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Problem set 7

Tutorial 7.1 Wine cellar

A good wine cellar should be isolated from atmospheric temperature �uctuations and therefore is often
located in a cave. Temperature gradients generate a heat �ux according to Fourier's law,

~j(~x, t) = −κ ~∇T (~x, t),

where κ denotes the heat conductivity of the rock.
a) Relying on energy conservation, derive the heat di�usion equation

∂tT (~x, t) = D∇2T (~x, t)

with the thermal di�usion coe�cient D = κ/ρc. The energy density is given by u(~x, t) =
ρcT (~x, t) with mass density ρ and speci�c heat c of the rock.

b) For simplicity, restrict to the one-dimensional problem across a homogeneous layer of rock, with
the atmosphere/rock interface at x = 0. Find the steady-state solution of the di�usion equation
for a harmonic temperature oscillation of the atmosphere, i.e., boundary conditions

T (x = 0, t) = T0 + ∆T cos(ωt).

Give a sketch of the solution and discuss its features.

Hint: Use the Ansatz T (x, t) = T0 + Re[ϑ(x) e−iωt] with a time-dependent part that follows the external

stimulus with a phase shift, i.e., the amplitude ϑ(x) is complex in general.

Tutorial 7.2 Uncertainty relation

An important consequence of the Fourier transform is the uncertainty relation which states for the
widths of a general wave packet that

∆x∆k ≥ 1
2

;



here the squared width ∆x2 of a wave packet Φ(x) centered at xc and the squared width ∆k2 of its
Fourier transform are de�ned as

(∆x)2 =
∫

dx (x− xc)2|Φ(x)|2
/ ∫

dx |Φ(x)|2

and

(∆k)2 =
∫

dk

2π
(k − kc)2|Φ̂(k)|2

/ ∫
dk

2π
|Φ̂(k)|2.

Show that a Gaussian wave packet has minimal uncertainty, i.e. ∆x∆k = 1/2, and it is the only wave
form with this property.

Note: The proof of the uncertainty relation is based on the Cauchy-Schwarz inequality

‖f‖ · ‖g‖ ≥ |(f, g)|

for vectors f, g from a Hilbert space with scalar product (., .) and derived norm ‖f‖ = (f, f)1/2. Equality holds

if and only if f and g are linearly dependent.

Tutorial 7.3 Gaussian wave packet

Consider a light pulse propagating in a dispersive medium. The wave numbers of the pulse are con-
centrated around a value kc according to a Gaussian distribution. Then the electric �eld of the pulse
is given by its Fourier representation

E(x, t) =
∫

dk

2π
eikx−iω(k)t exp

[
−(k − kc)2σ2

2

]
.

In the vicinity of kc, the dispersion relation of the medium may be expanded in a Taylor series,

ω(k) = ωc + (k − kc) vg −
1
2
(k − kc)2β,

with coe�cients ωc = ω(kc), vg = ω′(kc), and β = −ω′′(kc). Calculate the intensity I(t) ∝ |E(x, t)|2
and interpret the result.

Problem 7.4 Re�ection of an electromagnetic wave at a conducting mirror

A plane polarized electromagnetic wave of frequency ω in free space is incident normally on the �at
surface of a nonpermeable medium of conductivity σ ≥ 0 and a constant background susceptibility
χm > 0.

a) First consider the medium. Show that for harmonically time-varying �elds, ~E(t) = Re ~Eωe−iωt

etc., the polarization ~P = χm
~E and the current density ~j = σ ~E in Ampère's equation can be

eliminated in favor of a complex dielectric permittivity,

~∇× ~Hω =
−iω
c

ε(ω) ~Eω with ε(ω) = εm +
4πiσ

ω
, εm = 1 + 4πχm .

b) The incident wave is partially re�ected and absorbed by the medium. Choosing the z-axis
perpendicularly to the �at surface, a suitable Ansatz for the electric �eld is given by

Eω(z) = Ei

{
eikz + r e−ikz for z < 0 (empty space),

t eiqz e−κz for z > 0 (medium).

Determine the wave numbers q, k as well as the decay rate κ by solving the corresponding wave
equations.



c) Formulate appropriate matching conditions for the electromagnetic �elds at the interface (z = 0)
and determine the re�ection amplitude r and the transmission amplitude t. Calculate the re-
�ection coe�cient R = |r|2 and the transmission coe�cient T = 1−R.

d) Evaluate the time averaged Poynting vector

〈S〉 =
1
2

Re
( c

4π
~Eω × ~H∗

ω

)
.

in both half spaces and interpret your result.

e) Specialize your results for the case of good conductor σ � ωεm, i.e., εm can be neglected, and
discuss the decay rate κ and the re�ection coe�cient R. Argue that the displacement current
is small compared the current density ~j in this case and show that the electromagnetic �elds in
the medium ful�ll di�usion equations rather than wave equations.

f) In the opposite limit of a poor conductor, σ � ωεm, the decay rate becomes large to the wave-
length of the incident wave. Determine the absorption length κ−1 and the re�ection coe�cient
R in this case.

Hints: The parts a�d can be solved independently of each other. The calculation of b) may be done for general

complex ε(ω); the results of c) should be expressed in terms of q, k and κ, the Poynting vector in d) in terms of

R and κ; part e) is similar to the problem of the wine cellar and was discussed in parts in the lecture.

Problem 7.5 Paraxial beams

Consider a monochromatic beam of angular frequency ω = kc propagating essentially along the positive
z-direction.

a) Argue that the components of the electric �eld allow for a representation as

E(~x⊥, z; t) = e−iωt

∫
d2~k⊥
(2π)2

a(~k⊥) exp(i~k⊥~x⊥ + ik‖z) ,

where k‖ = (k2 − ~k2
⊥)1/2 is to be eliminated in favor of ~k⊥.

b) The complex amplitudes a(~k⊥) are assumed to contribute only for |~k⊥| � k. Expanding the
square root, k‖ ' k−~k2

⊥/2k to leading order in k⊥/k, show that the �eld assumes the following
form

E(~x⊥, z; t) = eikz−iωtE(~x⊥, z) ,

where the envelope function E is slowly varying along z on the scale of a wavelength, ∂zE � kE .
Relate the envelope to the amplitudes a(~k⊥). Show that the envelope satis�es a �eld equation
of the Schrödinger type,

i∂zE(~x⊥, z) = − 1
2k
∇2
⊥E(~x⊥, z).

In particular, the �eld equation is �rst order in the z-direction.

c) Evaluate the electric �eld E(~x⊥, z; t) for a Gaussian amplitude function

a(~k⊥) ∝ exp
(
−1

4
w2

0
~k2
⊥

)
, w0 > 0 ,

and show that the intensity I ∝ |E|2 exhibits a Gaussian pro�le in the perpendicular direction ~x⊥
and a width that depends on z. Where is the width minimal?
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