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Summary

Tree tensor networks (TTN) are often considered to be suitable a ansatz states for critical sys-

tems, however, this was not established rigorously. Here we construct an explicit TTN that

yields multipoint functions of 2D CFTs and establish a general approximation scheme. We also

give quantitative estimates for the approximation error for a rather large class of CFTs, namely

WZW models, thus providing both suitable initial values and a rigorous justi�cation of this class

of variational methods.
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Chapter 1

Introduction

1.1 Tensor networks

Tensor networks (TN) were originally proposed as a family of numerical approaches to study

strongly entangled quantum many-body systems, including quantum criticality and topological

order. However, the range of applicability of the tensor network formalism has quickly extended

well beyond the computational domain.

TN are currently also investigated as a natural framework to classify exotic phases of quantum

matter, as the basis for new non-perturbative formulations of the renormalization group and

interacting quantum �eld theories, and as a lattice realization of the AdS/CFT correspondence

in quantum gravity (see e.g. [Or�u14] or [ZCZW15] for a review).

We will use a term tensor to refer to a multidimensional array of complex numbers.

To understand why TN are natural and needed, let us consider a chain of n spin- 1
2 fermions.

If we are interested, for example, in the ground-state wave function, it is a superposition of

computational basis vectors

|ψ〉GS =
∑

i1,...,in∈{0,1}
Ci1,...iN |i1 . . . in〉. (1.1)

In general it leaves us with 2n − 1 degrees of freedom - that is, the number of components of

Ci1,...in minus phase and normalization. This immediately yields a problem, as even relatively

small systems of, say, a hundred particles do not �t into the memory of any existing classical

computer. This means we need to work in some speci�c subspace of wave functions, and this

subspace should contain wave functions which are arbitrarily close to ground-state ones and it

should allow for entanglement.

To proceed, let us imagine that we can decompose Ci1,...in into two smaller tensors

Ci1,...in = Ai1,...ikBik+1,...in . (1.2)
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This already yields a simpli�cation, as now we have just 2k + 2n−k − 1 degrees of freedom. This

number can be much smaller than in the original case, however, it does not satisfy one of the

conditions � the wave function is necessarily a product state, thus we have two not entangled

parts

|ψ〉GS =
(∑

i1,...,ik∈{0,1}Ai1,...in |i1 . . . ik〉
)

·
(∑

ik+1,...,in∈{0,1}Bik+1,...in |ik+1 . . . in〉
)
. (1.3)

However, we can introduce some additional complexity - let there be additional index α that

run from 1 to χ

Ci1,...in =
∑

a∈{0,...,χ−1}
Aai1,...ikB

a
ik+1,...in

, (1.4)

here a itself can be a multi-index. The quantity χ is called the bond dimension. Now there are

χ(2k + 2n−k) − 1 degrees of freedom. If χ is not too large, it can still be signi�cantly smaller

than 2n− 1 in the general case. To see that this ansatz can give entangled states, let us consider

the GHZ state

|GHZn〉 =
|0〉⊗n + |1〉⊗n√

2
, (1.5)

which is known to be entangled (see e.g. [GHZ07]), and demonstrate that it can be obtained via

the decomposition discussed above. Take a ∈ {0, 1}, so that the bond dimension is 2. We can

set

Aai1,...ik =





1
4√2

if a = i1 = · · · = ik

0 otherwise
(1.6)

and use an analogous de�nition for Bαik+1,...in
- it is non-zero and equals 1

4√2
only if all of the

indices are the same. It is trivial to check that with such de�nitions we get |GHZn〉.
As χ(2k + 2n−k)− 1 can still be too large, we would like to reduce A and B further - that is,

to introduce smaller tensors that are being contracted with each other. To simplify notation �

and contractions of n tensors often start to look very complicated in standard notation, picture

representation for tensors and their contraction is introduced. Also this notation is proved to be

useful in introducing patterns of tensor contractions that correspond to physical intuition.

In tensor network diagrams tensors are represented by shapes and their indices by lines

emerging from the shapes.
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Figure 1.1: Tensor network diagrams: (a) a scalar, (b) a vector, (c) a matrix and (d) a tensor of

rank 3. Image taken from [Or�u14].

i1 i2 in

n-rank tensor Ci1i2...in

Figure 1.2: Diagram for some general tensor

When two shapes share a line, it corresponds to contraction of the corresponding index.

i1 i2 in

Ci1i2...inj1j2...jm =
∑
a1...aK

Aa1,...aKi1i2...in
Ba1,...aKj1j2...jm

j1 j2 jm

a1

A B
aK

Figure 1.3: A shared line corresponds to a contracted index.

Figure 1.4: The trace of the product of 6 matrices. Image taken from [Or�u14].

It is also possible to join two lines into 1 multi-index, if they are shared by the same two

tensors, and it is possible to join shapes in such way that outer lines do not change.
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i1 i2 in j1 j2 jm

a1

A B
aK

i1 i2 in j1 j2 jm

A B
a

=

=

multi-index

=

C

i1 i2 in j1 j2 jm

Figure 1.5: Joining shapes and introducing multi-indices

Consider a physical system that is de�ned on some arbitrary lattice. Let A be an operator

which depends only on the lattice sites k, . . . ,m. Then we can also represent such an operator

by some shape with m− k ingoing and outgoing lines � 2(m− k) lines in total. If we have such a

diagram for |ψ〉, then we will denote 〈ψ| by the same diagram but which is �ipped upside down.

Then we will have the following �gure 1.6 representing the expectation value 〈ψ,Aψ〉 of A with

respect to ψ

|ψ〉

A

〈ψ|

i1 i2

ik im

in

Figure 1.6: Diagrammatic expression for 〈ψ,Aψ〉

Suppose A : V n → V m is an operator that has n ingoing andm outgoing lines. Given positive
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de�nite Hermitian forms 〈·, ·〉V n : V n × V n → C and 〈·, ·〉Vm : V m × V m → C, one can de�ne

the adjoint of operator A, namely A† : V m → V n, via

〈Aψ, φ〉Vm = 〈ψ,A†φ〉V n ∀ψ ∈ V n and ∀φ ∈ V m (1.7)

and such object is represented, just like 〈ψ|, by a �ipped diagram (see �gure 1.7).

i1 in

j1 jm

A

i1 in

j1 jm

A†

Figure 1.7: The adjoint of A is represented by �ipped diagram.

We would like to represent objects like Ci1,...iN which have N outer lines. If we have a tensor

with k outer lines, we can contract it with another tensor in such a way that the total number

of outer lines increases. This requires at least tensors of rank 3 (see �gure 1.8).

i1 im

im+1

i1 im

im+1
=A B A ·B

i1 im

im+2
= A ·B

im+1i1 im

im+1
A B

Figure 1.8: In order to construct a tensor with many legs from a low-rank connected tensors,

one needs tensors of at least rank 3.

Two disconnected components correspond to a product state. We can obtain a rank n tensor

with no disconnected parts by contraction of O(n) rank-3 tensors. This gives a state which is

potentially entangled and has only O(n) parameters! This is a great simpli�cation of the task,

however, it is important to see that such states are indeed physically relevant.
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1.1.1 Matrix Product States (MPS)

Matrix product states (MPS) are states of the form

|ψ〉GS =
∑

i1,...,in∈{0,1}

∑

a1,...,an

Aa1,a2i1
·Aa2,a3i2

· . . . ·Aan,a1in
|i1i2 . . . in〉 (1.8)

which corresponds to the picture:

i1 i2 in

Figure 1.9: Diagrammatic representation of MPS.

If each ai ∈ {1, . . . , χ} for a constant χ, then there are 2nχ2 − 1 = O(n) parameters in such

an ansatz. The number χ is called the bond dimension of the MPS. We can cut the system in

two parts by removing one of the connections between tensors that constitute the MPS. Then,

we can use Schmidt decomposition

|ψ〉GS =

∞∑

α=0

BαψL,GS ⊗ ψR,GS (1.9)

with Schmidt coe�cients Bα. As the bond dimension in the MPS approximation is χ, we can

quantify error of the approximation as

ErrorMPS =

∞∑

α=χ

|Bi|2. (1.10)

It was proven by Hastings [Has07] that ground states of gapped Hamiltonians in one spatial

dimensions can be arbitrarily well approximated by matrix product states in an e�cient manner.

That is, ErrorMPS scales as χ−c, where c is a constant that depends on the energy gap and the

dimension of the Hilbert space on each site.

The MPS ansatz is used in various numerical algorithms including the density matrix renor-

malization group (DMRG) ( [Whi92], for a more up-to-date review see e.g. [Sch05]). As of today

it remains a method of choice for the analysis of a large number of one-dimensional systems.

An important generalization of the MPS to two-dimensional (or, in a similar way, higher-

dimensional) systems are projected entangled pair stares (PEPS) [VC04]. This approach enables

to not only describe the bulk of the material, but also the edge modes [YLP+14].

There have been studies that generalize the MPS to a continuous number of variables [VC10].

These continuous MPS, or cMPS, are provide new way approach to quantum �eld theory and a

fresh view on the real-space renormalization group methods (see e.g. [OEV10] and [JBH+15]).
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Recently it was proven by K�onig and Scholz that CFTs can be described by the MPS [KS15].

To understand their result one should be familiar with the notion of transfer operator and trun-

cation parameter that can be found in section 2.1. K�onig and Scholz have proved that the error,

namely, the operator norm of the di�erence between the transfer operator and truncated trans-

fer operator, decreases with the truncation parameter N exponentially, while bond dimension

increases as the number of vectors with weight less or equal to nN , where n is the number of

(non-vacuum) �elds (see section 1.2).

Our work is largely inspired by [KS15], however, it will deal with tree tensor networks.

1.1.2 Tree Tensor Networks (TTN) and MERA

Another approach which has at most rank-3 tensors is the tree tensor network (TTN). Unlike

MPS it has a natural interpretation in terms of renormalization. TTN has following diagrammatic

representation:

Figure 1.10: Tree tensor network for 16 = 2m sites. Insert a) shows the isometric property (see

�gure 1.7). Image taken from [SGM+10].

Indeed, this picture can be interpreted as two neighboring sites being mapped to one renor-

malized site per level of the tensor network. This approach has some similarity to the original

spin-blocking procedure by Kadano� (see e.g [EWKK14]). It was also shown that many-body

states whose wave-function admits a representation in terms of a uniform binary tree tensor

decomposition obey a power-law for the two-body correlations functions [SGM+10]. Thus, TTN

appear to be a reasonable ansatz for critical systems.

In order to have e�cient contraction of a TTN - that is, to be able to compute expectation

values of local operators fast, the isometry condition is introduced. Let us call the renormalization

tensor ε. Suppose that every line on the lower edge of ε corresponds to a Hilbert space V with

an inner product 〈·, ·〉V : V × V → C. We would like to have a positive de�nite Hermitian form
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〈·, ·〉V 2 : V 2 × V 2 → C such that εε† = 1, where ε† denotes the adjoint (1.7). With isometry

condition all tensors that do not take part in renormalization of the sites which local operator

depend on can be contracted (see �gure 1.11), thus the recourses needed for expectation value

calculation can be signi�cantly reduced.

A

ε

ε†

A=

Figure 1.11: Usage of isometry condition εε† = 1 for TTN with 8 sites for local operator that

depends only on 2 sites. As we can see, TTN simpli�es signi�cantly.

TTN can easily be generalized to non-binary trees, however for simplicity we will restrict

ourselves to the binary case.

There are numerical studies which simulate small quantum chemical systems and support

the idea that tree tensor networks can be much more e�cient than current state-of-art MPS-

based algorithms such as DMRG. This can be caused both by the polynomial behavior of the

correlation function (see e.g [MVLN10]) and the fact that some systems, such as molecules, have

tree-like structure (see e.g. [NC13]).

Another non-trivial generalization of TTN is the Multiscale Entanglement Renormalization

Ansatz (MERA) [Vid08]. It also has an explicit interpretation as a renormalization group

method, but, compared to TTN, MERA has an extra type of operation � disentanglers. Their

purpose is to reduce entanglement of neighboring sites which are not being renormalized to one

site in the next step. Recently MERA was applied to a large class of systems and it was shown

that it can be exact for certain systems of interest (see for example [EV16] for an implementation

of the lattice version of conformal maps and [KRV09] for exact MERA-like solution for string-net

models). A continuous version of MERA called cMERA was developed [HOVV13]. Recently it

was shown that cMERA can in principle correctly reproduce certain features of CFTs [HV17].

As MERA is more complicated than TTN, it makes sense to study simpler tensor networks �rst.
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Figure 1.12: Example of a binary 1D MERA for a lattice with n = 16 sites. It contains two

types of isometric tensors, organized in T = 4 layers. The isometries w are tensors of rank 3 and

the disentanglers u are of type 4. We can prescribe renormalization meaning to MERA, that is

we can say that isometries are used to replace each block of two sites with a single e�ective site

and disentanglers are used to disentangle the blocks of sites before coarse-graining. We say that

the tensor is of type (m,n) if it replaces n sites with m e�ective (i.e coarse-grained or with less

entanglement) sites. The binary MERA is composed of tensors of type (1, 2) and (2, 2). It is

easy to generalize the construction to m-ary MERA by using isometries of type (1,m). Image

taken from [EV09].

1.2 Conformal Field Theory (CFT)

Quantum �eld theory (QFT) is arguably one of the most versatile physical theories developed

to date � with applications from condensed matter, subatomic and fundamental physics to cos-

mology and many other areas of physics. However, putting a general QFT on a rigorous footing

remains an important research topic. An important exception in this regard is the class of con-

formal �eld theories (CFTs): the presence of conformal symmetry allows to provide a rigorous

algebraic formulation (see e.g. [Gab00]). Moreover, CFTs are physically relevant (see e.g. [BP09]).

One of their applications is the description of critical systems. Thus, not only do CFTs provide

a great test bed for ideas related to general quantum �eld theories, but there also exists some

intuition why tree tensor network approximations for CFTs can be a suitable description of an

important class of physical systems [KS15]. Consequently, it is natural to �rst investigate TTNs
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in the context of CFTs. There are numerical results on the critical systems that support this

claim (see e.g [TEV09] for simulation of quantum Ising model via TTN and general discussion).

Like any quantum �eld theory, a CFT is determined by its correlation functions which are

physically interpreted as expectation values of products of basic observable quantities, or quan-

tum �elds. They depend continuously on certain parameters, specifying the degrees of freedom

of the theory such as position or time. The correlation functions are postulated to transform in

a simple manner under symmetry transformations of the theory. As the conformal group in two

dimensional space is very rich � it is an in�nite-dimensional Lie group, it is of special interest

(see, for example, the pioneering work [BPZ84]).

Generally 2D CFTs are de�ned on a complex plane and the �elds that constitute the theory

depend on both a complex coordinate z and its conjugate z̄. However, it can be proven for many

CFTs of interest that the two variables decouple (see e.g [BP09], formalism that can be used

to generalize this thesis to non-chiral case can be found in e.g. [KS15]). In this chiral case it is

su�cient to study basic �elds Y (ψ, z).

