This results in 
+1 (k) = 1�(m+ 1=2) �k2�m�1=2 C+1 (k); (3.39)
+2 (k) = 1�(�m + 3=2) �k2��m+1=2 C+2 (k): (3.40)Colle
ting last 2 equations together with (3.26) we �nd the Eu
lidean prop-agator G(k) = �(�m + 1=2)�(m� 1=2) �k2�2m�1 12m� 1 i 6 k:
t (3.41)For half-integer m we pi
k Kn immediately as the regular solution andget similar result.3.4 Lorentzian SignatureLet's think about renormalization. If there are no sour
es on Eu
lidean seg-ments of QFT (as is the 
ase for the va
uum 
orrelators) then only normaliz-able modes are allowed on Eu
lidean AdS. These give only �nite 
ontributionto the a
tion (Dira
 a
tion vanishes obviously and Svar is �nite). Analysison the 
onformal boundary of Lorentzian AdS is exa
tly the same as for theEu
lidean one (we have only to distinguish between spa
elike and timelikemomenta). So, the only sour
e of possible divergen
es are the hypersur-fa
es along whi
h Eu
lidean and Lorentzian segments are glued together.The absen
e of these divergen
es is guaranteed by the mat
hing 
onditions(
ompare [5℄).
46



3.4.1 Feynman PropagatorThe equation of motion on the Lorentzian segment we get by plugging z = 1in (3.6): ��2u � du�u + 1u2 ��m2 �m+ d24 + d2�� q2� � = 0 (3.42)This is the same equation as one gets for Eu
lidean signature of AdS. Theonly di�eren
e is that now q2 = �!2+~k2 and one has to distinguish betweenspa
elike and timelike momenta.Next, we want to dis
uss the solution to this equation of motion. Thesolution for spa
elike momenta when m is not a half-integer is � = u d+12 fC�1 (k)Im�1=2(qu) + C�2 (k)I�(m�1=2)(qu)g; (3.43)where I is a modi�ed Bessel fun
tions of the �rst kind and C�1 , C�2 are spinorsof de�nite 
hirality. We behold both solutions, sin
e we are interested notonly in pure AdS ba
kground, but also in asymptoti
ally AdS, i.e. bothsolutions 
an play a role depending on the 
ondition in the interior of thebulk.When m is a half-integer we need to introdu
e the modi�ed Bessel fun
-tion of the se
ond kind K as a se
ond linearly independent solution and thegeneral solution takes the form � = u d+12 fC�1 (k)Im�1=2(qu) + C�2 (k)Km�1=2(qu)g: (3.44)To get the solution for timelike momenta we analyti
ally 
ontinue the solutionfor spa
elike momenta to the 
ase of imaginary arguments and get (for m -half-integer) � = u d+12 fC�1 (k)Jm�1=2(qu) + C�2 (k)Ym�1=2(qu)g; (3.45)where J and Y are Bessel fun
tions. From the series expansions of Besselfun
tions (Appendix A) we see, that Jn (In) 
orresponds to the normalizable47



