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Problem set 5

Tutorial 5.1 Wave equation in one dimension

Consider the scalar �eld u(x, t) that ful�lls the one-dimensional wave equation in in�nite space[
∂2

∂x2
− 1
c2
∂2

∂t2

]
u(x, t) = 0 , −∞ < x <∞.

The solution is completely speci�ed by imposing initial conditions for the �eld, u(x, t = 0) = F (x), as
well as its time derivative, ∂tu(x, t = 0) = G(x).

a) Show, e.g. by a Fourier transform, that the most general solution of the wave equation was
given by d'Alembert,

u(x, t) = u+(x− ct) + u−(x+ ct)

with arbitrary functions u+(·) and u−(·). Then determine the solution u(x, t) that ful�lls the
initial conditions.

b) Can you invent a generalization of the methods of images to solve the one-dimensional wave
equation in a half space x > 0, with boundary condition u(x = 0, t) = 0?

Tutorial 5.2 Drude-Hall model

As an extension of Drude's theory of conductors consider the induced current density ~j(ind)(~r, t) in
the presence of a constant and uniform external magnetic �eld ~B = Bêz. Motivate the constitutive
equation
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where m∗ denotes the e�ective mass of the conduction electrons (charge −e), τ a characteristic relax-
ation time, and n the density of conduction electrons. The characteristic frequency ωp is referred to as
plasma frequency.

a) Perform a temporal Fourier transform, convention ~E(~r, ω) =
∫

eiωt ~E(~r, t)dt. Show that the
response becomes local in the frequency domain,

j
(ind)
k (~r, ω) = σkl(ω) · El(~r, ω),

and determine the dynamic magneto-conductivity tensor σkl(ω).
b) Specialize to d.c. �elds, i.e. ω = 0, and discuss the Hall resistivity.



Problem 5.3 Spherical waves

Consider solutions of the scalar three-dimensional wave equation[
∇2 − 1

c2
∂2

∂t2

]
ψ(~r, t) = 0 ,

where the �eld is spherically symmetric, i.e. ψ(~r, t) = ψ(r, t) with r = |~r|.
a) Show that the substitution ψ(r, t) = u(r, t)/r leads to a one-dimensional wave equation for

u(r, t). Impose appropriate boundary conditions on u such that the scalar �eld ψ remains �nite
at the origin.

b) Using d'Alembert's solution for the one-dimensional case, determine the spherical symmetric
solution of the wave equation that ful�lls the initial conditions

ψ(r, t = 0) = F (r) and
∂

∂t
ψ(r, t = 0) = G(r) for r > 0.

Problem 5.4 Nuclear magnetic resonance

Nuclear magnetic resonance spectroscopy uses the magnetic moment of the nuclei of certain atoms to
study physical, chemical, and biological properties of matter. The magnetization ~M due to the spin of
the nuclei obeys the Bloch equations

~̇M(t) = γ ~M(t)× ~H(t)− 1
T1

[
~M(t)− ~M0

]
.

Here the gyromagnetic ratio γ determines the frequency of the Larmor precession. The second term is
a phenomenological damping term introducing a characteristic (energy) relaxation time T1. Consider
a strong d.c. �eld ~H0 aligning the magnetization ~M(t) = ~M0 ‖ ~H0 in the static case. A small time-
dependent �eld δH⊥(t) is applied in addition to the d.c. �eld ~H0. The probing �eld δ ~H⊥(t) acts
perpendicularly to ~H0 at all times. Since for positive gyromagnetic ratio, γ > 0, the Larmor precession
is clockwise, the probing �eld shall rotate clockwise too.

a) Derive a constitutive equation for the induced magnetization δ ~M(t) = ~M(t)− ~M0 to linear order
in δ ~H⊥(t). Decompose the response into a component parallel and perpendicular to the static
external �eld, δ ~M(t) = δ ~M‖(t) + δ ~M⊥(t), and show that they ful�ll

δ ~̇M‖(t) +
1
T1
δ ~M‖(t) = 0 , δ ~̇M⊥(t)− γδ ~M⊥(t)× ~H0 +

1
T1
δ ~M⊥(t) = γ ~M0 × δ ~H⊥(t) .

b) Discuss the free decay of the induced magnetization δ ~M(t) in the absence of external driving,
i.e., δ ~H⊥(t) ≡ 0, for arbitrary initial condition δ ~M(t = 0).
Hint: It is favorable to complexify the transverse magnetization δ ~M⊥(t) as δM(t) = δMx(t) + iδMy(t).

c) Derive the steady state response for a probing �eld rotating perpendicularly to the aligning �eld
~H0 at constant angular frequency, δ ~H⊥(t) = δHω(cosωt,− sinωt, 0); here the z-axis has been
chosen parallel to ~H0. Determine the complex susceptibility χ(ω), sketch and discuss its real
and imaginary parts, χ(ω) = χ′(ω) + iχ′′(ω).
Hints: It is favorable to complexify by introducing δH(t) = δHx(t) + iδHy(t) and similarly for the mag-
netization. The susceptibility is de�ned as χ(ω) = δM(t)/δH(t), and the result is χ(ω) = iγM0/(−iω +
iωL + 1/T1).

d) Determine the averaged power absorbed by the sample,

P(ω) = δ ~H⊥(t) · d
dt
δ ~M⊥(t),

where the average indicates a time average over many cycles.



e*) Assume that the strong aligning �eld is not totally uniform in space. This corresponds to small
random local changes of the Larmor frequencies ωL → ωL +∆ωL. For simplicity, assume for the
probability distribution p(∆ωL) of the local increments a Cauchy-Lorentz distribution,

p(∆ωL) =
1
π

T

1 + (T∆ωL)2
.

Verify that the probability distribution is normalized,
∫
p(∆ωL) d(∆ωL) = 1. Determine the

averaged complex susceptibility〈
χ(ω)

〉
:=

∫
χ(ω) p(∆ωL) d(∆ωL) .

Can you interpret the additional damping?

Hint: Use the residue theorem.
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