As any quantum �eld theory, CFT is determined by its correlation functions. The theory

is conformal when the correlation functions of certain �elds are assumed to transform under

conformal reparametrization in a simple manner. That is, let w : C→ C be a holomorphic map.

The conformal invariance is de�ned as the existence of real numbers hi for i = 1, . . . , n such that

〈Y (ψ1, z1) . . . Y (ψn, zn)〉 =
∏

i

(
dw

dz

)hi ∣∣∣∣∣
zi

〈Y (ψ1, w(z1)) . . . Y (ψn, w(zn))〉, (1.11)

for a set of �elds called the primary �elds (see e.g. [Gab00]). Computing these correlation

functions is the main objective of this work. More generally we may be interested in expressions

of the form

Tr[Y (ψ1, z1) . . . Y (ψn, zn)ρ] (1.12)

The object Y (ψ, z) is an �insertion� of �eld ψ at the point z. In this thesis, we are mostly

concerned with correlation functions evaluated on the real line, with insertion points z1, ..., z2m

separated by minimal distance. By using appropriate conformal transformations, most con�g-

urations of insertion points can be brought into this standard form. To de�ne the basic �elds

Y (ψ, z) we need to introduce languages of vertex operator algebras, modules and intertwiners

(see e.g. [KS15]).

1.2.1 Vertex Operator Algebras (VOA)

A vertex operator algebra V is a tuple (V,Y, 1, ω) consisting of an N0-graded vector space V =
⊕

n∈N0
Vn, a linear map Y(·, z) : V → End(V)[[z, z−1]] into the space of formal Laurent series
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with coe�cients in End(V), and two distinguished vectors: the vacuum 1 ∈ V0 and the conformal

or Virasoro vector ω ∈ V2. Each vector space Vn is called a weight space. A vector ν ∈ Vn is

homogeneous of weight (or level) wt(ν) = n.

By de�nition, the vertex operator Y(ν, z) associated with a vector ν ∈ V can be written as

Y(ν, z) =
∑

n∈Z
νnz
−n−1, (1.13)

where νn ∈ End(V) is referred to as a mode operator of ν. For every ν ∈ V, these satisfy

νn = 0 for n su�ciently large. (1.14)

The vacuum vector has the property

Y(1, z) = idV , (1.15)

and the creativity property

Y(ν, z)1 = ν +
∑

n∈N
ν̃nz

n for some ν̃n ∈ V. (1.16)

For the conformal vector ω, which is homogeneous of weight wt(ν) = 2, the mode operators are

denoted by ωn = Ln−1, i.e.,

Y(ω, z) =
∑

n∈Z
Lnz

−n−2 (1.17)

The operators Ln satisfy Virasoro algebra relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 · idV ∀m,n ∈ N0, (1.18)

where the constant c is the central charge. The object Y(ω, z) is also called the energy-momentum

tensor.

Every weight space Vn is �nite-dimensional, the grading of V is given by the spectral de-

composition of L0 - that is, for every n ∈ N0, Vn is the eigenspace of L0 with eigenvalue n. A

homogeneous vector ν ∈ Vn is quasi-primary if L1ν = 0 and primary if Lnν = 0 ∀n > 0.

It is also possible to de�ne a product of two vertex operators as a formal series. Then

we will obtain Y(u, z1)Y(ν, z2) ∈ End(V)[[z1, z
−1
1 , z2, z

−1
2 ]]. A VOA satis�es locality or weak

commutativity property, namely that there exists non-negative integer k such that:

(z1 − z2)k[Y(u, z1),Y(ν, z2)] = 0. (1.19)

This implies the Jacobi identity

Res
z1−z2

(Y(Y(u, z1 − z2)ν, z2)(z1 − z2)mlz2,z1−z2(z2 + (z1 − z2))n)

= Res
z1

(Y(u, z1)Y(ν, z2)lz1,z2(z1 − z2)mzn1 )

−Res
z1

(Y(ν, z2)Y(u, z1)lz2,z1(z1 − z2)mzn1 ) (1.20)
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holds for all m,n ∈ Z, u, ν ∈ V and Resz(f(z)) stands for residue � that is, a coe�cient of z−1

in the Laurent expansion of f(z). Here lz1,z2f(z1, z2) stands for the Laurent series expansion of

the function f(z1, z2) in the domain |z1| > |z2|.
In addition, a VOA has the translation property :

d

dz
Y(ν, z) = Y(L−1ν, z). (1.21)

An important consequence of these axioms is the duality theorem

Y(ψ, x)Y(φ, y) = Y(Y(ψ, x− y)φ, y). (1.22)

The operators {L−1, L0, L1} generate an action of SL(2,C) on the formal variable z by M�obius

transformations

γ(z) =
az + b

cz + d
for a, b, c, d ∈ C, ad− bc = 1. (1.23)

For d 6= 0 the action of SL(2,C) can be compactly described as

Dγ = exp

(
b

d
L−1

)
d−2L0 exp

(
− c
d
L1

)
. (1.24)

The consequence of Virasoro algebra relations and translation property is

DγY(u, z)D−1
γ = Y

(
γ′(z)L0 exp

(
γ′′(z)
2γ′(z)

L1

)
ν, γ(z)

)
, (1.25)

In particular,

qL0Y(u, z)q−L0 = Y(qL0u, qz) (1.26)

corresponds to the dilation

γ(z) = qz. (1.27)

1.2.2 Modules

We might be interested in structures that are similar to VOA with some more general operator

LA,n instead of Ln. That is, a module of a VOA is a vector space carrying a structure satisfying

almost all de�ning properties of a VOA and certain compatibility properties with the VOA.

Namely, for a VOA (V,Y, 1, ω) a module (A,YA) is again a graded vector space A =
⊕

n∈N0
An,

together with a linear map

Y(·, z) : V → End(A)[[z, z−1]], YA(ν, z) =
∑

n∈Z
νAn z

−n−1, (1.28)

where νAn ∈ End(A) is called the mode operator of ν ∈ V. the subspace A0 is called the top level,

An - the n-th level of the module A.
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Homogeneous vectors and mode operators are de�ned for modules analogously to VOAs.

Weights are de�ned as eigenvalues of LA,0. An important di�erence is that for modules weights

need not be integers: they are of the form α + n, where α ∈ IA for some �nite set IA ⊂ C and

n ∈ N0. Precisely this means that ∀n ∈ N0, we have ∀a ∈ An

LA,0a = (α+ n)a for some α ∈ IA. (1.29)

A VOA V is called Cn-co-�nite for n ≥ 2 if V/Cn(V) is �nite-dimensional, where

Cn(V) = span{v−nw|v, w ∈ V}. (1.30)

It was shown by Gaberdiel and Nietzke [GN03] as well as by Karel and Li [KL99] that the

weight spaces An of an irreducible module of a VOA that satisfy the C2-co-�nitness condition

are �nite-dimensional. Moreover, the dimension of weight space is bounded by

dimAn ≤ (dimA0) · P (n,CV), (1.31)

where CV = dimV and P (n,CV) is the number of CV -component multi-partitions of the integer n.

A multi-partition of n into r components is an r-tuple (λ(1), . . . , λ(r)) of partitions such that

|λ(1)|+ . . .+ |λ(r)| = n. For more information about partitions, multi-partitions and number of

multi-partitions, see e.g [And08].

A VOA V = (V,Y, 1, ω) is called unitary if there is an anti-linear involution φ : V → V of V
with

φ(1) = 1, φ(ω) = ω, and φ(νnw) = φ(ν)nφ(w) ∀ν, w ∈ V, (1.32)

together with a positive de�nite Hermitian form 〈·, ·〉V : V × V → C which is C-linear in the

second argument and anti-C-linear in the �rst argument such that the invariance condition

〈w1,Y(ezL1(−z−2)L0ν, z−1)w2〉V = 〈Y(φ(ν), z)w1, w2〉V (1.33)

holds ∀ν, w1, w2 ∈ V.
Combining (1.17) and (1.33), one can show that L0 is a self-adjoint operator, namely

∀φ, ψ ∈ V 〈φ,L0ψ〉V = 〈L0φ, ψ〉V . (1.34)

1.2.3 Intertwiners

Let A,B,C be modules of rational VOA V. An intertwining operator Y of type
(
C
A B

)
is a family

of linear maps Y (·, z) from A to certain Laurent-like series with coe�cients in End(B,C), i.e., it

associates to every a ∈ A a series

Y (a, z) =
∑

τ∈I,m∈Z
aτ,mz

−τ−m, (1.35)
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where I = ICAB = {τ1, . . . τd} is a �nite collection of complex numbers (depending only on A,B

and C) and aτ,m ∈ End(B,C) for τ ∈ I and m ∈ Z. For all b ∈ B, the mode operators satisfy

aτ,mb = 0 for su�ciently large m. (1.36)

Like VOAs, intertwiners have the translation property

d

dz
Y (a, z) = Y (LA,−1a, z) ∀a ∈ A, (1.37)

and obey the Jacobi identity.

Intertwiners are generalization of vertex operators and correlation functions of intertwiners

are exactly the objects that de�ne the particular CFT. The axioms of VOA, and therefore, the

de�nition of intertwiners have connection to Wightman's axioms for QFT (see e.g. [Sch09]).

In the following we will be constructing TTN to obtain correlation functions of intertwiners.

1.2.4 Wess-Zumino-Witten (WZW) models

One important subclass of CFTs are WZW models. They can be obtained by employing extra

internal symmetries on the �elds. The starting point is a compact simple Lie algebra g with

the corresponding structure constants fabc. Then g is turned into a�ne Lie algebra by via the

a�nization ĝ = g⊗ C[t, t−1] with the commutation rule (see e.g. [KS16])

[a(n), b(m)] = [a(n), b(m)](n+m) + knδn+m,0Tr[ab] (1.38)

where a, b ∈ g, a(n) = a ⊗ tn and k is a positive integer de�ning the level of ĝ. For the case of

currents - �elds of conformal dimension 1, we get (see e.g. [BP09])

[jan, j
b
m] = i

∑

c

fabcjcn+m + knδabδn+m,0. (1.39)

The indices a, b, c run through the indices of g.

The VOA as a vector space is given be the full Fock space V generated by the negative modes

of ĝ acting on the vacuum vector 1 which is given by the identity element of g, e.g.

a1(−n1) . . . ak(−nk)1. (1.40)

Elements an in ĝ are identi�ed with creation operators and the corresponding adjoints - with

annihilation operators. Free �elds are de�ned as

a(z) =
∑

n∈Z
a(n)z−n−1. (1.41)

The energy-momentum tensor and thus its Laurent modes Lm can be obtained via the Sug-

awara construction

Lm =
1

2(k + Cg)

dim g∑

a=1


∑

l≤−1

jal j
a
m−l +

∑

l>1

jam−lj
a
l


 . (1.42)
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where Cg is the dual Coxeter number of the Lie algebra g.

Given an irreducible representation of the Lie algebra g with highest weight λ, we can repeat

the above Fock construction with the vacuum replaced by the associated highest weight vector

φλ resulting in the module Lk,λ for the WZW VOA. It possesses a natural N0-grading

wt [a1(−n1) . . . ak(−nk)φλ] = wtλ+
∑

i

ni (1.43)

with wtλ a positive number depending on λ. The module is irreducible if 〈θ, λ〉 ≤ k, with θ the
maximal root of g. The set Λk of such highest weights λ is �nite, implying that WZW theories

are rational CFTs (see e.g. [DFMS97]).

Primary �elds are de�ned as intertwiners between WZW modules: let Vλi i = 1, 2, 3 be three

irreducible highest weight representations of g with λi ∈ Λk. Turning the representations Vλ1 ,

Vλ2
into irreducible WZW VOA modules Lk,φi , i = 1, 2, a primary �eld is a linear mappings

of elements φ ∈ Vλ3 to linear z-dependent mappings φ(z) : Lk,φ1 → Lk,φi such that there is a

commutation rule with creation operators

[a(n), φ(z)] = (aφ)(z)zn. (1.44)

Yet another important property of WZW models are linear energy bounds [BSM90]. That is,

suppose we have a mode expansion YLk,λ(a, z) =
∑
n∈Z a(n)z−n−1 then the operators an, a ∈ g

satisfy the bound

‖a(n)χ‖Lk,λ ≤ c · ‖a‖Lk,λ |n+ 1| · ‖(L0 + 1)χ‖Lk,λ (1.45)

for any χ ∈ Lk,λ, where c > 0. The norm ‖a‖Lk,λ is de�ned via

(η(a), a) = 〈a(−1)1, a(−1)1〉Lk,λ = ‖a‖2Lk,λ , (1.46)

where η(a) denotes the adjoint of a (see condition 1.33).

WZW models are not only well-understood, but also have many applications, for example

in studies of string theory (see e.g. [BP09]), fractional quantum Hall e�ect (see e.g. [HST+15]),

quantum spin chains (see e.g [NCS11]) and condensed matter theory (see e.g. [DFMS97]).
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Chapter 2

Construction of the renormalization

map

Suppose we have a lattice with initial point z ∈ C and step q ∈ C, that is:

{z, zq, zq2, . . . } (2.1)

At these points there are insertions or �elds ψi ∈ V . We would like to calculate an expectation

value for products of intertwiners, as these are the relevant operators in CFTs. These are assumed

to have insertions at lattice points. This leads to objects of the form

F (0)
vin,vout

(
{(ψi, zqi−1)}

)
≡ 〈vin, Y (ψ1, z) · Y (ψ2, zq) · . . . · Y (ψ2m , zq

2m−1)vout〉, (2.2)

where vin, vout, ψi ∈ V, i ∈ N (for the de�nition of Y (ψ, z) see subsection 1.2.3). A generalization

can be obtained by introducing a density matrix ρ. We have:

〈A〉 = TrV [Aρ] (2.3)

where the trace is calculated on each �nite-dimensional level of V and hence is well-de�ned.

We consider correlation functions

Corr({ψ1, . . . ψ2m}, z, q, ρ) ≡ TrV [Y (ψ1, z) · Y (ψ2, zq) · . . . · Y (ψ2m , zq
2m−1)ρ], (2.4)

where ψi ∈ V, i ∈ N, ρ ∈ End(V ) and Y (ψi, zq
i−1) are intertwiners as de�ned in subsection 1.2.3,

and we will seek to represent (2.4) as a tree tensor network.

Note that we do not demand a density matrix to be self-adjoint or obey TrV ρ = 1.