mode while Yn (Kn) 
orresponds to the sour
e. Deep in bulk these fun
tionsbehave asu d+12 Jm�1=2(qu) �r 2�qud=2 
os�qu� (m� 1=2)�2 � �4� ; (3.46)
u d+12 Ym�1=2(qu) �r 2�qud=2 sin�qu� (m� 1=2)�2 � �4� (3.47)u d+12 Km�1=2(qu) �r �2qud=2e�qu (3.48)whi
h shows, that for timelike momenta no linear 
ombination of the solu-tions remains �nite as u ! 1, i.e. any solution that does remain �nite asu!1 should be obtained as an in�nite sum over the modes. For spa
e-likemomenta regularity in the bulk sele
ts Kn as the only possible solution. Butnote, that this solution is not normalizable.After we understood the stru
ture of the solution on the Lorentzian bulkM1, let us return to the pres
ription of Balt C. van Rees and Skenderis. Con-sider the Eu
lidean manifoldsM0 andM2 with time 
oordinates�1 < � < 0and 0 < � < 1, respe
tively (
ompare �gure 2.1). The mode solutions onM0 andM2 are obtained by the usual repla
ement t! �i� in the Lorentzianmodes. Physi
ally, we do not have any sour
es on these segments, thus thesolutions on M0 and M2 should be purely normalizable. Furthermore, onlynegative (positive) frequen
ies are allowed on M0 (M2). Expli
itely the so-lutions on these segments are the linear 
ombinations ofej!j�0+i~k~xu d+12 Jm�1=2(qu) on M0e�j!j�2+i~k~xu d+12 Jm�1=2(qu) on M2 (3.49)Next, we 
onstru
t the mode whi
h extends over all the segments. On
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the Lorentzian segment (by analogy with the Eu
lidean 
ase) we try	�1 (t; ~x; u) = 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2�2m�1�1=2�(m� 12)u d+12 Km�1=2(q�u)(3.50)Note, that we still have to spe
ify the integration 
ontour C, sin
e the Besselfun
tions Yn and Kn have bran
h 
uts for integer index n. To understand,what is happening, note that Km�1=2(qu) is unambiguously de�ned for spa
e-like momenta q2 = �!2 + ~k2 > 0. For timelike momenta q2 < 0 we have to
onsider bran
h 
uts. We de�ne the square root q� = p�!2 + ~k2 � i� (justabove the negative real axis). This 
hoi
e (as we shall see later) 
orrespondsto the Feynman i� pres
ription for the propagator. To 
he
k that (3.50) is�nite in the bulk (u ! 1) we perform the integration by deforming the
ontour and integrating along the bran
h 
ut. The result is [5℄	�1 (t; ~x; u) = i��d=2�(m� 1=2)�(d+m� 1=2)22m�1 ud+m+1=2�1=2(�t2 + ~x2 + u2 + i�)d+m�1=2 ;(3.51)whi
h is obviously �nite for large u (but note, that asymptoti
 behavior di�ersfrom that of s
alar �eld). By analogy with [5℄ we easily �nd the extensionsto the Eu
lidean segments	�0 (�0; ~x; u) = i��d=2�(m� 1=2)�(d+m� 1=2)22m�1� ud+m+1=2�1=2(�(�T + i�0)2 + ~x2 + u2 + i�)d+m�1=2 ; (3.52)	�2 (�2; ~x; u) = i��d=2�(m� 1=2)�(d+m� 1=2)22m�1� ud+m+1=2�1=2(�(T � i�2)2 + ~x2 + u2 + i�)d+m�1=2 ; (3.53)satisfying mat
hing 
onditions. We will show how to �nd these modes inmomentum spa
e in se
tion 3.4.3. i� insertions are needed on the on theinitial and �nal hypersurfa
es given by �0 = 0 and �2 = 0. Obviously the49



mat
hing 
onditions are satis�ed.Now it is very important to realize that no other i� insertion is possibleon the Lorentzian mode. If we would 
hange it on the Lorentzian mode wemust 
hange it on the Eu
lidean segments a

ordingly. But su
h a 
hange onthe Eu
lidean segment is not allowed, sin
e it would introdu
e a singularityin either 	�0 (�0; ~x; u) or 	�2 (�2; ~x; u). For instan
e, if we repla
e +i� by �i�on M2, then 	�2 (�2; ~x; u) is singular at �2 = �=2T , around the point given by~x2 + u2 = T 2. After some meditation we 
on
lude, that the i�-insertion in3.51 is the only one whi
h moves the singularity everywhere away from theintegration 
ontour!We split the 
ontour-integrated a
tion intoS = � Z 0�1d�0LE(	[0℄) + Z T�Td�0LL(	[1℄)� Z 10 d�2LE(	[2℄) (3.54)with the LagrangiansLL(	) = ip�g(	�MDM	�m		) (3.55)LE(	) = �pg(	�MDM	�m		) (3.56)Next, we require 
ontinuity of �elds and 
onjugate momenta (1-point fun
-tions) on the gluing surfa
es, whi
h 
orresponds to the 
ontinuity of 	+ and	�: 	[0℄�(�0 = 0; ~x; u) = 	[1℄�(t1 = �T; ~x; u); (3.57)	[1℄�(t1 = T; ~x; u) = 	[2℄�(�2 = 0; ~x; u): (3.58)Note, that Weyl proje
tions are the same on Lorentzian and on Eu
lideansegments. Sin
e both of them must be hermitian no additional fa
tors of iare possible.Next, we are going to show that in order to satisfy these mat
hing 
on-ditions no normalizable modes 
an be added to the (3.50). Try to add some
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normalizable modesY �1 (t; ~x; u) = 1(2�)d Z d! Z d~ke�i!t+i~k~xA�[1℄(!;~k)u d+12 Jm�1=2(jqju)�(�q2);(3.59)Y �0 (�0; ~x; u) = 1(2�)d Z d! Z d~kej!j�0+i~k~xA�[0℄(!;~k)u d+12 Jm�1=2(jqju)�(�q2);(3.60)Y �2 (�2; ~x; u) = 1(2�)d Z d! Z d~ke�j!j�2+i~k~xA�[2℄(!;~k)u d+12 Jm�1=2(jqj u)�(�q2)(3.61)Continuity 
ondition between M0 and M1 is Y �0 (�0 = 0; ~x; u) = Y �1 (t =�T; ~x; u). Although it does not imply equality of integrands immediately,but note that the modes ud=2Jl(qu) are orthogonalZ 10 duu�1Jl(ku)Jl(k0u) = 
Æ(k � k0); (3.62)with 
 a 
onstant. Thus we 
an equate the integrands (up to ! $ �!)A�[1℄(!;~k)e�i!T + A�[1℄(�!;~k)ei!T = A�[0℄(j!j; ~k) (3.63)As we already know, A+ and A� 
oe�
ients are not independent of ea
hother (3.26): A+ = i 6 qA�2m� 1 ; (3.64)whi
h results in!A�[1℄(!;~k)e�i!T � !A�[1℄(�!;~k)ei!T = j!jA�[0℄(j!j; ~k): (3.65)Multiplying 3.63 by ! and 
omparing it with 3.65 we 
on
lude, that A�[1℄(�!;~k)and hen
e also A+[1℄(�!;~k) must vanish for positive !. Analogously, impos-ing 
ontinuity of �elds and momenta on the boundary between M1 and M2implies also vanishing of A�[1℄(!;~k). Physi
ally it naturally means that only51



