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Problem 30
Let A be a positive definite and symmetric RY x RY matrix. Show that
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for some a that does not depend on the j. Hence show that the partition sum of the Ising-
Hamiltonian H({0:}) = —J > _, ;- 0i0; (where < 4,j > denotes the sum over nearest
neighbours) can be rewritten in the form
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with @ independent of the o;. Develop Hin a power series up to the order O(m4).

Problem 31
The fieldtheoretic description of critical phenomena leads to functionals of the form

Flp(y)] = /dyf (o)) »

where F[¢(y)] is a function depending on the field ¢(z). Therefore the concepts differen-
tiation and integration need to be extended. We define the functional derivative of the
functional F[¢(z)] as the limit of the derivative on a discrete lattice:
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where ¢; is the field at a discrete point ¢ on the lattice with lattice constant a. Likewise
the functional derivative can be defined continuously as usually done by physicists:
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(a) Derive the Euler-Lagrange equation by finding the extremum of the action S = 0,
where the action is defined by: S = [ dtL(q(t), dq(t))-

(b) Calculate the functional derivative for the following functional F[¢(x)]

r= [aswew. r= [avew). F- [a (2‘5)2 F=(y).



Problem 32
The generating functional I'[m] of vertex functions is obtained by Legendre-transforming
the generating functional Wh| = In Z[h] of cumulants:
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and where the order parameter q; and the field k have n components. The N-point vertex
functions are defined as
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(a) Show that
or

smi(z) hi(z).

(b) Deduce the following relation between 2-point vertex functions and 2-point cumulants
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k

(Recall that the 2-point cumulant is G,(Zzi)k(xl,:zg) = #(% HEO') What is the

corresponding relation in momentum space?

(¢) Find analogous expressions for I'™) and G in the cases N = 3 and N = 4.

(d) From (b) and (c), deduce that the vertex functions are given by the one-particle
irreducible diagrams.