Two particularly interesting examples are genus-0 correlation function, which corresponds to

the density matrix ρ = |vout〉〈vin| and equals to the expression (2.2), and genus-1 correlation
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function which is de�ned as

F (1)
p

(
{(ψi, zqi−1)}

)
≡ TrV

[
Y
(
zL0ψ1, z

)
· . . . · Y

((
zq2m−1

)L0

ψ2m , zq
2m−1

)
pL0−c/24

]
. (2.5)

Both of this examples have important applications, for example, they correspond to tree-level

and one-loop approximations in string theory (see e.g. [BP09] and [KS15]). As we will not specify

density matrix, we will be able to get results that are applicable to both genus-0 and genus-1

case. It is also important to note that �niteness of genus-1 correlation function was established

for a wide class of theories [Hua05].

This is a natural and rather general object to study, as CFTs, like any other QFTs, are

speci�ed by correlation functions. Moreover, a lot of systems can be well approximated by the

system on equally spaced lattice {x, x+a, x+2a, . . . }. Employing the usual exponential transform

of coordinates (see e.g. [BP09])

x→ z = ex
0+ix1

, (2.6)

where x0 and x1 are time and space coordinates and x = x0 + ix1, we obtain exactly the

lattice (2.1) with some z and q from the given equally spaced lattice. The number of insertions,

namely, 2m, is chosen for convenience for the tree tensor network construction. Of course, some

of these �elds can be vacuum insertions and Y (1, z) = idV , so this is not a restriction.

To compute an object of the form (2.4), we will use the transfer operator that was introduced

in [KS15]. We will see that such an operator can be calculated in a tree-like fashion and that

the corresponding bond dimension for the approximated computation of the transfer operator

is asymptotically smaller - that is, the approximation error scales better when the number of

variational parameters increases, than for the MPS-like computation that was done in [KS15].

2.1 Scaled intertwiners and transfer operator

Intertwiners are not in general bounded operators. In order to prove that the truncation error

is small it is useful to have an operator that has �nite norm. Moreover, it would be useful if

composition of such n operators and an operator responsible for the density matrix would yield

correlation function. The following operator has just the needed properties:

De�nition 2.1.1. A scaled intertwiner Wq : V → End(V )[[z, z−1]], ψ → Wq(ψ, z), z ∈ C and

q ∈ C is

Wq(ψ, z) = qL0/2Y (qL0/2ψ, z)qL0/2, (2.7)

where Y 's are ordinary intertwiners. We call it of type
(
C
A B

)
if Wq(ψ, z) is obtained from an

intertwiner of type
(
C
A B

)
(see section 1.2.3 for de�nition). We can associate the following picture

to the object that appears in the map:
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ψ

Wq(ψ, z) ≡

Figure 2.1: Diagram for scaled intertwiner as a building block for the tree tensor network.

If we multiply two such operators we get an operator which resembles a two point function

of insertions q−L0/2ψ1 at point z and q−3L0/2ψ2 at point zq

Wq(ψ1, z) ◦Wq(ψ2, z) = qL0/2Y (qL0/2ψ1, z)Y (q3L0/2ψ1, qz)q
3L0/2 (2.8)

where we have used property (1.26). Analogous expressions hold for n-point functions for all

n ∈ N (see expression (2.10)). This leads to the following:

De�nition 2.1.2. A transfer operator T : V n → End(V )[[z, z−1]], {ψi}ni=1 → T ({ψi}ni=1; z, q)

with insertions {ψi}ni=1 on the lattice with initial point z and step q is

T ({ψi}ni=1; z, q) = Wq(ψ1, z) ◦Wq(ψ2, z) ◦ · · · ◦Wq(ψn, z). (2.9)

To simplify notation we will sometimes denote the transfer operator as T ({ψi}), T (z, q) or just

T when the arguments are clear from the context.

We can draw a diagram for the transfer operator using notation introduced in �gure 2.1:

T ({ψi}ni=1; z, q) =

ψ1 ψ2 ψn

Figure 2.2: Diagram for transfer operator.

This diagram resembles MPS and it is not a coincidence � this is exactly the diagrammatic

interpretation of MPS from [KS15]. One can check that

T ({ψi}ni=1; z, q) = q−L0/2Yq(ψ̃1, zq) ◦ Y (ψ̃2, zq) ◦ · · · ◦ Y (ψ̃n, zq
n)q(n+1/2)L0 , (2.10)

where

ψ̃j = q(j+1/2)L0ψj . (2.11)

Thus, we can write the correlation function (2.4) in terms of the transfer operator:

Corr({ψ̃}ni=1, z, q, ρ̃) = Tr[T ({ψi}ni=1; z, q) ◦ ρ]. (2.12)
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Here T has insertions {ψi}ni=1, ψ̃ de�ned via (2.11) and ρ = q(n+1/2)L0 ρ̃q−L0/2. Moreover, one

can do a global rescaling:

Corr({ψ̃1, . . . ψ̃2m}, z, q, ρ̃) = Tr[qlL0Tq−lL0 ◦ qlL0ρq−lL0 ] (2.13)

for some l ∈ C. In order to approximate correlation functions, one can approximate the rescaled

transfer operator:

Notation 2.1.3. We will denote by Tl (see �gure 2.3) a product of the form

Tl = qlL0Tq−lL0 , (2.14)

where T is the transfer operator, l ∈ C and q ∈ C. We will be mostly interested in the case

l ∈ R, l ≥ 0.

Tl({ψi}ni=1; z, q) =

ψ1 ψ2 ψn

qlL0 q−lL0

Figure 2.3: Diagram representation of Tl. Computing this object is equivalent to computing the

transfer operator T . Due to technical reasons this will be the object that we will be obtaining

and not T .

To make formulas and diagrams shorter and clearer, let us introduce:

De�nition 2.1.4. We say that A,B ∈ EndV are equivalent and we will use the symbol ' to

denote it if there exist some number l ∈ C and q ∈ C such that:

A ' B ⇔ A = qlL0Bq−lL0 . (2.15)

It is straightforward to check that ' satisfy the axioms of equivalence relation.

' qlL0 q−lL0AA

Figure 2.4: The notation ' is used in order to suppress dependence on some physically unim-

portant transformation.

As we will see in sections 2.3 and 2.4, such a rescaled transfer operator Tl can be written in

terms of the map

εz,q (ψ1 ⊗ ψ2) ≡ qαL0Wq(ψ1, z) ◦Wq(ψ2, z)q
−αL0 . (2.16)

22



for some suitable α ∈ R. One can also prove bounds for norms for scaled intertwiners (proofs

can be found in [KS15]) that we will use to prove that the transfer operator can be approximated

via the TTN with �nite dimensional tensors (see chapter 3). Let V be rational and C2-co-�nite

VOA (see 1.30), A,B,C unitary modules of V , Wq(a, z) be a scaled intertwiner of type
(
C
A B

)

and z ∈ C \ {0}, 0 < q < min{|z|2, 1/|z|2}. Fix S ⊂ A, dim(S) < ∞. Then ∃ϑS : C × C → R
such that

‖Wq(a, z)‖ ≤ ϑS(q, z)‖a‖ ∀a ∈ S. (2.17)

As we can see, the bound requires that the �eld belongs to some �nite-dimensional subspace S.

Typically we will work with �elds that have �nite weight.

De�nition 2.1.5. Suppose A =
⊕

n∈N0
An, a ∈ A. Then we will denote

wa = min{N ∈ N|a ∈
⊕

n≤N
An} (2.18)

if such minimum exists and wa =∞ otherwise.

For a family of �elds {ψi} we write wψi ≡ wi.

As the grading of modules is given by the weights, usually we will consider subspaces

S =
⊕

n≤wa
An (2.19)

Notation 2.1.6. For subspaces of the form (2.19) we will use notation

ϑS(q, z) ≡ ϑwa(q, z), (2.20)

Using an orthonormal basis {aj}dimS
j=1 of S one can write the bound:

ϑS(q, z) ≤
√

dimS · max
1≤j≤dimS

‖H(aj)‖, H(aj) ≡Wq(aj , z). (2.21)

It is known that H(aj) is Hilbert-Schmidt (see [KS15])

TrB(H(a)†H(a)) = pc/24F (1)
p

(
(z−L0

1 a1, z1), (z−L0
2 a2, z2)

)
. (2.22)

where F
(1)
p is genus-1 correlation function (2.5) and

z1 := q1/2z−1, z2 := q3/2z, p = q2. (2.23)

By the assumption that the VOA V is rational and C2-co-�nite, F
(1)
p

(
(z−L0

1 a1, z1), (z−L0
2 a2, z2)

)

and, consequently, ϑS(q, z) is �nite since 1 > |z1| > |z2| > p for any 0 < q < min{|z|2, 1/|z|2} as
was proven in [Hua05].
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2.1.1 Truncated scaled intertwiners

In order to prove that the tensor network can be approximated by �nite matrices, we will need

a concept of truncated intertwiner that was introduced in [KS15]. Let N be a positive integer.

We will refer to it as truncation parameter. A truncated intertwiner Y [N ](a, z) does not change

a level by more than N , in the sense that if C =
⊕

n∈N0
Cn, Cn<0 = ∅ and B =

⊕
n∈N0

Bn are

the grading of the spaces C and B given by the spectral decomposition of L0, then

Y [N ](a, z)Bn ⊂
⊕

m∈Z,|m|≤N
Cn−m[[z, z−1]] ∀n ∈ N0. (2.24)

Likewise one can de�ne the truncated scaled intertwiner:

W [N ]
q (a, z) = qL0/2Y [N ](qL0/2a, z)qL0/2 (2.25)

Figure 2.5: Scaled operators Wq create arbitrary superpositions of L0 eigenstates, hence an

in�nite amount of entanglement is needed to implement their action. Truncated operators W
[N ]
q

(right: N = 3) only create superpositions of at most N di�erent energy eigenstates if applied

to one element of the basis. Yet it can be shown that they approximate Wq exponentially well.

Image taken from [KS16].

In [KS15] one can also �nd bounds for truncated scaled intertwiners and the di�erence of

truncated and ordinary scaled intertwiners:

‖W [N ]
q (a, z)‖ ≤ ‖a‖A ·

√
|IB | · ϑS(

√
q, z)√

1−√q , ∀a ∈ S, (2.26)

for the scaled intertwiner of type
(
C
A B

)
(see subsection 1.2.2 for the de�nition of IB .). Note that

this bound is independent of the truncation parameter N , and in fact holds for Wq itself. Also:

‖Wq(a, z)−W [N ]
q (a, z)‖ ≤ ‖a‖A · k · ϑS(

√
q, z)qN/4

1

1−√q , (2.27)
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where k ∈ R, k ≥ 0 is some constant that depends only on the modules A,B,C.

If S =
⊕

n≤w
O[N]ψ

An for some wield ψ such that wψ is �nite, where O is some operator and

N is a truncation parameter, then ϑS(q, z) ≡ ϑwψ+N (q, z) (for wi see de�nition 2.1.5).

2.2 Tree tensor network and renormalization

As been discussed in subsection 1.1.2, tree tensor network is a suitable ansatz for critical systems.

Thus, one may want to compute the transfer operator in a tree-like manner. This means that one

has to come up with a map that renormalizes �elds � namely, outputs one �eld on renormalized

scale from two �elds on a smaller one. That is, we seek a map of the form

εz,q : V ⊗ V → V, (2.28)

where V is a space of �elds. A priori it is not obvious which objects this renormalization map

should act on. We have chosen it to act on �elds (possibilities include intertwiners or some

functions of intertwiners, we will show in appendix A that these possibilities are not useful).

We would like to �renormalize� �elds. During this procedure parameters of lattice and density

matrix may change at each step. We will call renormalized parameters

ρ(k), q(k), z(k). (2.29)

Let us de�ne initial wave functions as 0-th step of renormalization procedure, and every k+ 1-th

step for k ≥ 0 is obtained by applying εz(k),q(k) to a pair of neighboring �elds

ψ
(0)
j = ψi,

ψ
(k+1)
j = εz(k),q(k)

(
ψ

(k)
2j−1 ⊗ ψ

(k)
2j

)
, k = 0, 1, . . . (2.30)

This can be represented by the following picture:

ψ
(k)
2j−1 ψ

(k)
2j

ψ
(k+1)
j

εz(k),q(k)
(
ψ
(k)
2j−1 ⊗ ψ

(k)
2j

)
≡

Figure 2.6: Renormalization map.

Transformations should have the following property:

Corr
(
{ψ(k)

1 , . . . ψ
(k)

2m−k}, z(k), q(k), ρ(k)
)

= Corr ({ψ1, . . . ψ2m}, z, q, ρ) ∀k : 0 ≤ k ≤ m. (2.31)
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This condition can be represented pictorially. Indeed, computing Corr is the same as computing

matrix elements of transfer operators. Property (2.31) means that composing a transfer operator

of renormalized �elds should give the same operator as a transfer operator of initial �elds. Of

course, this should be true for any step of renormalization k. Pictorially we get:

ψ1 ψ2 ψ2m

ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

'

ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

'

ψ3 ψ2m−1ψ4

Figure 2.7: Tree tensor network scheme.
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Now the task is to determine what ψ
(k)
i , z(k), q(k), ρ(k) are.

Figure 2.7 corresponds to property (2.31) when ρ(k) ' ρ. In the section 2.3 we will see that

the transformation (2.28) can be indeed chosen so that ρ(k) is equivalent to ρ for every 0 ≤ k ≤ m.

The property (2.31) means that we would like to obtain such map εz,q (2.28), that exact

correlation functions are obtained by applying εz,q. Then we would like to truncate it � that is,

to represent it by some �nite-dimensional matrix. We would like this �nite dimensional matrix

to have the property that the di�erence between exact and truncated correlation functions is

small. This is the motivation to introduce scaled intertwiners.

2.3 Renormalization transformation for �elds

We would like to have a tree tensor network that provides Tl for some l when the initial �elds {ψi}
are given. One could ask what properties the building block of TTN � the map should εz,q satisfy.

As this map should provide a framework to compute transfer operators, one should be able to

e�ciently approximate it with �nite matrices and it should obey an isometry condition for fast

contraction. We may compose a list with the description of these three conditions.

1. In order for εq,z(ψ1 ⊗ ψ2) to yield transfer operator it should have the following property

in terms of diagrams for some α ∈ C (see lemma 2.3.4 for more details):

ψ1 ψ2

ψ1 ψ2

'

qαL0Wq(ψ1, z) ◦Wq(ψ2, z)q
−αL0Wq(1)(εz,q(ψ1 ⊗ ψ2), z

(1)) =

m

Figure 2.8: Renormalization property.

2. The map εq,z(ψ1⊗ψ2) should be bounded if ψ1 and ψ2 have only �nite weights in the weight

decomposition. Indeed, if the map is unbounded, it is unclear how to estimate the error

due to the truncation of the map. It is su�cient to demand that weights in decomposition

of ψ's are �nite as one typically has such �elds as inputs for the algorithm that calculates

correlation functions and the truncation procedure is such that if the weights are �nite at

the start, they are also �nite at any step of the renormalization.
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3. For fast contraction the map εq,z(ψ1 ⊗ ψ2) should be an isometry. This requires the intro-

duction of a suitable inner product in V ⊗ V .