negative frequen
ies are allowed to the past of the sour
es, and only positivefrequen
ies - in the future. Thus, there are no normalizable states we 
anadd to the propagator on the Lorentzian pie
e of the bulk. (3.50) is unique!Thus we found the unique modes on the entire manifold. The rest is thesame as in the Eu
lidean 
ase. Mat
hing 
onditions have produ
ed 
orre
ti� insertions!3.4.2 Other PropagatorsIn last subse
tion we have shown whi
h i� insertion in q� =p�!2 + ~k2 � i�yields the Feynman or time-ordered propagator, i.e. gives the 
orre
t pathin the !-plane around the poles. From here it is easy to understand whi
hinsertions are needed in order to get time-reversed, retarded and advan
edpropagators. For the referen
e we write them here.For the time-reversed propagators we must repla
e � by �� in the prop-agator, i.e. repla
e q� = p�!2 + ~k2 � i� by q�� = p�!2 + ~k2 + i� = k� in(3.50) and getX�1;time-reversed(t; ~x; u)= 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2��2m�1�1=2�(m� 12)u d+12 Km�1=2(q��u): (3.66)For the retarded propagator the 
orre
t pole stru
ture is given by qret =q�(! + i�)2 + ~k2 (both poles are below the real axis) andX�1;ret(t; ~x; u)= 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2ret2m�1�1=2�(m� 12)u d+12 Km�1=2(qretu): (3.67)Finally, we get advan
ed propagator de�ning qadv = q�(! � i�)2 + ~k2
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(both poles are above the real axis). And againX�1;adv(t; ~x; u)= 1(2�)d ZCd! Z d~ke�i!t+i~k~x qm�1=2adv2m�1�1=2�(m� 12)u d+12 Km�1=2(qadvu): (3.68)3.4.3 Thermal ContourAdS/CFT 
orresponden
e is very important tool for studying the strongly
oupled systems at �nite temperature (and density). Standard approa
hes(like latti
e gauge theory) at 
urrent stage of development 
annot produ
ereliable results for su
h systems. Hen
e at the moment AdS/CFT is the bestapproa
h for investigating interesting temperature e�e
ts of su
h strongly
oupled systems as quark-gluon plasma, super
ondu
tors, super�uids, et
.To introdu
e �nite temperature in QFT one needs to 
ompa
tify the timedire
tion. In AdS/CFT it 
an be done in two inequivalent ways. First, one
an put a bla
k hole in the bulk and asso
iate the Hawking temperature tothe temperature on the �eld theory side. The spa
etime gets 
urved and thereappears a 
ompa
t dire
tion in the boundary. Se
ond, one 
an 
ompa
tifyone of the boundary dire
tions by hand, i.e. one 
an 
al
ulate 
orrelationfun
tions in thermal ensemble (and not in the va
uum). In fa
t, for a giventemperature only one of these me
hanisms 
an give a 
onsistent result. Thereis the so 
alled Hawking-Page transition between these two regimes [20℄.In the 
ontext of real-time holographi
 renormalization we are not inter-ested in the ba
kgrounds with a horizon, sin
e then there are no modes, butonly quasinormal modes, i.e. all the poles are away from the real axis andthere is no question about 
hoosing the 
ontour or i�-insertions.Here we 
al
ulate a 
orrelation fun
tion in a thermal ensemble. To 
om-pute a thermal 
orrelator we take the Keldysh-S
hwinger 
ontour with thetime dire
tion to be 
ompa
t of period � (see �gure 3.1). Fermioni
 �eldsmust satisfy antiperiodi
 boundary 
onditions: 	(0) = �	(�i�). Denotethe segments by M1(t1 2 [0; T ℄), M2(t2 2 [T; 2T ℄) and M3(�3 2 [0; �℄). Wepla
e a Æ-fun
tion sour
e at t1 = t̂1, ~x = 0. We make an edu
ated guessand look for a thermal propagator as a linear 
ombination of retarded and53
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Figure 3.1: Keldysh - S
hwinger 
ontour for 
al
ulating thermal propagator.Figure is taken from [43℄.advan
ed propagators	�1 (t1; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)� Z d! Z d~ke�i!(t1�t̂1+i~k~x)�A(!;~k)qm�1=2ret Km�1=2(qretu)+B(!;~k)qm�1=2adv Km�1=2(qadvu)�: (3.69)with the so far unknown 
oe�
ients A and B. In order for this to 
orrespondto a Æ-fun
tion sour
e we must have A+B = 1 (B = �A gives a normalizablemode).On other segments only normalizable modes are allowed and we make anansatz for the modes there	�2 (t2; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)Z d! Z d~ke�i!(2T�t2�t̂1)+i~k~xC(!;~k)qm�1=2Jm�1=2(qu)�(�q2) (3.70)	�3 (�3; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)Z d! Z d~ke�!(�3�it̂1)+i~k~xD(!;~k)qm�1=2Jm�1=2(qu)�(�q2) (3.71)with the to be determined 
oe�
ients C and D.54



