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Problem set 7

Tutorial 7.1 Wine cellar

A good wine cellar should be isolated from atmospheric temperature fluctuations and therefore is often
located in a cave. Temperature gradients generate a heat flux according to Fourier’s law,

J(Z,t) = —k VT(Z, 1),

where k denotes the heat conductivity of the rock.
a) Relying on energy conservation, derive the heat diffusion equation

T (Z,t) = DVT(Z,1)

with the thermal diffusion coefficient D = k/pc. The energy density is given by u(Z,t) =
pcT(Z,t) with mass density p and specific heat ¢ of the rock.

b) For simplicity, restrict to the one-dimensional problem across a homogeneous layer of rock, with
the atmosphere/rock interface at x = 0. Find the steady-state solution of the diffusion equation
for a harmonic temperature oscillation of the atmosphere, i.e., boundary conditions

T(x=0,t) =Ty + AT cos(wt).

Give a sketch of the solution and discuss its features.

Hint: Use the Ansatz T'(x,t) = Ty + Re[d(z) e7“!] with a time-dependent part that follows the external
stimulus with a phase shift, i.e.; the amplitude ¥(z) is complex in general.

Tutorial 7.2 Uncertainty relation

An important consequence of the Fourier transform is the uncertainty relation which states for the
widths of a general wave packet that

Az Ak >

| =



here the squared width Ax? of a wave packet ®(x) centered at x. and the squared width Ak? of its
Fourier transform are defined as

(Az)? = /dx (x — xc)2]<I>(a:)\2/ /dx |®(z)|?
@2 = [ u-rsr ) [ we

Show that a Gaussian wave packet has minimal uncertainty, i.e. Ax Ak = 1/2, and it is the only wave
form with this property.

and

Note: The proof of the uncertainty relation is based on the Cauchy-Schwarz inequality

LA Hlgll = 1(f, )l

for vectors f, g from a Hilbert space with scalar product (.,.) and derived norm || f|| = (f, f)/2. Equality holds
if and only if f and g are linearly dependent.

Tutorial 7.3 Gaussian wave packet

Consider a light pulse propagating in a dispersive medium. The wave numbers of the pulse are con-
centrated around a value k. according to a Gaussian distribution. Then the electric field of the pulse
is given by its Fourier representation

dk pn_i k — ke)?o?
E(l‘,t) _ /%ellm—lw(k)t exp |:_( . ) g :| ‘

In the vicinity of k., the dispersion relation of the medium may be expanded in a Taylor series,
1
w(k) =we+ (k —ke)vg — i(k/’ - kc)Qﬁa

with coefficients w, = w(k.), vy = '(kc), and 8 = —w”(k.). Calculate the intensity I(t) o< |E(z,t)[?
and interpret the result.

Problem 7.4 Reflection of an electromagnetic wave at a conducting mirror

A plane polarized electromagnetic wave of frequency w in free space is incident normally on the flat
surface of a nonpermeable medium of conductivity ¢ > 0 and a constant background susceptibility
Xm > 0.
a) First consider the medium. Show that for harmonically time-varying fields, E(t) = Re E e it
etc., the polarization P = XmE and the current density ] =oF in Ampére’s equation can be
ehmlnated in favor of a complex dielectric permittivity,

L oL —j . A
VxH,= "YewE, with W) =emt 0, ep=1+4dmxm.
w

b) The incident wave is partially reflected and absorbed by the medium. Choosing the z-axis
perpendicularly to the flat surface, a suitable Ansatz for the electric field is given by

Eo(2) = B eik.z +re * for 2 <0 (empjcy space),
te'd? ez for z >0 (medium).

Determine the wave numbers ¢, k as well as the decay rate k by solving the corresponding wave
equations.



c)

d)

Hints:

Formulate appropriate matching conditions for the electromagnetic fields at the interface (z = 0)
and determine the reflection amplitude r and the transmission amplitude t. Calculate the re-
flection coefficient R = |r|? and the transmission coefficient T =1 — R.

Evaluate the time averaged Poynting vector

in both half spaces and interpret your result.

Specialize your results for the case of good conductor o > wey,, i.e., &, can be neglected, and
discuss the decay rate x and the reflection coefficient R. Argue that the displacement current
is small compared the current density j in this case and show that the electromagnetic fields in
the medium fulfill diffusion equations rather than wave equations.

In the opposite limit of a poor conductor, o < we,,, the decay rate becomes large to the wave-
length of the incident wave. Determine the absorption length x~! and the reflection coefficient
R in this case.

The parts a—d can be solved independently of each other. The calculation of b) may be done for general

complex e(w); the results of ¢) should be expressed in terms of ¢, k and «, the Poynting vector in d) in terms of
R and k; part e) is similar to the problem of the wine cellar and was discussed in parts in the lecture.

Problem 7.5 Paraxial beams

Consider a monochromatic beam of angular frequency w = kc propagating essentially along the positive
z-direction.

a)

Argue that the components of the electric field allow for a representation as

. i [ PR oo
E(Z,zt)=e t/(27r)é a(ky)exp(ik 7| +ikjz),

where k| = (k* — Ei)l/Q is to be eliminated in favor of & .

The complex amplitudes a(k, ) are assumed to contribute only for |k, | < k. Expanding the
square root, ky >~k — ki/2k to leading order in k| /k, show that the field assumes the following
form

E(Z1,zt) = e TE(T L, 2),

where the envelope function £ is slowly varying along z on the scale of a wavelength, 0,€ < k€.
Relate the envelope to the amplitudes a(k; ). Show that the envelope satisfies a field equation
of the Schrédinger type,

1
10.E(%1,2) = —ﬁvig(@,z).

In particular, the field equation is first order in the z-direction.

Evaluate the electric field E(¥, z;t) for a Gaussian amplitude function
. 1 o=
a(ky) o exp <—4w8kf_> , wop >0,

and show that the intensity I oc |E|? exhibits a Gaussian profile in the perpendicular direction 7
and a width that depends on z. Where is the width minimal?

Due date: Tuesday, 6/12/2007, at 9 a.m.