Now we will prove a theorem showing that a particular map satis�es the �rst two conditions.

In section 2.5 we will see that the map also satis�es the third condition. Thus, with this map

we will be able to construct aò exact tree tensor network, and truncate it to obtain a TTN that

requires �nite-dimensional matrices.

For convenience, let us show a couple of useful facts:

Lemma 2.3.1. There is a relation that is analogous to the duality theorem

Y (ψ, x)Y (φ, y) = Y (Y (ψ, x− y)φ, y) but for scaled intertwiners, namely

Wq(ψ1, z) ◦Wq(ψ2, z) = Wq2

(
Y
(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, q

1/2z
)
. (2.32)

Proof. For arbitrary β ∈ C, we have

Wq(ψ1, z) ◦Wq(ψ2, z) = qL0/2Y (qL0/2ψ1, z)q
L0Y (qL0/2ψ2, z)q

L0/2

=
(
qL0/2qβL0

)(
q−βL0Y (qL0/2ψ1, z)q

βL0

)

·
(
q(1−β)L0Y (qL0/2ψ1, z)q

−(1−β)L0

)(
q(1−β)L0qL0/2

)
. (2.33)

As we would like this expression to be a scaled intertwiner, let us �x β = 1/2, so that we have

the same operator, namely qL0 , at both sides of the expression. This leads to

Wq(ψ1, z) ◦Wq(ψ2, z) = qL0Y (ψ1, q
−1/2z)Y (qL0ψ2, q

1/2z)qL0

= Wq2

(
q−L0Y (ψ1, q

−1/2z − q1/2z)qL0ψ2, q
1/2z

)

= Wq2

(
Y
(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, q

1/2z
)
, (2.34)

which is the statement of the lemma.

Theorem 2.3.2. Consider the map εz,q : V ⊗ V → V for

0 < q < min

{
|(1− q)z|2, 1

|(1− q)z|2
}

(2.35)

de�ned on tensor products and linearly extended to the whole space

εz,q : ψ ⊗ φ → q2L0Y
(
q−L0ψ, q−3/2(1− q)z

)
φ (2.36)

and the map

z → q5/2z,

q → q2. (2.37)
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for parameters z and q. We will denote:

z(1) ≡ q5/2z,

q(1) ≡ q2,

ψ(1) ≡ q2L0Y
(
q−L0ψ, q−3/2(1− q)z

)
φ = Wq (ψ, (1− q)z) qL0φ. (2.38)

Then following properties hold:

1. Renormalization property (see �gure 2.8, in this particular case α = 2):

Wq(1)(ψ
(1), z(1)) = q2L0Wq(ψ, z) ◦Wq(φ, z)q

−2L0 (2.39)

2. Boundedness:

Let us �x w. Then ∀ψ : wψ ≤ w ∃C ∈ R : ‖εz,q(ψ ⊗ φ)‖ ≤ C‖ψ‖‖φ‖ (2.40)

(for wψ see de�nition 2.1.5).

Proof. For the renormalization property we get

q2L0Wq(ψ, z) ◦Wq(φ, z)q
−2L0 = q2L0Wq2

(
Y
(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, q

1/2z
)
q−2L0 (2.41)

Here we can use how intertwiners transform under the action of L0, that is

qL0Y (u, z)q−L0 = Y (qL0u, qz). Obviously, the same applies for the scaled intertwiners. We thus

get

q2L0Y
(
q−L0ψ, q−3/2(1− q)z

)
φ = ψ(1),

q2L0Wq2

(
Y
(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, q

1/2z
)
q−2L0 = Wq2

(
ψ(1), q5/2z

)
. (2.42)

Combining de�nitions (2.38) and formulas 2.42, we obtain

Wq(1)(ψ
(1), z(1)) = Wq2

(
q2L0Y

(
q−L0ψ, q−3/2(1− q)z

)
φ, q5/2z

)

= q2L0Wq(ψ, z) ◦Wq(φ, z)q
−2L0 (2.43)

which is exactly the renormalization property.

To prove the boundedness, we will use formula (2.17)

‖εz,q(ψ ⊗ φ)‖ = ‖Wq (ψ, (1− q)z) qL0φ‖
≤ ϑw(q, (1− q)z)

∥∥qL0
∥∥ ‖ψ‖‖φ‖, (2.44)

where ϑw corresponds to the notation 2.1.6. Due to the assumptions of the theorem (2.35),

0 < q < 1, thus
∥∥qL0

∥∥ < 1. We can conclude that εz,q is indeed bounded, as ϑw(q, (1 − q)z) is

�nite for �xed w and z, q in range (2.35). This concludes the proof.
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As qL0 does not change the weight of a vector, the is a natural way to truncate the map εz,q

De�nition 2.3.3. Let N ∈ N be a truncation parameter (see subsection 2.1.1), ψ, φ ∈ V and

q, z ∈ C. Then a truncated renormalization map ε
[N ]
z,q : V ×V → V (see �gure 2.9) is de�ned

on tensor products and linearly extended to the whole space as follows

ε[N ]
z,q : ψ ⊗ φ → W [N ]

q (ψ, (1− q)z) qL0φ, (2.45)

where εz,q is de�ned in (2.36).

We will denote it by following diagram:

ψ
(k)
2j−1 ψ

(k)
2j

ψ
(k+1)
j

ε
[N ]

z(k),q(k)

(
ψ
(k)
2j−1 ⊗ ψ

(k)
2j

)
≡

Figure 2.9: Truncated renormalization map.

Now that we have introduced a map εz,q (2.36) and have seen that it can be bounded and

there is a natural way to truncate it, let us be more speci�c how renormalization property implies

that the TTN yields transfer operator.

Lemma 2.3.4. Let ψ, φ, {ψi}2ni=1 ∈ V and z, q, z(0), q(0) ∈ C be such that

Wq(ψ, z) = Tl

(
{ψi}ni=1; z(0), q(0)

)
and Wq(φ, z) = Tl

(
{ψ}2ni=n+1; z(0), q(0)

)
(2.46)

for some l ∈ C. Then

Wq2

(
εz,q(ψ ⊗ φ), q5/2z

)
= Tl+2 log

q(0)
(q)

(
{ψi}2ni=1; z(0), q(0)

)
(2.47)

Proof. By the renormalization property (2.39) form the theorem 2.3.2 we obtain

Wq2

(
εz,q(ψ ⊗ φ), q5/2z

)
= q2l0Wq(ψ, z) ◦Wq(φ, z)q

−2L0

= q2L0Tl

(
{ψi}ni=1; z(0), q(0)

)
◦ Tl

(
{ψi}2ni=n+1; z(0), q(0)

)
q−2L0

= q2L0

(
q(0)
)lL0

Wq(ψ1, z) ◦ · · · ◦Wq(ψ2n, z)
(
q(0)
)−lL0

q−2L0

= Tl+2 log
q(0)

(q)

(
{ψi}2ni=1; z(0), q(0)

)
(2.48)

which is the statement of the lemma. It is straightforward to generalize the argument for the

maps that obey renormalization property with arbitrary α (see �gure 2.8).
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Let us introduce

z(m+1) = q5/2z(m), q(m+1) =
(
q(m)

)2

. (2.49)

As Wq(ψi, z) = T0 ((ψ, q)), it is straightforwardly follows from the lemma 2.3.4 that if there are

2m �elds {ψi}2
m

i=1 on the lattice {z, qz, . . . , q2m−1z}, then the TTN composed of tensors that

correspond to εz(k),q(k) on the k-th level of the tree yield some �eld ψ(m) such that

Wq(m)(ψ(m), z(m)) = Tl

(
{ψi}2ni=1; z(0), q(0)

)
(2.50)

for some l (for more discussion, including the exact expressions for z(k), q(k) and l(k), see subsec-

tion 3.2.1). In other words, such TTN reproduces the transfer operator and thus � the correlation

functions for a given CFT.

Even though we have obtained the map that we will need in the following and that yields

the tree tensor network, it is not yet clear what the intuition behind this map is. Moreover,

one could have asked if there is a connection between this map and the MPS and if there are

other maps that satisfy the needed three conditions, namely renormalization, boundedness and

isometry. The next section is devoted to answering these questions.

2.4 Connection to the MPS and generalization

In order to compute correlation functions via the MPS the way it was done in [KS15], one has to

compute scaled intertwiners of �elds ψi and then multiply them. One can think about some map,

let us call it εMPS , that does the job. Of course, it does not matter in which order one multiplies

scaled intertwiners. Thus we will just specify a map that multiplies two scaled intertwiners to

obtain a transfer operator of two �elds. In the next step one can multiply these transfer operators

of two �elds and obtain a transfer operator of four �elds. Moreover one does not need a new

map, as a transfer operator of two �elds is a scaled intertwiner itself, but with another scale �

if the initial scale was q, the new scale is q2. This way of computing the MPS transfer operator

has a resemblance to the binary tree tensor network, thus we will use it to get the connection

between the MPS and the TTN and to obtain a family of maps that are suitable for the TTN.
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ψ1

ψ1 ψ2

εMPS

ψ2

qαL0 q−αL0

Figure 2.10: The map εMPS allows us to �glue together� two scaled intertwiners to obtain a

transfer operator of two �elds. This is the �rst step to get a transfer operator via the MPS using

the scaled intertwiners as constituting tensors.

The obvious map that does the trick is simply a multiplication map. However, this map has

problems with boundedness. To �x this, we will introduce an unphysical dilation � qαL0 and

q−αL0 .

Lemma 2.4.1. Consider the map (see �gure 2.10):

εMPS(Wq(ψ1, z),Wq(ψ2, z)) ≡ qαL0Wq(ψ1, z) ◦Wq(ψ2, z)q
−αL0 . (2.51)

Then,

εMPS :Wq ×Wq → Wq2 (2.52)

εMPS

(
Tl({ψ}ni=1), Tl({ψ}2ni=n+1)

)
= Tl+α({ψ}2ni=1). (2.53)

where Wq is a space of scaled intertwiners with scale parameter q.

Proof. In order for such map to have the range stated in (2.52), it is necessary to have one scaled

intertwiner at right-hand side. This is a direct consequence of Lemma 2.3.1 and the way scaled

intertwiners transform under the action of L0: q
L0Wq̃(u, z)q

−L0 = Wq̃(q
L0u, qz).

We see that Wq's are mapped into Wq2 . This should be expected, as after the map is applied

to all of the lattice with spacing q, a lattice with spacing q2 is obtained.

Any transfer operator is in the domain of εMPS as a direct consequence of Lemma 2.3.1.
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Applying ε to transfer operators is trivial:

εMPS

(
Tl({ψ}ni=1), Tl({ψ}2ni=n+1)

)
= qαL0qlL0Wq(ψ1, z) ◦ · · · ◦Wq(ψn, z)q

−lL0

◦qlL0Wq(ψn+1, z) ◦ · · · ◦Wq(ψ2n, z)q
−lL0q−αL0

= q(α+l)L0Wq(ψ1, z) ◦ · · · ◦Wq(ψ2n, z)q
−(α+l)L0

= Tα+l({ψ}2ni=1), (2.54)

which is the statement of the Lemma.

ψ1 ψ2 ψn

qlL0 q−lL0

ψn+1 ψn+2 ψ2n

qlL0 q−lL0

ψ1 ψ2 ψ2n−1

q(α+l)L0

ψ2n

q−(α+l)L0

εMPS

Figure 2.11: The map εMPS is actually the map that �glues together� two transfer operators of

equal size, as Lemma 2.4.1 states. Even though εMPS actually corresponds to MPS, it resembles

the structure of binary tree.

To draw the connection to TTN, we would like to obtain a map that acts on �elds instead

of scaled intertwiners. This can easily be obtained from equation (2.34). We can see, however,

that now we also have an ordinary intertwiner at the r.h.s of (2.34). We would like to work with

only scaled intertwiners as otherwise problems with non-boundedness arise � this is exactly the

problem that extra factors qαL0 in the de�nition of εMPS (2.51) solve. In other words, the r.h.s

of (2.51) is:

qαL0Wq2

(
Y
(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, q

1/2z
)
q−αL0

= Wq2

(
qαL0Y

(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, q

1/2+αz
)

(2.55)

which leads to the map:

εαz,q : ψ1 ⊗ ψ2 → qαL0Y
(
q−L0ψ1, q

−3/2(1− q)z
)
ψ2, (2.56)

which is a generalization of the map (2.36), so we use the same symbol to denote it. Even though

this map obeys renormalization property � indeed, it was the way we derived it, we still have

some work to do to understand which α is needed to also get boundedness.
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2.4.1 Choice of α

We would like to work only with scaled intertwiners and bounded operators such as qL0 , as this

allows us to obtain error bounds for truncated operators. We compute

εαz,q(ψ ⊗ φ) = qαL0Y
(
q−L0ψ, q−3/2(1− q)z

)
φ

= q(α−γ)L0qγL0Y
(
q−L0ψ, q−3/2(1− q)z

)
q−γL0qγL0φ

= q(α−γ)L0Y
(
q(γ−1)L0ψ, q−3/2+γ(1− q)z

)
qγL0φ

= q(α−2γ+1)L0Wq2(γ−1)

(
ψ, q−3/2+γ(1− q)z

)
qL0φ. (2.57)

Without the loss of generality, we can choose

α = 2γ − 1, (2.58)

so we get the map

εαz,q(ψ ⊗ φ) = Wq2(γ−1)

(
ψ, q−3/2+γ(1− q)z

)
qL0φ;

z → q2γ−1/2z;

q → q2. (2.59)

The parameter γ is still free, but in order for all operators on the r.h.s. of (2.59) to be well-de�ned

and bounded for 0 < q < 1 we have following constraint:

γ > 1. (2.60)

As we will see in section 2.5, the following condition arises from the isometry condition:

|q3γ−5/2(1− q)z| < 1. (2.61)

For each γ > 1 condition (2.61) can be ful�lled with a suitable choice of z and q. For simplicity

we will choose

γ = 3/2 ⇔ α = 2, (2.62)

which gives us the map (2.36): ε2z,q ≡ εz,q.
This means that the map εz,q that yields the TTN is intimately connected to the map εMPS

that produces the MPS. Actually, both maps do more a less the same thing, but the TTN map

acts on the space of �elds while the MPS map acts on the space of scaled intertwiners. Another

feature is that there is a whole one-parameter family of maps - εαz,q, α > 1 that satisfy the

renormalization property (see �gure 2.8) and boundedness from the list of conditions at the

beginning of the section 2.3. We will also see that this family of maps satisfy isometry condition
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in an appropriate basis. In fact, any representative could be chosen in the family εαz,q, α > 1 and

it will be suitable for the construction of TTN. All the statements we will prove can be proven

for any εαz,q, α > 1 with minor modi�cations. We will work with εz,q only because it increases

readability of formulas while modi�cation of statements for general α do not require any new

ideas.