The gluing 
onditions are	�1 (t1 = T ) = 	�2 (t2 = T )	�2 (t2 = 2T ) = 	�3 (�3 = 0)	�3 (�3 = �) = �	�1 (t1 = 0): (3.72)Note an important minus sign in the last equation. It is required by theantiperiodi
ity of thermal 
orrelators and will give rise to the Fermi statisti
sas we shall see shortly.In what follows we will use the following tri
k to determine unknown
oe�
ients. We multiply (3.72) with e�i~k0~xJm�1=2(jq0ju) with q02 = �!02+~k02and integrate over u and ~x. We shall make use of the following identities forBessel fun
tions: Z 10 dxxJn(qx)Jn(q0x) = 1q Æ(q � q0) (3.73)and Z 10 dxxJn(ax)Kn(bx) = �ab�n 1a2 + b2 : (3.74)Let us �rst 
onsider the boundary between M1 and M2. There we havean equalityZ d! Z d~ke�i!(T�t̂1)+i~k~xu�A(!;~k)qm�1=2ret Km�1=2(qretu)+B(!;~k)qm�1=2adv Km�1=2(qadvu)�= Z d! Z d~ke�i!(T�t̂1)+i~k~xuC(!;~k)qm�1=2Jm�1=2(qu): (3.75)
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The 
omputation for the left-hand side givesZ ~dxd!2� d~k(2�)d e�i!(T�t̂1)+i(~k�~k0)~x� Z 10 du�A(!;~k)qm�1=2ret uJm�1=2(jq0ju)Km�1=2(jqretju)+B(!;~k)qm�1=2adv uJm�1=2(jq0ju)Km�1=2(jqadvju)�= Z d!2� e�i!(T�t̂1) " A(!;~k0)jq0jm�1=2�q02 � (! + i�)2 + ~k02 + B(!;~k0)jq0jm�1=2�q02 � (! � i�)2 + ~k02#= �jq0jm�1=2 Z d!2� e�i!(T�t̂1) " A(!;~k0)(! + i�)2 � !02 + B(!;~k0)(! � i�)2 � !02#= ijq0jm�1=22!0 hA(!0; ~k0)e�i!0(T�t̂1) + A(�!0; ~k0)ei!0(T�t̂1)i ; (3.76)where in the last line we 
losed the 
ontour in the lower half-plane (pi
kingadditional minus sign be
ause of the negative orientation) and thus only the�rst term has support after the sour
e is swit
hed o� (as it should be forretarded propagator).The 
omputation on the right-hand side yieldsZ d~xd!2� d~k(2�)d e�i!(T�t̂1)+i(~k�~k0)~xC(!;~k)� Z 10 duuJm�1=2(jqju)Jm�1=2(jq0ju)�(�q2)= Z d!2� d~ke�i!(T�t̂1)Æ(~k � ~k0)C(!;~k)jq0j Æ(q � q0)�(!2 � ~k2)= Z d!2� e�i!(T�t̂1)C(!;~k0)Æ(! � !0) + Æ(! + !0)!0 �(!2 � ~k02)= 12�!0 hC(!0; ~k0)e�i!0(T�t̂1) + C(�!0; ~k0)ei!0(T�t̂1)i �(!02 � ~k02): (3.77)Equating (3.76) and (3.77) we �nally getC(!;~k) = i�jqjm�1=2A(!;~k): (3.78)The mat
hing between M3 and M1 is performed likewise, the only dif-56



