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Problem set 5

Tutorial 5.1 Wave equation in one dimension

Consider the scalar field u(z,t) that fulfills the one-dimensional wave equation in infinite space
& 10
ox? 2 ot?

The solution is completely specified by imposing initial conditions for the field, u(z,t = 0) = F(x), as

well as its time derivative, dyu(x,t = 0) = G(z).

a) Show, e.g. by a Fourier transform, that the most general solution of the wave equation was
given by d’Alembert,

}u(w,t):o, —00 < x < 00.

u(x,t) = uy(z —ct) + u_(x + ct)
with arbitrary functions u4(-) and u_(-). Then determine the solution u(z,t) that fulfills the
initial conditions.

b) Can you invent a generalization of the methods of images to solve the one-dimensional wave
equation in a half space x > 0, with boundary condition u(x = 0,t) = 07

Tutorial 5.2 Drude-Hall model

As an extension of Drude’s theory of conductors consider the induced current density ;(ind) (7, t) in
the presence of a constant and uniform external magnetic field B = Bé,. Motivate the constitutive
equation
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where m* denotes the effective mass of the conduction electrons (charge —e), 7 a characteristic relax-
ation time, and n the density of conduction electrons. The characteristic frequency w), is referred to as
plasma frequency.
a) Perform a temporal Fourier transform, convention E(7,w) = [e“'E(F,t)dt. Show that the
response becomes local in the frequency domain,
(ind) /> S
IV w) = o(w) - Bl w),
and determine the dynamic magneto-conductivity tensor oy (w).

b) Specialize to d.c. fields, i.e. w = 0, and discuss the Hall resistivity.



Problem 5.3 Spherical waves

Consider solutions of the scalar three-dimensional wave equation
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{V - cgatg:| Y(rt) =0,
where the field is spherically symmetric, i.e. ¥(7,t) = ¥(r,t) with r = |7].
a) Show that the substitution ¢(r,t) = u(r,t)/r leads to a one-dimensional wave equation for
u(r,t). Impose appropriate boundary conditions on u such that the scalar field ¢ remains finite
at the origin.

b) Using d’Alembert’s solution for the one-dimensional case, determine the spherical symmetric
solution of the wave equation that fulfills the initial conditions

Y(r,t=0)=F(r) and gt(r,t:O):G(r) for r > 0.

Problem 5.4 Nuclear magnetic resonance

Nuclear magnetic resonance spectroscopy uses the magnetic moment of the nuclei of certain atoms to
study physical, chemical, and biological properties of matter. The magnetization M due to the spin of
the nuclei obeys the Bloch equations
M) = AN (t) x B(t) 1{1 [N (t) — o)

Here the gyromagnetic ratio v determines the frequency of the Larmor precession. The second term is
a phenomenological damping term introducing a characteristic (energy) relaxation time 7j. Consider
a strong d.c. field Hy aligning the magnetization M(t) = My || Hy in the static case. A small time-
dependent field 6H | (¢) is applied in addition to the d.c. field Hy. The probing field §H | (t) acts
perpendicularly to Hy at all times. Since for positive gyromagnetic ratio, v > 0, the Larmor precession
is clockwise, the probing field shall rotate clockwise too.

a) Derive a constitutive equation for the induced magnetization M (t) = M (t) — My to linear order

in 51:&(7,‘). Decompose the response into a component parallel and perpendicular to the static
external field, M (t) = 6 M (t) + 0 M (t), and show that they fulfill

5 1 - 5 - — 1 - - —
5M||(t) + ?5M||(t) =0, OM | (t) —vydM (t) x Hy + ?5MJ_(1€) =My x §H | (t).
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b) Discuss the free decay of the induced magnetization §M (t) in the absence of external driving,
i.e., 6H, (t) = 0, for arbitrary initial condition 0 M (t = 0).
Hint: Tt is favorable to complexify the transverse magnetization §M, () as SM(t) = 6M,(t) + 10M,(t).

c) Derive the steady state response for a probing field rotating perpendicularly to the aligning field
Hy at constant angular frequency, SH 1(t) = 0H*(coswt, —sinwt, 0); here the z-axis has been
chosen parallel to Hy. Determine the complex susceptibility y(w), sketch and discuss its real
and imaginary parts, x(w) = x'(w) + ix”"(w).

Hints: Tt is favorable to complexify by introducing 6H(t) = dH,(t) + 0 H,(t) and similarly for the mag-
netization. The susceptibility is defined as x(w) = dM(t)/dH(t), and the result is x(w) = iyMy/(—iw +

iUJL + 1/T1>
d) Determine the averaged power absorbed by the sample,
S d -
Plw) =0HL(t) - 7,0ML(?),

where the average indicates a time average over many cycles.



e*) Assume that the strong aligning field is not totally uniform in space. This corresponds to small
random local changes of the Larmor frequencies w; — wy, + Awr. For simplicity, assume for the
probability distribution p(Awr) of the local increments a Cauchy-Lorentz distribution,

1 T

PACL) = T T A E

Verify that the probability distribution is normalized, [p(Awr)d(Awyr) = 1. Determine the
averaged complex susceptibility

(x(@)) == / (@) p(Awr) d(Awr)

Can you interpret the additional damping?

Hint: Use the residue theorem.

Due date: Tuesday, 5/29/07, at 9 a.m.