2.5 Adjoint and isometry

For e�cient contraction of the tree tensor network one needs an isometry condition. In the

language of diagrams it reads:

=

Figure 2.12: Isomerty condition.

However, it depends on the inner product of A ⊗ B. One needs to de�ne an inner product

such that the isometry condition holds. Let u, v, w ∈ R be non-zero, z ∈ C and de�ne

ι∗(a, b) = uL0Y (vL0a, z)wL0b (2.63)

Lemma 2.5.1. De�ne

〈a1 ⊗ b1, a2 ⊗ b2〉u,v,w := 〈ι∗(a1, b1), ι∗(a2, b2)〉 . (2.64)

Assume that |u|2 < 1/|z|2. Then 〈·, ·〉u,v,w can be extended to a sesquilinear, densely de�ned and

positive semi-de�nite form on A⊗B.
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Proof. We �rst show that this is well-de�ned: for a1, a2 ∈ A and b1, b2 ∈ B, we have

〈a1 ⊗ b1, a2 ⊗ b2〉u,v,w = 〈uL0Y (vL0a1, z)w
L0b1, u

L0Y (vL0a2, z)w
L0b2〉

= 〈Y (vL0a1, z)w
L0b1, u

2L0Y (vL0a2, z)w
L0b2〉

= 〈wL0b1, Y (ezL1(−z−2)L0η(vL0a1), z−1)u2L0Y (vL0a2, z)w
L0b2〉

= 〈wL0b1, Y (ã1, z
−1)u2L0Y (vL0a2, z)w

L0b2〉
= 〈wL0b1, Y (ã1, z

−1)Y (u2L0vL0a2, u
2z)u2L0wL0b2〉

= 〈b̃1, Y (ã1, z
−1)Y (ã2, u

2z)b̃2〉
= F

(0)

b̃1,b̃2
((ã1, z

−1
︸︷︷︸
=:z1

), (ã2, u
2z︸︷︷︸

=:z2

)) (2.65)

where we have used the properties of the Hermitian form (1.33), the fact that L0 is self-adjoint

(1.34) and the way intertwiners transform under the action of L0 (1.26) , F
(0)

b̃1,b̃2
was de�ned in

(2.2) and we have introduced

ã1 := ezL1(−z−2)L0η(vL0a1), (2.66)

ã2 := u2L0vL0a2, (2.67)

b̃1 := wL0b1, (2.68)

b̃2 := u2L0wL0b2. (2.69)

In particular, |z1| > |z2| if and only if |u| < 1/|z|2, which is our assumption. The remainder

of the proof is identical to the proof of Lemma 4.1 in [KS15]. Namely, extending the de�nition

linearly to a �nite sums of the from
∑
i ai ⊗ bi ∈ A ⊗ B, and using the facts that the latter

are dense in A⊗B and that Y (·, z) is linear, it follows that 〈·, ·〉u,v,w is indeed sesquilinear and

densely de�ned form on A⊗B.
Let {aα}α ⊂ A and {bβ}β ⊂ B be �nite families of elements in A and B, respectively. To

show that 〈·, ·〉u,v,w is positive semi-de�nite, it su�ces to check that for any such families, the

matrix

〈ι∗(aα1 , bβ1), ι∗(aα2 , bβ2)〉(α1,β1),(α2,β2) (2.70)

is positive semi-de�nite. But this is the Gram matrix associated with the family of vectors

{ι∗(aα, bβ)}(α,β) with entries given by the inner products, hence the claim follows.

Using that Y (1, z) = id we get

ι∗(1, b) = uL0wL0b (2.71)

or

ι∗(1, u−L0w−L0d) = d . (2.72)
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This means that

〈d, ι∗(a2, b2)〉 = 〈ι∗(1, u−L0w−L0d), ι∗(a2, b2)〉 (2.73)

or

〈1⊗ u−L0w−L0d, a2 ⊗ b2〉u,v,w = 〈d, ι∗(a2, b2)〉 (2.74)

As a consequence, if

ι(d) := 1⊗ u−L0w−L0d , (2.75)

then ι∗ is the adjoint of ι. To check the isometry condition, observe that

ι∗ ◦ ι(d) = ι∗(1⊗ u−L0w−L0d) (2.76)

= uL0Y (vL01, z)wL0u−L0w−L0d (2.77)

= uL0wL0u−L0w−L0d (2.78)

= d (2.79)

for any d ∈ C. This shows that ι is an isometry.

2.5.1 Application to the actual map

Consider the map

X(a, b; z) = qαL0Y (q−L0a, q−3/2(1− q)z̃)b . (2.80)

This is of the form X = ι∗ with u = qα, v = q−1 and z = q−3/2(1 − q)z̃, w = 1. This gives us

an inner product for which the maps (2.56), including the map (2.36) are isometries. Thus, the

network de�ned via the map (2.36) can be contracted e�ciently.
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Chapter 3

Approximation and error bounds

We now have the necessary components for the tree tensor network. However, the maps are

in�nite-dimensional. If one wants to simulate the model on a computer, a truncation to a �nite-

dimensional subspace is needed. In this section we will show that for a given 2m �elds on the

lattice (2.1) the error, namely the norm of the di�erence between the transfer operator and the

truncated transfer operator, decays exponentially in the truncation parameter N (see subsection

2.1.1) for a certain domain of z and q (see subsection 3.2.1).

Notation 3.0.1. The symbol ≈ will be used as follows:

AN ≈ A⇔ ‖AN −A‖ ≤ qΩ(N). (3.1)

for a given parameters 0 < q < 1 and N .

Then, given the truncation parameter, we will deduce necessary bond dimensions and thus �

the number of parameters that are necessary to obtain tree tensor network.

3.1 Strategy of approximation

We call a tensor network exact if it is composed of the maps εz,q (2.36) and the intertwiners

(see �gure 2.7). We call the tensor network truncated if some of the maps εz,q are substituted

by the truncated maps ε
[N ]
z,q 2.45, and the network is fully truncated if all the maps εz,q are

substituted by the truncated ones ε
[N ]
z,q .

It is not obvious what the norm of the di�erence of an exact tensor network and the fully

truncated one is. However, one can use the inequality

‖AB‖ ≤ ‖A‖ · ‖B‖. (3.2)
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As TTN are formed by multiplication of the renormalization maps, we will need to obtain norm

bounds for these elementary �building blocks� of the network (see �gure 3.1). For the approx-

imation scheme we will need norm bounds for the scaled intertwiner of the �eld renormalized

by both exact and truncated map. As we will approximate the di�erence between exact and

truncated TTN, we will also need a norm estimate for the di�erence between these two building

blocks.

ψ1 ψ2 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

−

, ,

Figure 3.1: Elementary objects in the renormalization scheme. The ��lled� box corresponds to the

exact map εz,q that was introduced in (2.36), and the �empty� box corresponds to the truncated

map ε
[N ]
z,q that was introduced in (2.45). The remaining diagram corresponds to εz,q − ε[N ]

z,q , the

norm of such object shows how good εz,q is approximated with ε
[N ]
z,q . The diagrammatic notation

for εz,q was �rst introduced in �gure 2.6, and for ε
[N ]
z,q - in �gure 2.9.

We can also use the intuition that norm of the di�erence of some network that consists of exact

and truncated maps and the network that has exactly one truncated map instead of the exact one

should be small. For this we will prove that norm of the di�erence of the exact and truncated

building block should be exponentially small in the truncation parameter (see �gure 3.2).

ψ1 ψ2 ψ1 ψ2

≈

Figure 3.2: Truncation introduces error ≤ qΩ(N).

These truncation building blocks will be dealt with in section 3.2.

The next step in employing this intuition will be to use the telescoping sum inequalities

‖A0 −An‖ =

∥∥∥∥∥
n∑

i=1

Ai−1 −Ai
∥∥∥∥∥ ≤

n∑

i=1

‖Ai−1 −Ai‖ (3.3)

There are plenty of ways to arrange terms in a telescoping sum expansion in such a way that

39



every term is a di�erence of two TTNs with exactly one di�erent map and A0 being the exact

TTN and An � the fully truncated one. We will use an arrangement where we will have truncated

maps on the upper levels of the tree only if the lower level is fully truncated.

For this we will �rst show error bounds for the transfer operator where �elds are renormalized

only once. That is, we set

Ak = T
[N,k]
l ≡ ∏k

i=1 q
(l−2)L0Wq2

(
ε
[N ]
z,q (ψ2i−1 ⊗ ψ2i), q

5/2z
)

◦∏n
j=k+1Wq2(εz,q

(
ψ2j−1 ⊗ ψ2j−2), q5/2z

)
q−(l−2)L0 . (3.4)

in inequality (3.3) (see �gure 3.3).

ψ2k−1 ψ2k ψ2k+2 ψ2k+3 ψ2m−1 ψ2mψ1 ψ2

T [N,k] '

Figure 3.3: Diagrammatic representation of T [N,k].

These bounds will be obtained in section 3.3.

It is useful to obtain such bounds, as we will use it in analyzing the full tree using the

telescoping sum expansion. Capitalizing on the discussion in section 2.2, we can de�ne truncated

renormalized �elds via

ψ
(0)[N ]
i ≡ ψi, (3.5)

ψ
(r)[N ]
i = ε

[N ]

z(r−1),q(r−1)

(
ψ

(r−1)[N ]
2i−1 ⊗ ψ(r−1)[N ]

2i

)
, 1 ≤ r ≤ m (3.6)

(for the de�nition of ε
[N ]
z,q see (2.45)) in analogy with the renormalized �elds obtained via the

exact map

ψ
(0)
i ≡ ψi, (3.7)

ψ
(r)
i = εz(r−1),q(r−1)

(
ψ

(r−1)
2i−1 ⊗ ψ

(r−1)
2i

)
, 1 ≤ r ≤ m (3.8)

(for the de�nition of εz,q see (2.36), this renormalized �elds ψ
(r)
i were �rst introduced in (2.30)).

This construction allow to connect di�erent levels of the tree via once truncated transfer operators

(see de�nition 3.3.1).
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ψ
(r)[N ]
1 ψ

(r)[N ]
2 ψ

(r)[N ]
2m−r

'

'

ψ
(r−1)[N ]
1 ψ

(r−1)[N ]
2 ψ

(r+1)[N ]
2m+1−rψ

(r−1)[N ]
3 ψ

(r+1)[N ]
2m+1−r−1

ψ
(r−1)[N ]
4

ψ
(r)[N ]
1 ψ

(r)[N ]
2 ψ

(r)[N ]
2m−r

Figure 3.4: We can think of the transfer operator with renormalized �elds both as one step of

some truncated tensor network, or one step of non-truncated tensor network.

Finally, we will obtain the bound for the full tree. Again, we will use telescope expansion

(3.3). For this, we will set

Ar = T
(r)[N ]

l(r)
≡

(
q(r)
)l(r)L0

Wq(r)

(
ψ

(r)[N ]
1 , z(r)

)
◦ . . .

. . . ◦Wq(r)

(
ψ

(r)[N ]
2m−r , z

(r)
)(

q(r)
)−l(r)L0

(3.9)

(see �gure 3.5).
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ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2mψ2m−3 ψ2m−2

ψ
(r)[N ]
1 ψ

(r)[N ]
2 ψ

(r)[N ]
2m−r

'

ψ
(r)[N ]
3 ψ

(r)[N ]
2m−r−1

ψ
(r)[N ]
4

r

m− r

Figure 3.5: Diagrammatic representation of T
(r)[N ]

l(r)
and its relation to the transfer operator of

truncated renormalized �elds.

The relation between �gures 3.5 and 3.4 allows us to use results of the section 3.3 for the

proof of the error bound for the full tree. This error bound for truncated TTN will be obtained

in section 3.4.
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3.1.1 Linear energy bounds for WZW

As was discussed in section 2.1, there is a bound on the scaled intertwiner � for a given set of

numbers {wψ, z, q} such that 0 ≤ wψ <∞ and 0 < q < min{|z|2, 1/|z|2} the inequality

‖Wq(ψ, z)‖ ≤ ϑwψ (q, z)‖ψ‖ (3.10)

holds for every ψ ∈⊗n≤wψ An in the module A and ϑwψ (q, z) is �nite. However, if one tries to

use such a bound for a renormalized �eld � that is, the �eld on the next level of the TTN, one

would have:

∥∥∥Wq(1)

(
ψ(1), z(1)

)∥∥∥ ≤ ϑw
ψ(1)

(
q(1), z(1)

)∥∥∥ψ(1)
∥∥∥ . (3.11)

It is important to notice that wψ(1) actually grows. If one acts on �elds at the �rst level of the

TTN with maps that have truncation parameter N (see subsection 2.1.1), then typically

max
i
w
ψ

(1)
i

= max
i
wψi +N. (3.12)

While ϑ also depends on q and z, these do not depend on N . For the approximation scheme to

be successful � that is, for the approximation error to fall su�ciently fast with the growth of N ,

one has to study how fast ϑw grows while w increases. Contrary to the MPS case [KS15], only

the �niteness of ϑw is not enough, as each level of the TTN can increase w by N and all bounds

start to depend on N , while for the MPS one needs these bounds only for the initial �elds, so

the resulting bound is N -independent.

Using linear energy bounds, K�onig and Scholz have obtained exact expression for ϑS(q, z) in

the case of WZW models [KS15]. That is, if a has a weight h, then

‖Wq(a, z)‖2 ≤ c2
(
qh

|z|

)2

‖a‖2
[

(1 + 2h)

(
5!
|z2|
q

[
log

( |z|2
q

)]−6

+
1

2|z|2q3

[
log

(
1

q

)
log

(
1

|z|2q

)]−3
)

+h2

(
1

1− |z|−2q
+

1

2|z|2q3(1− q2)(− log(|z|2q))3

)]
. (3.13)

As we can see, the multiplier qh falls exponentially while h increases and the term in the square

brackets grows polynomially. Thus the right hand side can be bounded by some constant depen-

dent on z and q but not h.

De�nition 3.1.1. dA(M) is the dimension of the subspace obtained by keeping all the levels up

to and including M in the module A

dA(M) = dim


⊕

h≤M
Ah


 . (3.14)
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Then for the growth of ϑwψ = ϑw, ψ ∈ A we have:

ϑw(q, z) =
∑

h≤w
qhPolynomial(h) · dim(Ah) ≤ const · dA(w), (3.15)

where const may depend on z and q but does not depend on w, dA(w) grows as the number of

partitions of w (see inequality (1.31)), thus ϑw grows sub-exponentially with w.

To bound the truncation error one would need similar bounds for any CFT of interest.

Unfortunately, we are unaware of bounds like linear energy bounds for more general classes

of CFTs. However, we can conjecture weaker results than for WZW that will nevertheless be

su�cient for the proof to work.

Conjecture 3.1.2. The function w → ϑw(q, z) grows sub-exponentially with the growth of w for

q, z �xed.