feren
e being that now the advan
ed propagator gives non-zero 
ontributionand be
ause of the opposite 
ontour orientation we get additional minus signwhi
h 
an
els another minus 
oming from antiperiodi
ity. Altogether,D(!;~k)e��! = i�jqjm�1=2B(!;~k): (3.79)Mat
hing between M2 and M3 trivially givesC(!;~k) = D(!;~k): (3.80)Last three equation together with A+B = 1 giveA(!;~k) = 11 + e��! ; (3.81)B(!;~k) = 11� e�! (3.82)and 	�1 (t1; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)� Z d! Z d~ke�i!(t1�t̂1)+i~k~x�qm�1=2ret Km�1=2(qretu)1 + e��!+ qm�1=2adv Km�1=2(qadvu)1� e�! �: (3.83)We have derived the well-known formula for a thermal 
orrelatorhT (O(x)O(x0))i = �N(!)�adv(!;~k) + (1 +N(!))�ret(!;~k) (3.84)It is very satisfa
tory that the real-time formalismwith all its te
hni
al detailsprodu
es some results whi
h we expe
t to hold quite generally.(3.83) 
an be equivalently rewritten as retarded propagator plus �thermal
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bath� 
ontribution:	�1 (t1; ~x; u) = 1(2�)d u d+122m�1�1=2�(m� 12)� Z d! Z d~ke�i!(t1�t̂1)+i~k~x�qm�1=2ret Km�1=2(qretu)+ qm�1=2adv Km�1=2(qadvu)� qm�1=2ret Km�1=2(qretu)1� e�! �: (3.85)For the sour
e di�erent from the Æ-fun
tion one should repla
e 1 by theFourier transform of the sour
e in the numerators of (3.82).
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Chapter 4Non-relativisti
 Holography
4.1 Lifshitz Spa
etime and Condensed MatterPhysi
sOne of the resear
h areas in whi
h gauge/gravity duality is su

essfullyapplied is 
ondensed matter physi
s. For a review and further referen
essee [44℄. Probably, the most important feature of 
ondensed matter systemsis that they are not relativisti
. This property needs to be re�e
ted in thedual theory, i.e. the lo
al symmetry group of the underlying spa
etime mustbe not Lorentzian, but for example Galilean. More spe
i�
ally, one speaksabout anisotropi
 spa
es, i.e. spa
es whi
h are invariant under anisotropi
s
alings x! �x; t! �zt; (4.1)where z is 
alled the dynami
al exponent. Roughly speaking, there aretwo families of spa
etimes whi
h satisfy this invarian
e 
ondition: so-
alledS
hroedinger spa
etime [45,46℄ and Lifshitz spa
etime [47,48℄ whi
h has themetri
 (3.1). The �rst has the entire Galilean group as its symmetry, but thelast do not admit Galilean boosts and a mass operator.Fermions on the S
hroedinger spa
etimes were analyzed in [49, 50℄. Herewe will 
onsider Lifshitz spa
etimes. Theories whi
h do not admit Galilean59



boosts or a mass operator (and therefore parti
le number is not 
onserved)have a number of 
ondensed matter physi
s appli
ations, in
luding optimallydoped 
uprates and non-Fermi liquids near the 
riti
al point [51℄. We �rstperform the 
al
ulations for the analyti
ally solvable 
ase (z = 2; m = 0) andthen analyze the stru
ture of divergen
es for the general z and m.4.2 Eu
lidean Propagator for Massless Fermionson Lifshitz Spa
etime with z = 2Now we 
onsider the 
ase of non-relativisti
 gauge/gravity duality. We 
anperform analyti
al analysis for massless spinor on Lifshitz spa
etime withz = 2. We de�ne the proje
tors �� = 12(1� 
u
t). Then 	� = ��	 satisfy
u
t	� = �	�. We 
onsider the 
ase of Eu
lidean signature �rst. Theequation of motion be
omes�u2�2u � (d+ 1)u�u + (�!2u4 � (k2 � i!)u2 + (d2 + 1)2 � 14)� �(u) = 0(4.2)It is interesting to 
ompare this equation to the equation of motion for a s
alaron Lifshitz [48℄. It redu
es to (4.2) if one repla
es momentum of the s
alark2 by (k2 � i!) and identi�es the mass of the s
alar m2 with (d2 + 1)2 � 14 .Near the boundary we 
ould make the ansatz  (u) = u�(1 + O(u)). The
hara
teristi
 exponents are d+32 and d+12 .(4.2) is the Hermite equation and has general solution �(u) = u d+12 e�!u22 �
�1 F (��; 1=2;!u2) + 
�2 uF (12 + ��; 3=2;!u2)� ; (4.3)where C� are spinors of de�nite 
hirality, �+ = k24! + 1�i4 , �� = �+ + i=2and F is 
on�uent hypergeometri
 fun
tion. The �rst term has 
hara
teristi
exponent d+12 (non-normalizable solution) and the se
ond d+32 (normalizable).Thus we interpret the se
ond term as a sour
e, and the �rst as a respon
e(one-point fun
tion). 60



