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3.2 Boundary-Value Problems with Conductors 151
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Figure 3.16 Rectangular volume in spheroidal coordinate system.

dp G
Theretore, far from the origin, the spheroidal coordinates (pc, ¢, ¢) are analogous to the

spherical polar coordinates (R, cos, ¢). At the origin, ¢ = 0 and p = 1.

Transforming the Laplace equation to spheroidal coordinates (or any other curvilinear
coordinates) 1s inevitably a tedious process. We proceed in the following way. If we con-
sider a small rectangular volume formed by the coordinates (p, ¢, ¢) as shown in Fig-
ure 3.16, we find by differentiating (3.147) and (3.148) that the increments dx, dy, and dz

along the edges are

_ §2 2 _
dx =c¢ t-¢ pcospdp + ¢ u 1{cns¢d¢—a«/{p3—l}(lmfz}sintﬁdrﬁ
ﬁl__l l_{-E

(3.153)
| — {E , ‘ﬂ?" — 1 .
dy =c¢ e Iﬁsmn;tndp +c T gﬁsmcﬁdt +r:\/(p3 — D1 —=¢?)cosgpde
(3.154)
and
dz =ctdp+ code (3.155)

Summing the squares of all these terms, we find that the increment of length from one cor-
ner of the rectangular volume to the diagonal corner (the metric in the new coordinate

system) 1s
dl’ = dx* +dy* +dz* = hldp* + h} d¢* + b} d¢’ (3.156)
where
ﬂl . ;—2
hy, =c o (3.157)
ﬂz _ '.;-E
hy = c 5 s (3.158)
hy = v/ (p? — 1)(1 - ¢2) (3.159)
The increments of length corresponding to increments of the curvilinear coordinates are
evidently
dl, =h,dp (3.160)
dly = h, dt (3.161)

dly = hydg (3.162)



To express the Laplace equation in spheroidal coordinates, we recognize that the
Laplace equation is equivalent, by the divergence theorem, to the statement

P
5{: 0P 4 = 0 (3.163;
5 Bn

where 9®/dn is the derivative normal to the surface element dS in the direction outward
from the volume enclosed by S. To apply this to the infinitesimal rectangular volume
shown in Figure 3.16 we note that the electric flux through the face normal to the coordi-

nate p is
hedl hyde o
hy dp
so the net electric flux outward from the volume through this face and the opposite face is
d (hehy 0D
— dpdt d
dp ( hy, dp ) pacas

Doing the same calculation for the other faces and adding, we obtain the Laplace equation
in the curvilinear coordinate system

9 (hhy 90 0 frﬂhgaﬂdﬂ) a(hpkgecb)]
d =0 (3.1
[ﬂﬂ(kp ﬂp)Jrac(h; oc ) T\ T, g ) |04t ae (3.164)

In the present case, when we substitute for 4 o> he, and hy we find that the Laplace equation
in prolate spheroidal coordinates is

o[ I 3 [ , ach I G B
— — 1)— — (1 — — | + =0 3.165
ap[(p }aﬂ]J“a.: O T oo e e (3169
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