Let us note that even the weaker assumption that ϑw(q, z) ≤ qcw for appropriate c will

be su�cient, yet we will proceed with the sub-exponential conjecture as it makes the proofs

technically simpler while the idea remains the same. Let us also note that even if the growth of

the bound of type (3.13) were to be much faster � that is, sub-exponential, the argument (3.15)

would still hold and thus, the conjecture 3.1.2 would hold.

3.2 Truncation building blocks

We would like to calculate bounds for norms of elementary objects that appear in the renormal-

ized transfer operator. In these objects l ≥ 0 is just some arbitrary parameter to be speci�ed

later. Let us treat them one at a time. In the proofs of the lemmas we will use the bounds (2.17)

and (2.26).

ψ1 ψ2

'

Figure 3.6: Diagram that correspond to N (z, q) in Lemma 3.2.1.

Lemma 3.2.1. Suppose that wψ1
and wψ1

are �nite (see de�nition 2.1.5). Let

N (z, q) ≡
∥∥∥qlL0Wq2(εz,q(ψ1 ⊗ ψ2), q5/2z)q−lL0

∥∥∥ (3.16)
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(see �gure 3.6), 0 < q < min
{
|q2+lz|2, 1

|q2+lz|2
}
and l ≥ 0. Then

N (z, q) ≤ ϑw1

(
q, q2+lz

)
· ϑw2

(
q, q2+lz

)
· ‖ψ1‖ · ‖ψ2‖. (3.17)

(See section 2.1 for de�nition of ϑw(q, z).)

Proof.

N (z, q) =
∥∥∥q(2+l)L0Wq(ψ1, z) ◦Wq(ψ2, z)q

−(2+l)L0

∥∥∥

≤
∥∥∥Wq

(
q(2+l)L0ψ1, q

2+lz
)∥∥∥ ·

∥∥∥Wq

(
q(2+l)L0ψ2, q

2+lz
)∥∥∥

≤ ϑw1

(
q, q2+lz

)
· ϑw2

(
q, q2+lz

)
·
∥∥∥q(2+l)L0ψ1

∥∥∥ ·
∥∥∥q(2+l)L0ψ2

∥∥∥ , (3.18)

where we have used the bound (2.17). As ‖qlL0‖ is bounded by 1, we can write

∥∥qkL0ψ
∥∥ ≤ ‖ψ‖ ∀ψ; k > 0. (3.19)

In particular we can use this for k = 2 + l which implies the claim.

ψ1 ψ2

'

Figure 3.7: Diagram that correspond to Ntruncated(z, q) in Lemma 3.2.2.

Lemma 3.2.2. Suppose that wψ1 and wψ1 are �nite (see de�nition 2.1.5). Let

Ntruncated(z, q) ≡
∥∥∥qlL0Wq2

(
ε[N ]
z,q (ψ1 ⊗ ψ2) , q5/2z

)
q−lL0

∥∥∥ (3.20)

(see �gure 3.7), 0 < q < min
{
ql+5/2|z|, 1

ql+5/2|z| , ((1− q)|z|)2, 1
((1−q)|z|)2

}
and l ≥ 0. Then

Ntruncated(z, q) ≤
√
|IV |ϑw1

(
√
q, (1− q)z)√

1−√q ϑw2+N

(
q2, q5/2+lz

)
‖ψ1‖‖ψ2‖. (3.21)

(See section 2.1 for de�nition of ϑw(q, z) and subsection 1.2.2 for the de�nition of IV .)

Proof. As ε
[N ]
z,q (ψ1 ⊗ ψ2) has �nite weight and qlL0 does not change the weight we have

Ntruncated(z, q) ≤ ϑw2+N

(
q2, q5/2+lz

)∥∥∥W [N ]
q (ψ1, (1− q)z) qL0ψ2

∥∥∥

≤ ϑw2+N

(
q2, q5/2+lz

)∥∥∥W [N ]
q (ψ1, (1− q)z)

∥∥∥ ‖qL0‖‖ψ2‖

≤
√
|IV |ϑw1(

√
q, (1− q)z)√

1−√q ϑw2+N

(
q2, q5/2+lz

)
‖ψ1‖‖ψ2‖ (3.22)
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which is the statement of the lemma. Here we have used the bounds (2.17) and (2.26).

We have one more building block.

ψ1 ψ2 ψ1 ψ2

−'

Figure 3.8: Diagram that correspond to Nerror(z, q) in LemmaNerrBB.

To obtain a bound for it it is useful to work in a similar fashion to [KS15].

Lemma 3.2.3. Suppose that wψ1
is �nite (see de�nition 2.1.5). Let

Nerror(z, q) ≡
∥∥∥qlL0

(
Wq2 (εz,q(ψ1 ⊗ ψ2) , q5/2z)−Wq2

(
ε[N ]
z,q (ψ1 ⊗ ψ2

)
, q5/2z)

)
q−lL0

∥∥∥ (3.23)

(see �gure 3.8), 0 < q < min
{
ql+5/2|z|, 1

ql+5/2|z| , ((1− q)|z|)4, 1
((1−q)|z|)4

}
, l ≥ 0 and assume that

conjecture 3.1.2 holds. Then

Nerror(z, q) ≤ ϑw1

(
q1/2, (1− q)z

)
· ‖ψ1‖ · ‖ψ2‖ · κ(z, q) · qΩ(N). (3.24)

For some κ(z, q) > 0. (See section 2.1 for de�nition of ϑw(q, z).)

Remark 3.2.4. The assumption 3.1.2 is true for WZW models, as explained in section 3.1.1.

Proof. For the graded module B =
⊕
Bn and φ ∈ B let us de�ne:

φ =
∑

n∈N0

(φ)n, where (φ)n ∈ Bn. (3.25)

Let us de�ne a projector

P[k,m]φ =

m∑

n=k

(φ)n for any φ ∈ B. (3.26)

We have

Nerror(z, q) =

∥∥∥∥∥
∑

n∈N0

qlL0Wq2

(
(1− P[n−N,n+N ])εz,q(ψ1 ⊗ (ψ2)n), q5/2z

)
q−lL0

∥∥∥∥∥

≤
∑

n∈N0

∥∥∥Wq2

(
(1− P[n−N,n+N ])q

lL0εz,q(ψ1 ⊗ (ψ2)n), q5/2+lz
)∥∥∥

=
∑

n∈N0

∥∥Wq2
(
(1− P[n−N,n+N ])q

lL0

· Wq (ψ1, (1− q)z) qL0(ψ2)n, q
5/2+lz

)∥∥∥ (3.27)
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We can use

Wq (ψ1, (1− q)z) = qL0/4W√q
(
qL0/4ψ1, (1− q)z

)
qL0/4 (3.28)

as well as

qaL0(φ)n = qa(hB+n)(φ)n ∀φ ∈ B, a ∈ C. (3.29)

After expanding with vectors of di�erent weights we get

Nerror(z, q) ≤
∑

n∈N0

∑

m∈N0

∥∥∥Wq2

(
(1− P[n−N,n+N ])q

L0(l+1/4)

·
(
W√q

(
qL0/4ψ1, (1− q)z

)
q5L0/4(ψ2)n

)
m
, q5/2+lz

)∥∥∥ . (3.30)

This leads to

Nerror(z, q) ≤
∑

n∈N0

∑

m∈N0

q(m(4l+1)+5n)/4
∥∥Wq2

(
(1− P[n−N,n+N ])

·
(
W√q

(
qL0/4ψ1, (1− q)z

)
(ψ2)n

)
m
, q5/2+lz

)∥∥∥ . (3.31)

By the de�nition of projector P[n−N,n+N ] (3.26), we have

Nerror(z, q) ≤
∑

n∈N0

∑

0≤m<n−N
q(m(4l+1)+5n)/4

·
∥∥∥Wq2

((
W√q

(
qL0/4ψ1, (1− q)z

)
(ψ2)n

)
m
, q5/2+lz

)∥∥∥

+
∑

n∈N0

∑

m>n+N

q(m(4l+1)+5n)/4

·
∥∥∥Wq2

((
W√q

(
qL0/4ψ1, (1− q)z

)
(ψ2)n

)
m
, q5/2+lz

)∥∥∥ . (3.32)

We can bound the norm of a scaled intertwiner now, as the insertion has �nite weight. Using

the bound (2.26), we obtain

∥∥∥Wq2

((
W√q

(
qL0/4ψ1, (1− q)z

)
(ψ2)n

)
m
, q5/2+lz

)∥∥∥

≤ ϑm
(
q2, q5/2+lz

)∥∥∥
(
W√q

(
qL0/4ψ1, (1− q)z

)
(ψ2)n

)
m

∥∥∥

≤ ϑm
(
q2, q5/2+lz

)∥∥∥W√q
(
qL0/4ψ1, (1− q)z

)
(ψ2)n

∥∥∥

≤ ϑm
(
q2, q5/2+lz

)∥∥∥W√q
(
qL0/4ψ1, (1− q)z

)∥∥∥ · ‖(ψ2)n‖

≤ ϑm
(
q2, q5/2+lz

)
· ϑw1

(
q1/2, (1− q)z

)
· ‖ψ1‖ · ‖ψ2‖, (3.33)
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Putting everything together, we get

Nerror(z, q) ≤ ϑw1

(
q1/2, (1− q)z

)
· ‖ψ1‖ · ‖ψ2‖ ·

·


∑

n∈N0

∑

0≤m<n−N
q(m(4l+1)+5n)/4ϑm

(
q2, q5/2z

)

+
∑

n∈N0

∑

m>n−N
q(m(4l+1)+5n)/4ϑm

(
q2, q5/2z

))
(3.34)

Now in order to bound the sum we need to know how qm(4l+1)/4ϑm
(
q2, q5/2+lz

)
behaves. Here

we will use conjecture 3.1.2. (This conjecture holds for WZW models.) Then we can write

qm(4l+1)/4ϑm

(
q2, q5/2+lz

)
≤ C · qcm (3.35)

where C, c are some positive constants that may depend on z and q, but do not depend on m.

The only remaining task is to evaluate the sums. Just like in [KS15] we get

∑

n∈N0

∑

0≤m<n−N
qcm+5n/4 +

∑

n∈N0

∑

m>n−N
qcm+5n/4 =

∑

n∈N0

q5n/4


 ∑

0≤m<n−N
qcm +

∑

m>n−N
qcm


 = const · qΩ(N). (3.36)

This yields the �nal result

Nerror(z, q) ≤ ϑw1

(
q1/2, (1− q)z

)
· ‖ψ1‖ · ‖ψ2‖ · κ(z, q) · qΩ(N). (3.37)

for some κ(z, q). This is exactly the statement we aimed for.

3.2.1 Choosing z, q and l

The assumption of Lemmas 3.2.1, 3.2.2 and 3.2.3 as well as the isometry condition (2.61) for

γ = 3/2 all give constraints for z, q and l. In this subsection we will see that they all can

be satis�ed for all levels of the TTN. First let us note that these conditions imply that q < 1

thus any extra constraint of type q < r.h.s is only non-trivial if r.h.s < 1. This means that the

conditions in Lemma 3.2.3 are stronger than those in Lemma 3.2.2. Also we have

0 < q < min

{
ql+5/2|z|, 1

(ql+5/2|z|)

}
⇔ 0 < q < min

{
|ql+2z|2, 1

|ql+3z|2
}

(3.38)

and

0 < q <
1

((1− q)|z|)4
⇒ |q2(1− q)z| < 1. (3.39)
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Thus the conditions for lemmas 3.2.1, 3.2.2, 3.2.3 to be simultaneously applicable and isometry

condition (2.61) for γ = 3/2 to be ful�lled simplify to:





0 < q < min
{
|q2+lz|2, 1

|q2+lz|2
}
,

q < min
{

((1− q)|z|)4, 1
((1−q)|z|)4

}
,

0 ≤ l .

(3.40)

For convenience we will relabel parameter l:

l→ l − 2, (3.41)

which gives:





0 < q < min
{
|qlz|2, 1

|qlz|2
}
,

q < min
{

((1− q)|z|)4, 1
((1−q)|z|)4

}
,

2 ≤ l .

(3.42)

In order to show an error bound for the TTN we have to show that these conditions can be

satis�ed simultaneously for all levels of the tree. For the transfer operator, the renormalization

maps (2.36) and (2.37) work as follows

Tl = qlL0Wq(ψ1, z) ◦ . . . ◦Wq(ψ2m , z)q
−lL0

= q2 l−2
2 L0Wq2(εz,q(ψ1 ⊗ ψ2), q5/2z) ◦ . . .

. . . ◦Wq2(ψ2m−1−1 ⊗ ψ2m−1 , q5/2z)q−2 l−2
2 L0 . (3.43)

Thus we have

z(r+1) =
(
q(r)
)5/2

z(r), q(r+1) =
(
q(r)
)2

, l(r+1) =
l(r) − 2

2
. (3.44)

Lemma 3.2.5. There exist z ∈ C, q ∈ R, l ∈ R, such that for every tree level r ∈ N, 0 ≤ r < m,

where m ∈ N,m ≥ 1 is the total number of levels of the tree, and q(r), z(r), l(r) that are obtained

via the TTN renormalization rules (3.44) from z = z(0), z = z(0), l = l(0), the following system

of inequalities holds:





0 < q(r) < min

{∣∣∣(q(r))l
(r)

z(r)
∣∣∣
2

, 1∣∣∣(q(r))l(r)z(r)∣∣∣2 ,
}
,

q(r) < min

{(
(1− q(r))|z(r)|

)4
, 1

((1−q(r))|z(r)|)4

}
,

2 ≤ l(r) .

(3.45)

Proof. The strategy of the proof can be divided in two steps:

1. Finding a small system of inequalities (in our case there will be only three inequalities)

such that any solution gives rise to a solution of the original system (3.45).
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2. Showing that the small system has a solution.

Employing this strategy, we will �rst radically decrease the number of inequalities. An obvious

approach is to use the renormalization rules (3.44), which give

z(r) = q
5
2 ·(2r−1)z, q(r) = q2r . (3.46)

As l(r) is positive for every r ≥ 0, we get l(r+1) < l(r). This implies

2 ≤ l(m−1) ⇒ 2 ≤ l(r) for 0 ≤ r < m. (3.47)

From the recursion relation (3.42) we get

2 ≤ l(m−1) ⇔ 2m+1 − 2 ≤ l. (3.48)

Let us note that any of the �rst tho rows of (3.45) implies that

0 < q(r) < 1 for any r such that 0 ≤ r < m. (3.49)

Further employing the renormalization rules (3.44) to reduce the number of inequalities, we note

that the condition

q(r) <
∣∣∣(q(r))l

(r)

z(r)
∣∣∣
2

, (3.50)

is independent of r. Indeed, using the equalities

q(r+1) =
(
q(r)
)2

,

∣∣∣(q(r+1))l
(r+1)

z(r+1)
∣∣∣
2

=
∣∣∣(q(r))l

(r)+ 1
2 z(r)

∣∣∣
2

(3.51)

we get

q(r) <
∣∣∣(q(r))l

(r)

z(r)
∣∣∣
2

⇔ q(r+1) <
∣∣∣(q(r+1))l

(r+1)

z(r+1)
∣∣∣
2

. (3.52)

Likewise, the condition

q(r) <
1

∣∣(q(r))l(r)z(r)
∣∣2 (3.53)

is weaker for the level r + 1 than for the level r, as 0 < q(r) < 1. Thus it is enough to solve to

consider conditions (3.50) and (3.53) for the level r = 0. Let us �x |z| (see remark 3.2.6):

|z| = 1

ql
, (3.54)

With a choice of |z| as in (3.54), the system (3.45) becomes:




2m+1 − 2 ≤ l,
0 < q,

ql+
5
2− 9

4 ·2r − 1 + q2r < 0,

1− q2r − ql+ 5
2− 11

4 ·2r < 0
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for every r ∈ N, 0 ≤ r < m.