The power series expansions of the 
on�uent hypergeometri
 fun
tion isF (a; b; z) = 1Xn=0 (a)nzn(b)nn! (4.4)where (a)n = a!(a�n)! is the Po
hhammer symbol. It is 
onvenient to rewrite �(u) as power series: �(u) = e�!u22 u d+12 �
�1 (1 + s�a (u; k)) + u
�2 (1 + s�b (u; k))� ; (4.5)where s1;2 are series in even powers of u starting with u2.Now we 
al
ulate the on-shell a
tion. As usually for fermions the bulkterm vanishes and we have only the boundary term. As we will see immedi-ately we do not need any 
ounterterms in this 
ase and thusSbdy = Z ddxp
	+	�: (4.6)We plug (4.5) in Sbdy and getSbdy = Z ddx 1�d e�!�22 (
+1 
�1 �d(1 + fa+a�)+ 
+1 
�2 �d+1(1 + fa+b�)+ 
+2 
�1 �d+1(1 + fb+a�)+ 
+2 
�2 �d+2(1 + fb+b�)); (4.7)where we have de�nedfa+b� = s+a (�; k) + s�b (�; k) + s+a (�; k)s�b (�; k)� (4.8)and similarly for fa+a� , fb+a� , fb+b�, all of whi
h are the power series in �2starting with �2. Now we see that as �! 0 only the �rst term remains �niteand all the other terms vanish. Thus the on-shell a
tion isS = Z ddx
+1 
�1 +O(�): (4.9)61



Renormalized a
tion is Sren = lim�!0S. It generates the 
onne
ted 
orrela-tors for �eld theorye�Sren[
�1 ;
�1 ℄ = �exp �Z ddx(
�1 O +O
�1 )�� (4.10)As usually, the 
oe�
ients 
�1;2 are not independent. Plug (4.3) into theequation of motion (3.5) and multiply by 
u from the left
u(i!u2
t + iku
i + u
u�u � d+ 12 
u) = (i!u2
u
t + iku
u
i + u�u � d+ 12 )( + +  �)= (i!u2 + iku
u
i + u�u � d+ 12 ) + + (�i!u2 + iku
u
i + u�u � d+ 12 ) �= (ik
u
i(
+1 + 
�1 ) + (
+2 + 
�2 ))u d+32 + ::: (4.11)whi
h implies 
�2 = �ik
u
i
+1 (4.12)
+2 = �ik
u
i
�1 (4.13)In order to 
al
ulate Eu
lidean propagator we need to impose regularityof the solution in the bulk. For this we need the asymptoti
 expansion of
on�uent hypergeometri
 fun
tions deep in the bulkF (a; b; z) / �(b)�(b� a)(�z)�a(1 +O(1=z)) + �(b)�(a)ezza�b(1 +O(1=z)) (4.14)Regularity in the bulk is a
hieved when
+1 = � 12p! �(�+)�(�+ + 1=2)
+2 (4.15)Now we are in position to 
al
ulate the renormalized 
orrelator
OO�ren = G(k)
t; (4.16)62



where G(k) is de�ned by 
+1 = �G(k)
t
�1 . Combine (4.15) with (4.13) andget 
OO�ren = �(�1)1=42 �(�+)�(�+ + 1=2) kp!
u
i= �(�1)1=42 �( k24! + 1�i4 )�( k24! + 3�i4 ) kp!
u
i: (4.17)Note, that the modes do not have any poles on the real axis, thus thereare no i�-insertions needed for the real-time propagators.4.3 On the Renormalization for Fermions onLifshitz Spa
etimesIn this se
tion we derive the evaluate the leading terms of the on-shell a
tionand derive the 
ounterterms for general z and m. For simpli
ity we work inEu
lidean signature.For this purpose it is 
onvenient to rewrite the equation (3.6) in positionspa
e:�u2�2u � (d+ z � 1)u�u +�u2z�2t + (z � 1)uz
u
t�t + u2�� +M2��	�(u; t; z) = 0; (4.18)where we de�ned 	� = 12(1 � 
u)	 and M2� = �d+z2 �2 � (m � 1=2)2. Notealso that � 
ontains derivatives only with respe
t to spatial 
oordinates.(4.18) is a se
ond order equation. Near the boundary two di�erent s
alingbehaviors are possible, with the 
hara
teristi
 exponents determined by�<� = 12 (d+ z � j2m� 1j) ; (4.19)�>� = 12 (d+ z + j2m� 1j) : (4.20)Note that the di�eren
e �>� � �<� = j2m � 1j does not depend on z or d.63



A

ording to the usual holographi
 pres
ription, �<� is the s
aling behaviorof the sour
e, whereas the response s
ales as �>+.Next, we dis
uss the asymptoti
 behavior of the fermion near the bound-ary. For notational simpli
ity we drop � indi
es. The 
ru
ial point to noti
eis that the equation (4.18) 
ontains not only integer powers of u, but alsopowers of uz. Be
ause of this our Ansatz for the asymptoti
 solution is	(u; t; x) = u�< (u; t; x) + u�> ~ (u; t; x)= u�< Xk;l2Nu2k+lz (2k+lz)(t; x) + u�> Xk;l2Nu2k+lz ~ (2k+lz)(t; x):(4.21)We expe
t that the so far unknown fun
tions  (2k+lz)(t; x) are lo
al fun
tionof  (0)(t; x).From the Ansatz it is 
lear that the logarithmi
 mode, 
orresponding to
onformal anomaly, will appear when �>� � �<� = j2m � 1j = 2k + lz forsome integer k and l. In parti
ular, for even z (as for z = 1) this modeappears when m is half-integer. For m = 0 the 
onformal anomaly appearsonly for k = 0, l = 1 and z = 1. These 
onditions are di�erent from theanalogous 
ondition for the s
alars [48℄, sin
e the equation of motion for thes
alar in
ludes only even powers of uz.The details of the asymptoti
 expansion depend on the values of d; z andm. We are going to 
onsider a 
ouple of representatives 
ases.Let us assume, that 1 < z < 2. Then the asymptoti
 expansion beginswith  (u; t; x) = (0)(t; x) + uz (z)(t; x) + u2 (2)(t; x) + u2z (2z)(t; x)+ u3z (3z)(t; x) + :::+ u2+z (2+z)(t; x) + :::+ u4 (4)(t; x) + ::: (4.22)By plugging this Ansatz into the equation of motion (4.18) we get the ex-64



pressions for the �rst  (2k+lz)(t; x) in terms of  (0)(t; x),�(�< + z)(�< � d)�M2� (z) + (z � 1)
u
t�t (0) = 0; (4.23)�(�< + 2)(�< + 2� d� z)�M2� (2) +� (0) = 0; (4.24)�(�< + 2z)(�< + z � d)�M2� (2z) + (z � 1)
u
t�t (z) + �2t  (0) = 0:(4.25)Another representative 
ase is z = 2. First, for non-half-integer m theexpansion be
omes	(u; t; x) =u�<( (0)(t; x) + u2 (2)(t; x) + u4 (4)(t; x) + :::)+ u�>( ~ (0)(t; x) + u2 ~ (2)(t; x) + :::): (4.26)Again,  (2)(t; x) and  (4)(t; x) are determined by�(�< + 2)(�< � d)�M2� (2) + 
u
t�t (0) +� (0) = 0; (4.27)�(�< + 4)(�< + 2� d)�M2� (4) + �2t  (0) + 
u
t�t (2) +� (2) = 0:(4.28)For illustration let us 
onsider also the 
ase of half-integer m. For de�-niteness, we set m = 3=2. Then the expansion takes the form	(u; t; x) =u�<( (0)(t; x) + u2( (2)(t; x) + lnu ~ (2)(t; x)) + :::): (4.29)The 
oe�
ient  (2)(t; x) 
annot be determined by the asymptoti
 analysissin
e it 
orresponds to the response. It must be derived from the solutionwhi
h is regular in the bulk. For ~ (2)(t; x) we have(�< + 1� d�M2) ~ (2)(t; x) + 
u
t�t (0) +� (0) = 0: (4.30)Next, we determine the 
ounterterms. The on-shell a
tion isSon-shell = Z dd�1xdtpgindu
ed(	+	�)u=�: (4.31)
65



In the 
ase of 1 < z < 2, after plugging in the asymptoti
 solution, (4.31)leads toSon-shell = Z dd�1xdt �1�jm�1=2j�jm+1=2j� � (0)+  (0)� + �z( (z)+  (0)� +  (0)+  (z)� ) + �2( (2)+  (0)� +  (0)+  (2)� )+ �2z( (2z)+  (0)� +  (0)+  (2z)� + 2 (z)+  (z)� ) + :::�: (4.32)For z = 2 one has a similar stru
ture but without the �z and �2z terms.Now, we should express the divergent part of the on-shell a
tion onlyin terms of the sour
e  (0)� . This 
an be done by plugging the asymptoti
expansion (4.22) ba
k into the �rst order equation of motion (3.5). Here wederive the 
ounterterm only for the leading divergen
e. For m 6= 1=2 we get (0)+ = i
u
iki1�2m  (0)� , or in position spa
e  (0)+ = 
u
i�i1�2m  (0)� , where for z 6= 1 istands only for spatial dire
tions.For 1 < z � 2 and 1=2 < m � z+12 only the �rst term in (4.32) is divergentand the 
ounterterm a
tion isSCT = Z dd�1xdtpgindu
ed 
u
i�i1� 2m (0)�  (0)� : (4.33)Trivially, this 
ounterterm is invariant with respe
t to anisotropi
 s
aling.For the other ranges of parameters the de�ning prin
iple of �nding the 
oun-terterm remain the same.(4.33) is the main result of this se
tion. It allows to perform holographi
renormalization in the 
ases of asymptoti
ally Lifshitz spa
es, i.e. whenanisotropi
 s
aling behavior appears in the UV region. It is also ne
essaryto have these 
ounterterms for numeri
al studies of su
h systems.