Even though the system (3.55) is considerably smaller than (3.45), it is still large for big m.

To proceed further, let us use a following trick: consider a system of inequalities

fr < 0 for every r ∈ N, 0 ≤ r < m. (3.55)

If fr is a di�erentiable function of r and

∂rfr ≤ 0 for every r ∈ N, 0 ≤ r < m, (3.56)

then the system (3.55) is equivalent to

f0 < 0. (3.57)

Analogously, if

∂rfr ≥ 0 for every r ∈ N, 0 ≤ r < m, (3.58)

then the system (3.55) is equivalent to

fm−1 < 0. (3.59)

We will use the facts (3.57) and (3.59) to reduce the number of inequalities. For technical

simplicity, let us treat 2r and not r as a parameter in the system (3.55) and di�erentiate with

respect to it. Indeed, the argument does not change, as 2r is monotonically increasing with r.

Di�erentiating, we get:

∂2r

(
ql+

5
2− 9

4 ·2r − 1 + q2r
)

= ln(q)

(
q2r − 9

4
· ql+ 5

2− 9
4 ·2r
)
,

∂2r

(
1− q2r − ql+ 5

2− 11
4 ·2r

)
= ln(q)

(
11

4
· ql+ 5

2− 11
4 ·2r − q2r

)
. (3.60)

As 0 < q < 1 (see inequalities 3.49 for r = 0), we have ln(q) < 0. Let us search for the solution

of (3.55) in the set

l ≥ max

{
−5

2
+

13

4
· 2m−1 − logq

(
9

4

)
,−5

2
+

15

4
· 2m−1 − logq

(
11

4

)
, 2m+1 − 2

}
. (3.61)

Then we have

∂2r

(
ql+

5
2− 9

4 ·2r − 1 + q2r
)
≤ 0,

∂2r

(
1− q2r − ql+ 5

2− 11
4 ·2r

)
≥ 0. (3.62)

Condition (3.61) holds if

l ≥ 2m+1 − 2− logq

(
11

4

)
. (3.63)
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Let us denote

l̃ := l −
(

2m+1 − 2− logq

(
11

4

))

C1 := 2m+1 − 3

4
,

C2 :=
5

4
· 2m−1 +

1

2
. (3.64)

Using the facts (3.57) and (3.59), we get that if the system of inequalities





0 ≤ l̃,
0 < q,

1− q − 4
11q

l̃+C1 < 0,
4
11q

l̃+C2 − 1 + q2m−1

< 0.

(3.65)

has a solution, then system (3.45) also has a solution.

As 0 < q < 1 (see inequalities 3.49 for r = 0),





4
11q

l̃+C1 > 1− q,
4
11q

l̃+C2 < 1− q2m−1

,

l̃ ≥ 0.

⇔





l̃ < logq
(

11
4 (1− q)

)
− C1,

l̃ > logq

(
11
4 (1− q2m−1

)
)
− C2,

l̃ ≥ 0.

(3.66)

System (3.66) has a solution if and only if





logq
(

11
4 (1− q)

)
− C1 > 0,

logq
(

11
4 (1− q)

)
− C1 > logq

(
11
4 (1− q2m−1

)
)
− C2

(3.67)

This means that system (3.65), and, consequently, system (3.45) has a solution if and only if





11
4 (1− q) < qC1 ,

qC2−C1 < 1−q2m−1

1−q ,

0 < q

(3.68)

has a solution. It is easy to see that such q exists: for every m ≥ 1 it is easy to see that C2 < C1

and C1 > 0, thus with growth of q from 0 to 1 the expression 11
4 (1− q) monotonically decreases

from 11
4 to 0, while qC1 monotonically increases from 0 to 1, qC2−C1 monotonically decreases

from in�nity to 1 and 1−q2m−1

1−q monotonically increases from 1 to 2m−1. This means that for q

close enough to 1 all inequalities in (3.68) are satis�ed.

As such q exists, there is also an l and z such that the system (3.45) holds for every r such

that 0 ≤ r < m.

The fact that solution of (3.68) is such that q is close to 1 has an intuitive interpretation � the

more levels in the tree we have, the more we have to truncate, thus the error increases. As we
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will see later, the error falls as qΩ(N), where N is a truncation parameter (see subsection 2.1.1).

For trees with more levels we have to use large q, as C1 grows with m, thus error estimates fall

faster for small trees.

Remark 3.2.6. Every |z| can be expressed via in terms of real parameter f as:

|z| = qf/2

ql
, (3.69)

Then the conditions (3.45) are equivalent to




−1 < f < 1,

2m+1 − 2 ≤ l ,

0 < q2r < min
{(

1− q2r
)4
q10(2r−1)−4l+2f , 1

(1−q2r )4q10(2r−1)−4l+2f

} (3.70)

for every r ∈ N, 0 ≤ r < m.

Setting f = 0 in (3.69), we get (3.54). Conceptually similar proofs to Lemma 3.2.5 can be

done for other values of f .

With suitable conformal mapping we can always arrange lattice {z, zq, zq2, . . .} so that in-

equalities (3.45) hold and l can always be chosen as it, like a gauge, does not have a physical

meaning. Thus, we can use bounds from section 3.2 for trees of any size.

3.3 One step truncation error bound

Let us look at truncation after one step of the tree tensor network � that is, when the number

of �elds is reduced by a factor of two.

T ≡ Wq(ψ1, z) ◦Wq(ψ2, z) ◦ . . . ◦Wq(ψ2n−1, z) ◦Wq(ψ2n, z)

= q2L0Wq(1)

(
ψ

(1)
1 , z(1)

)
◦ . . . ◦Wq(1)

(
ψ(1)
n , z(1)

)
q−2L0

= q2L0Wq2

(
εz,q(ψ1 ⊗ ψ2), q5/2z

)
◦ . . . ◦Wq2

(
εz,q(ψ2n−1 ⊗ ψ2n), q5/2z

)
q−2L0 . (3.71)

It is natural to introduce the following truncation:

ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

T
(
{ψi}2ni=1; z, q

)
'

Figure 3.9: Truncated transfer operator diagram can be obtained from the exact transfer operator

one by exchanging ��lled� boxes to �empty� ones.
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Let us remind that

ψ
(1)
i = εz,q(ψ2i−1 ⊗ ψ2i) (3.72)

(see (2.38)) and

ψ
(1)[N ]
i = ε[N ]

z,q (ψ2i−1 ⊗ ψ2i) (3.73)

(see (3.5)).

De�nition 3.3.1. The once truncated transfer operator T [N ] : V n → End(V )[[z, z−1]],

{ψi}2ni=1 → T [N ]
(
{ψi}2ni=1; z, q

)
is

T [N ]
(
{ψi}2ni=1; z, q

)
= Wq(1)

(
ψ

(1)[N ]
1 , z(1)

)
◦ · · · ◦Wq(1)

(
ψ(1)[N ]
n , z(1)

)
(3.74)

(see (2.38) and �gure 3.9).

Using the exact expression for εz,q as well as z
(1) and q(1) (see equations (2.36)), we can write

T [N ]
(
{ψi}2ni=1; z, q

)
= Wq2

(
W [N ]
q (ψ1, (1− q)z) qL0ψ2, q

5/2z
)
◦ . . .

· · · ◦Wq2

(
W [N ]
q (ψ2n−1, (1− q)z) qL0ψ2n, q

5/2z
)
. (3.75)

ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

≈

ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

Figure 3.10: We would like to show that truncated transfer operator is almost as good for

reproducing correlation functions as the exact one for large enough truncation parameter.
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Lemma 3.3.2. Consider a family of 2n �elds that get renormalized to n �elds. Let us �x a family

of nonnegative �nite numbers {wi}2ni=0. Let T be the transfer operator (see de�nition 2.1.2) and

T [N ] be the once truncated transfer operator (see de�nition 3.3.1). If z, q, l satisfy





0 < q < min
{
|qlz|, 1

|qlz|2
}
,

q < min
{

((1− q)|z|)4, 1
((1−q)|z|)4

}
,

2 ≤ l .

(3.76)

(see Lemma 3.2.5) and conjecture 3.1.2 holds, then for every family {ψi}2ni=1 such that wi corre-

sponds to ψi (that is, ψi ∈
⊕

n≤wi Vn see de�nition 2.1.5) the following bound

∥∥∥Tl
(
{ψi}2ni=1; z, q

)
− T [N ]

l(1)

(
{ψi}2ni=1; z, q

)∥∥∥ ≤ qΩ(N)
2n∏

i=1

‖ψi‖ (3.77)

holds (see �gure 3.10).

Remark 3.3.3. For the TTN we have n = 2p for p ∈ N0.

Proof. As was discussed in section 3.1, we will use the telescoping sum bound (3.3). Let us recall

that
(
q(1)
)l(1)

= ql−2 (see equation (3.44)). For this purpose, de�ne

T
[N,k]

l(1)
≡ q(l−2)L0

[∏k
i=1Wq(1)

(
ψ

(1)[N ]
i , z(1)

)
·∏n

j=k+1Wq2

(
ψ

(1)
j , z(1)

)]
q−(l−2)L0 (3.78)

(see (2.38)). It is easy to see that

T
[N,0]

l(1)
= Tl and T

[N,n]

l(1)
= T

[N ]

l(1)
. (3.79)

Then, as we have n renormalization �elds ψ
(1)
i or truncated renormalized �elds ψ

(1)[N ]
i

∥∥∥Tl − T [N ]

l(1)

∥∥∥ ≤
n−1∑

k=0

∥∥∥T [N,k]

l(1)
− T [N,k+1]

l(1)

∥∥∥ . (3.80)

For every term we have

∥∥∥T [N,k]

l(1)
− T [N,k+1]

l(1)

∥∥∥ ≤
k∏

j=1

∥∥∥q(l−2)L0Wq2(εz,q(ψ2j−1 ⊗ ψ2j), q
5/2z)q−(l−2)L0

∥∥∥

·
∥∥∥q(l−2)L0Wq2 (εz,q(ψ2k+1 ⊗ ψ2k+2)

−ε[N ]
z,q (ψ2k+1 ⊗ ψ2k+2), q5/2z

)
q−(l−2)L0

∥∥∥

·
n∏

j=k+2

∥∥∥q(l−2)L0Wq2

(
ε[N ]
z,q (ψ2j−1 ⊗ ψ2j), q

5/2z
)
q(l−2)L0

∥∥∥ . (3.81)

Basically, we would like to use that every term is su�ciently small. That is, if each term is of

order qΩ(N), then the sum should also be of this order. In every term there is only one map that
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is di�erent � namely, truncated or not, in T [N,k] and T [N,k+1]. This can be illustrated via the

following diagram:

ψ2k−1 ψ2k ψ2k+2 ψ2k+3 ψ2m−1 ψ2m

≈
ψ1 ψ2

ψ2k−1 ψ2k ψ2k+2 ψ2k+3 ψ2m−1 ψ2mψ1 ψ2

Figure 3.11: If we truncate one more map, the result does not change much.

Using lemmas 3.2.1, 3.2.2 and 3.2.3, we get

‖T [N,k]

l(1)
− T [N,k+1]

l(1)
‖ ≤

k∏

j=1

ϑw2j−1

(
q, qlz

)
· ϑw2j

(
q, qlz

)
· ‖ψ2j−1‖ · ‖ψ2j‖

·ϑw2k+1
(
√
q, (1− q)z) · ‖ψ2k+1‖ · ‖ψ2k+2‖ · κ(z, q) · qΩ(N)

·
n∏

j=k+2

ϑw2j+N

(
q2, q5/2+lz

)

·
√
|IV |ϑw2j−1

(
√
q, (1− q)z)√

1−√q ‖ψ2j−1‖‖ψ2j‖. (3.82)

De�nition 3.3.4. Consider a family of 2n nonnegative �nite numbers {wi}2ni=1 (such that wi

corresponds to a �eld ψi, see the statement of the lemma 3.3.2 and de�nition (2.1.5)), a trun-

cation parameter N ∈ N (see subsection 2.1.1), q ∈ R and z ∈ C are parameters of the lattice

(2.1) such the conditions of the lemma 3.3.2 are satis�ed. To simplify notation, let us introduce

Θ
(
{wi}2ni=1, N, z, q

)
≡ max
i∈[1,...n]

{
ϑw2i−1

(
q, qlz

)
· ϑw2i

(
q, qlz

)
, ϑw2i+1

(
√
q, (1− q)z) · κ(z, q),

ϑw2j+N

(
q2, q5/2+lz

)
·
√
|IV |ϑw2j−1(

√
q, (1− q)z)√

1−√q

}
.(3.83)

(See section 2.1 for de�nition of ϑw(q, z), subsection 1.2.2 for the de�nition of IV and lemma 3.2.3

for κ(z, q).)
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Putting everything together we get an expression of the following type:

‖Tl − T [N ]

l(1)
‖ ≤ qΩ(N) ·

[
nΘ
(
{wi}2ni=1, N, z, q

)]
·

2n∏

i=1

‖ψi‖. (3.84)

A direct consequence of conjecture 3.1.2 is that nΘ
(
{wi}2ni=1, N, z, q

)
increases at most sub-

exponentially as N increases. Indeed, qΩ(N) · eO(
√
N) = qΩ(N). This leads to

‖Tl − T [N ]

l(1)
‖ ≤ qΩ(N) ·

2n∏

i=1

‖ψi‖. (3.85)

3.4 Full truncation error bound

In this section we will show that a fully truncated TTN under certain assumptions give a good

approximation to the exact TTN. To do so, we will use the telescope inequality (3.3). How-

ever, to use it, we will need to introduce a partially truncated TTN. If we want to compute

n-point correlation function, we need a tree with m = log2 n levels. We have the renormalization

procedure (see sections 2.3 and 3.2.1):

ψ
(0)
i ≡ ψi,

{ψ(r)
1 , . . . , ψ

(r)
2m−r} → {ψ(r+1)

1 , . . . ψ
(r+1)
2m−r−1}, 0 ≤ r < m,

for each ψri we can write recursive relation, as well as for the lattice parameters z and q and

additional scaling parameter l

ψ
(r)
i = εz(r−1),q(r−1)

(
ψ

(r−1)
(2r−1) ⊗ ψ

(r−1)
(2r)

)
;

q(0) = q, q(r) =
(
q(r−1)

)2

,

z(0) = z, z(r) =
(
q(r−1)

)5/2

zr−1.

l(0) = l, l(r) =
l(r−1) − 2

2
. (3.86)

Using diagram language we get for ψ
(r)
i
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ψi2r+1 ψi2r+2 ψi2r+3 ψi2r+4 ψ(i+1)2r−1 ψ(i+1)2r

ψ
(r)
i+1

Figure 3.12: Renormalized �eld ψ
(r)
i

It is clear how to truncate this diagram � one just has to exchange ��lled� boxes by the

�empty� one. We can de�ne r times renormalized �elds via

ψ
(0)[N ]
i ≡ ψi, (3.87)

ψ
(r)[N ]
i = ε

[N ]

z(r−1),q(r−1)

(
ψ

(r−1)[N ]
2i−1 ⊗ ψ(r−1)[N ]

2i

)
, 1 ≤ r ≤ m. (3.88)

Renormalization rules for z(r), q(r), l(r) remain the same. We have already used this construction

for r = 1 in the section 3.3 and the construction (3.87) is a generalization of the truncation (3.73)

for all r ≥ 1.
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ψi2r+1 ψi2r+2 ψi2r+3 ψi2r+4 ψ(i+1)2r−1 ψ(i+1)2r

ψ
(r)[N ]
i+1

Figure 3.13: Truncated renormalized �eld ψ
(r)[N ]
i

To use the telescoping sum expansion (3.3), let us de�ne transfer operators that are truncated

up to level r of the tree.