66



Chapter 5Con
lusionsIn this thesis we 
onsidered one parti
ular pie
e of holographi
 di
tionary,namely how the real-time 
orrelation fun
tions are en
oded in the bulk the-ory. In parti
ular, we studied, how 
an one get 
orre
t i�-insertions. Wegeneralized the formalism introdu
ed in [4, 5℄ for the 
ase of fermions andillustrated it on easy examples. Real-time holography is a parti
ularly inter-esting tool, sin
e it allows us to study a
tual dynami
s of physi
al systems,in parti
ular one 
an 
onsider response of the system to small perturbations.In re
ent years it was understood that fermioni
 �elds in strongly 
oupledsystems have parti
ularly interesting behavior and that using the te
hniquesof gauge/gravity duality one 
an understand many interesting and impor-tant features of su
h systems like the quark-gluon plasma, super
ondu
tors,non-Fermi liquids, et
. Fermioni
 �elds in real time is a natural marriage ofan interesting obje
t with a useful tool.In the �rst two 
hapters we gave a short introdu
tion into the subje
tof AdS/CFT 
orresponden
e and hopefully a pedagogi
al review of the te
h-niques of holographi
 renormalization for Eu
lidean 
orrelation fun
tions andreal-time propagators.The main new results are 
on
entrated in the third and fourth 
hapters.There we have derived the equation of motion for fermions on general Lifshitzspa
etimes and identi�ed the 
ases when this equation 
an be solved ana-lyti
ally. For the 
ase of AdS spa
etime we 
onstru
ted time-ordered, time-67



reversed, advan
ed and retarded propagators with the 
orre
t i�-insertions.Using the Keldysh-S
hwinger 
ontour we also 
al
ulated a propagator onthermal AdS.In another analyti
ally solvable (and also phenomenologi
ally interesting)
ase (massless fermions on the Lifshitz spa
etime with z = 2) we 
al
ulatedthe Eu
lidean 2-point fun
tion. Sin
e the mode solutions in this 
ase do notin
lude poles on the real axis we did not need to derive i�-insertions. Forthe 
ase of general z and m we investigated the asymptoti
 expansion of the�elds and obtained the stru
ture of divergen
es. We also found the 
ovariant
ounterterm a
tion whi
h 
an
els the highest order divergen
e.The results obtained here 
an be used for studying strongly 
oupled sys-tems whi
h approa
h AdS (Lifshitz) geometry in the UV region. For example,retarded propagator 
an be used to 
al
ulate di�erent transport 
oe�
ientsin su
h systems. For the numeri
al 
al
ulation the divergen
es of the on-shella
tion and the stru
ture of 
ounterterms we derived are of great importan
e.We would like to mention some dire
tions for the future work. First,we need to 
onstru
t a Lifshitz bla
k hole to des
ribe a non-relativisti
 �eldtheory at �nite temperature. And se
ondly, it would be interesting to showfor the fermions, that for the retarded propagator the real-time pres
riptionof [4,5℄ is equivalent to the infalling wave boundary 
ondition at the horizon.

68



Appendix ABessel Fun
tionsHere we 
olle
t some mathemati
al fa
ts 
on
erning di�erent Bessel fun
-tions.Series expansion (de�nition) of Bessel fun
tions areJn(x) = �x2�n 1Xk=0 (�1)kk!�(k + n + 1) �x2�2k ; (A.1)Yn(x) = 2�Jn(x) log x2 � 1� �x2��n n�1Xk=0 (n� k � 1)!k! �x2�2k� 1� �x2�n 1Xk=0 (�1)kk!(k + n)! [ (n + k + 1) +  (k + 1)℄�x2�2k (A.2)where  (x) = �0(x)=�(x) is the digamma fun
tion.The series expansions of modi�ed Bessel fun
tions areIn(x) = �x2�n 1Xk=0 1k!�(k + n + 1) �x2�2k ; (A.3)Kn(x) = (�1)n�1In(x) log x2 � �x2��n n�1Xk=0 (�1)k(n� k � 1)!k! �x2�2k+ (�1)n2 �x2�n 1Xk=0  (n + k + 1) +  (k + 1)k!(k + n)! �x2�2k (A.4)Note that modi�ed Bessel fun
tions are the ordinary Bessel fun
tions of69



imaginary argument.For the large values of the argument x >> 1 we get asymptoti
 expansionsJn(x) �r 2�x 
os(x� n�2 � �4 ); (A.5)Yn(x) �r 2�x sin(x� n�2 � �4 ); (A.6)In(x) � exp2�x�1 + (1� 2n)(1 + 2n)8x + :::�; (A.7)Kn(x) �r 2�xe�x: (A.8)
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