De�nition 3.4.1. A r-truncated transfer operator T (r)[N ] : V n → End(V )[[z, z−1]],

{ψi}2ni=1 → T [N ]
(
{ψi}2ni=1; z, q

)
is

T (r)[N ] ≡ Wq(r)

(
ψ

(r)[N ]
1 , z(r)

)
◦ . . . ◦Wq(r)

(
ψ

(r)[N ]
2m−r , z

(r)
)

(3.89)

(see �gure 3.14).

It is easy to see that T (0)[N ] = T and the fully truncated tree is T (m)[N ].
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ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2mψ2m−3 ψ2m−2

r

m− r

Figure 3.14: Diagram representation of a tree truncated up to the level r � that is T (r)[N ].
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ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

ψ1 ψ2 ψ3 ψ4 ψ2m−1 ψ2m

≈

Figure 3.15: The fully truncated TTN T
(m)[N ]

l(m) is close to the exact one Tl, that is∥∥∥Tl − T (m)[N ]

l(m)

∥∥∥ ≤ qΩ(N) ·∏2n
i=1 ‖ψi‖.
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Lemma 3.4.2. Let T be a transfer operator (see de�nition 2.1.2) and T (m)[N ] be a m-truncated

transfer operator (see de�nition 3.4.1). If z, q, l satisfy




l ≥ 2m+1 − 2− logq
(

11
4

)
,

0 < q,

1− q < 4
11q

l+ 5
4 +logq( 11

4 ),

1− q2m−1

> 4
11q

l− 11
4 ·2m−1+ 5

2 +logq( 11
4 ),

|z| = q−l,

(3.90)

conjecture 3.1.2 holds and for every ψi corresponding wi is �nite (see de�nition 2.1.5), then

∥∥∥Tl − T (m)[N ]

l(m)

∥∥∥ ≤ qΩ(N) ·
2n∏

i=1

‖ψi‖ (3.91)

(see �gure 3.15).

Remark 3.4.3. Such z, q, l that inequalities (3.90) are satis�ed exist for every m ≥ 1, see

Lemma 3.2.5 for the proof and discussion.

Proof. Let us use telescope expansion (3.3):

∥∥∥Tl − T (m)[N ]

l(m)

∥∥∥ =
∥∥∥T (0)[N ]

l(0)
− T (m)[N ]

l(m)

∥∥∥ ≤
m−1∑

i=0

∥∥∥(T
(i)[N ]

l(i)
− T (i+1)[N ]

l(i+1) )
∥∥∥ . (3.92)

However, we have already obtained a bound on every term in section 3.3:

∥∥∥T (i)[N ]

l(i)
− T (i+1)[N ]

l(i)

∥∥∥ ≤ qΩ(N) ·
2m−i∏

j=1

∥∥∥ψ(i)[N ]
j

∥∥∥ (3.93)

It is straightforward to obtain bounds of
∥∥∥ψ(i+1)[N ]

j

∥∥∥ using initial �elds
∥∥∥ψ(i)[N ]

j

∥∥∥ and, conse-

quently, ‖ψj‖:
∥∥∥ψ(i+1)[N ]

j

∥∥∥ =

∥∥∥∥W
[N ]

q(i)

(
ψ

(i)[N ]
2j−1 , (1− q(i))z(i)

)(
q(i)
)L0

ψ
(i)[N ]
2j

∥∥∥∥

≤
√
|IV |ϑw2j−1+iN

(√
q(i), (1− q(i))z(i)

)

√
1−

√
q(i)

∥∥∥ψ(i)[N ]
2j−1

∥∥∥
∥∥∥ψ(i)[N ]

2j

∥∥∥ . (3.94)

We can use conjecture 3.1.2 to observe that

√
|IV |ϑw2j−1+iN

(√
q(i),(1−q(i))z(i)

)
√

1−
√
q(i)

grows only sub-

exponentially with N . Thus we get:

2m−i∏

j=1

∥∥∥ψ(i)[N ]
j

∥∥∥ ≤
2m−i∏

j=1

sub-exponential(N)

2m−i+1∏

j=1

‖ψ(i−1)[N ]
j ‖

≤
i∏

l=1




2m−l∏

j=1

sub-exponential(N)




2m∏

j=1

‖ψj‖. (3.95)
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Now we have everything to get a bound on the truncated operator using ‖ψi‖:

∥∥∥T (0)[N ]

l(0)
− T (m)[N ]

l(m)

∥∥∥ ≤qΩ(N) ·
m−1∑

i=0




i∏

l=1




2m−l∏

j=1

sub-exponential(N)




 ·

2m∏

j=1

‖ψj‖. (3.96)

A sum of products of sub-exponential functions is still a sub-exponential function. As a result

we get the desired bound:

∥∥∥Tl − T (m)[N ]

l(m)

∥∥∥ ≤ qΩ(N) ·
2m∏

j=1

‖ψj‖. (3.97)

This precisely means that the truncated TTN is a good approximation of the exact TTN for

large enough truncation parameter N .

3.5 Bond dimension

For a correlation function of n �elds, to any given �elds the renormalization map with trun-

cation parameter N (see subsection 2.1.1) is applied m = log2 n times. After the �rst step of

renormalization, the truncated �elds will equal to (see equation ( 2.36)):

ψ
(1)[N ]
i = W [N ]

q (ψ2i−1, (1− q)z) qL0ψ2i (3.98)

Suppose the highest weight of ψi's is M . Then the highest weight of ψ
(1)[N ]
i 's will be M +

N . If one employs this reasoning for m steps, one gets that the weight of ψ
(m)[N ]
1 is at most

M +Nm = M +N log2 n. Consequently, a su�cient bond dimension is:

DTTN = dB(M +N log2 n), (3.99)

that is, a dimension of the subspace obtained by keeping all the levels up to and including

M +N log2 n in the module B (for dB see de�nition 3.1.1, and see bound (1.31) for the increase

of DTTN with the increase of N). For the MPS, on the other hand,

DMPS = dB(M̃ +Nn), (3.100)

for some constant M̃ (see [KS15] for details). With bond dimensions DTTN and DMPS these

tensor networks yield error ∼ qΩ(N). This means that if one needs an approximation that will

yield an error not more than δ and both the MPS and the TTN are applicable. For small enough

δ known bounds yield a smaller number of parameters for the TTN than for the MPS. However,

bounds for the MPS were proven for a bigger set of z and q. Thus, the answer to the question of

whether bounds for the MPS or the TTN are tighter depends on the approximation algorithm.

One possible way to obtain even better bounds would be to use MERA. Disentanglers can be

used to solve the issue with di�erent conditions for z, q and l for each step of the renormalization

more e�ectively. This is a subject for further research.
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As the dimension dB(k) grows as a number of multi-partitions of k (see equation (1.31)), we

see that

DTTN = eΘ(
√
N) (3.101)

if m and M are kept �xed. As the error decreases with N as qΩ(N), we can take a logarithm

of both the dimension and the error and see, that while the bond dimension grows as
√
N , the

error falls as ∼ 1
N . This means that TTN can represent correlation functions e�ciently. This

result is very similar to the result for the MPS.
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Chapter 4

Conclusions

This thesis provides a step in drawing a connection between tensor networks and CFT. This is an

important step in the program to unify two e�cient approaches to many-body quatum systems �

those are, tensor networks and QFT. While the thesis concentrates on TTN, it is complementary

to previous studies of relations between MPS and CFT [KS15].

The work essentially consists of two parts. First, we have constructed a TTN isometry that

has a meaningful truncation to a �nite-dimensional space. This was done in chapter 2. As a

result, a representation for correlation functions in two-dimensional CFTs in terms of a tree

tensor network with isometric property was obtained and a general approximation scheme for

TTN in terms of �nite-dimensional matrices was developed.

In the second part of the work, we applied the truncation scheme to the full tree. We obtained

error bounds for the representation of WZW models via the TTN. The main obstacle in gener-

alizing this approach to other CFTs is the current limited knowledge about non-WZW theories.

If one �nds analogies to linear energy bounds for some other classes of models and they satisfy

certain mild conditions (see subsection 3.1.1), then the construction can be straightforwardly

generalized to these non-WZW cases. The construction and proof can be found in chapter 3.

Finally, we have observed that bounds for the bond dimension for the TTN can be asymp-

totically tighter than the current known bound for the bond dimension for the MPS. However,

the proven area of validity of MPS in terms of initial parameters of the lattice is larger then

that of TTN. (see section 3.5 for a discussion). It is conjectured that one can overcome this by

considering more powerful tensor networks such as MERA.

Thus we have proven that one can indeed use TTN to describe one-dimensional critical

systems that correspond to WZW models in an e�cient manner and obtained analytic evidence

that such results can be obtained for other classes of CFTs. This class of tensor networks is

not just capable to reproduce power laws, but yields correct correlation functions while using a
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modest number of parameters.

One can obtain further interesting results by moving either to more general and interesting

tensor networks � the primal example is MERA, or by relaxing the condition of conformal

symmetry. While the formalism of vertex operators will not be applicable anymore, one can try

to obtain conditions on C*-algebras for di�erent tensor network methods to be applicable.
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Appendix A

Other approaches to map

construction

One may question, if we could choose vector spaces on which the map εz,q (2.36) acts di�erently.

Indeed, it may seem that there are simpler choices for V in (2.28) � for example, one could

consider a map that acts on space of intertwiners or scaled intertwiners. Unfortunately, several

complications arise in these alternative approaches.

For example, if one considers space V to be the space of scaled intertwiners, than the maps of

sort (2.51) require computing scaled intertwiners and multiplying them. However, this is exactly

the way the MPS construction in [KS15] works! Thus, this approach does not yield any new or

improved results unlike approach of (2.36), as we have seen in section 3.5.

One may consider V to be a space of intertwiners and choose di�erent map to (2.51). Such

maps indeed exist � it can be proved by induction that

εqk (Y (ψ1, z)⊗ Y (ψ2, z)) = Y (ψ1, z)q
kL0Y (q−kL0ψ2, z)q

−kL0 (A.1)

where k corresponds to a step of tensor network also yields ' ∏2m−1
i=0 Y (ψi, zq

i) via the TTN

for a suitable choice of initial �elds {ψ(0)
i }2

m

i=1. Even though it looks attractive at �rst sight

� the map consists only of M�obius transformations, it has a big drawback � intertwiners are

in general unbounded. Thus, proving that any �nite-dimensional truncation of such map gives

correct answer up to a small error is not straight-forward at all.

Finally, one could use the idea behind purely generated �nally correlated states [FNW92],

and try to represent the map (2.51) in the following form

ε(A⊗B) = U(A⊗B)U†, (A.2)

where A and B are either intertwiners or scaled intertwiners. Let us try to brute-force construct
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such U . In order for factors like qnL0 to be diagonal, it is convenient to choose eigenbasis of L0

for the calculation. In this basis we have

A =
∑

Aab|a〉〈b|, (A.3)

B =
∑

Bcd|c〉〈d|. (A.4)

The general expression for U is

U =
∑

Uijk|i〉〈j| ⊗ 〈k|, (A.5)

U† =
∑

U∗ijk|j〉〈i| ⊗ |k〉 (A.6)

This straightforwardly leads to

U(A⊗B)U† =
∑

(UiacU
∗
jbdAabBcd)|i〉〈j|. (A.7)

We can de�ne ε(A ⊗ B) with extra qαL0 an one side and q−αL0 on the other side and obtain

equivalent map with the equivalence relation ' (see de�nition 2.1.4), or ε can act on ordinary

or scaled vertex operators � the only di�erence in all those cases are extra factors of type qnL0 .

Thus, we can write

ε(A⊗B) = C1AC2BC3, (A.8)

where

Ci = qniL0 =
∑

j

Cij |j〉〈j|, (A.9)

in basis of eigenvectors of L0. So the map (2.51) written in the L0 eigenbasis is

ε(A⊗B) =
∑

(C1
aC

2
bC

3
d)(AabBbd)|a〉〈d|. (A.10)

Using the condition (A.2), we get

∑
(UiacU

∗
jbdAabBcd)|i〉〈j| =

∑
(C1

aC
2
bC

3
d)(AabBbd)|a〉〈d|. (A.11)

By observing the way the �rst index of Aab and the ket-vector are being summed over, we

conclude that

U =
∑

U
(1)
ij |i〉〈i| ⊗ 〈j|, (A.12)

and by observing the summation of the second index of Bcd and the bra-vector, we conclude

U† =
∑

U
(2)
ij |j〉〈i| ⊗ |i〉. (A.13)
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The conditions (A.12) and (A.12) combined yield

U =
∑

Ui|i〉〈i| ⊗ 〈i|. (A.14)

However, if we input the result A.14 in (A.2), we get

ε(A⊗B) = U(A⊗B)U† =
∑

UiUjAijBij |i〉〈j|. (A.15)

This expression has more symmetry than the map (2.51) � it has one index less (and intertwiners

are in general not diagonal in the basis of L0), which means that our map can not be represented

in the form (A.2) for general enough A and B. Of course, above considerations does not exclude

other possible maps. However, these consideration mean that our choice of the map is rather

simple and natural.
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