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Problem set 2

Tutorial 2.1 Sheet, cylinder, and sphere

Consider scalar fields p(Z) specified in cartesian coordinates ¥ = (z,y, z) by p(Z) = po for

a) a sheet: |z| < d, b) a cylinder: v/z2 + y2? < d, ¢) a sphere: /22 +y2 + 22 < d,

and p(z) = 0 elsewhere. Construct vector fields E(Z) such that div E(Z) = 47p(Z) and curl E(T) =
and that reflect the symmetries of the problem. Determine appropriate scalar potentials ¢(Z) with
E(Z) = —V(Z) and sketch their functional forms.

Note: The gradient and divergence operator in cylindrical coordinates (7, ¢, z) and in spherical coordinates
(r,9, ¢) read
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Tutorial 2.2 Momentum conservation law

Defining the symmetric tensor field (Maxwell stress tensor)

1

T(@,t) = o | 0w(E® + B%) — EiBy — BiBy | (i.k=1,2,3),

4m
show that Maxwell’s equations imply a local balance law for the momentum density,

1
cjatsi + ViTix = —Fi,

where § = (c/ 47T)E x B denotes the Poynting vector. Determine the mechanical force density F.

Hint: The following vector identity may prove useful,
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Problem 2.3 Dipole field

Consider the (static) electric field E(Z) of an electric dipole §
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a) Demonstrate explicitly that the field may be represented by a scalar potential, E (Z) = ﬁcp Z).
_’(f

¢) Argue that the dipole field is a homogenous function of the coordinates, i.e. E(AT) = ACE( )
where ¢ denotes the degree of the homogeneous function. Conclude that the field is scale-free,

i.e., zooming in (change of length scale) may be compensated by a simultaneous change of units
for the field. What does this imply for the field lines?

d) Find a suitable scalar potential o(Z) and vector potential A(Z) corresponding to E(Z). Choose
, A such that they are again scale-free of appropriate degree. Verify your results explicitely.
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b) Show that E(Z) allows for a representation in terms of a vector potential, i.e. E(Z) =

8

Hint: Since the electric field is linear in p, one may choose ¢ and A that have the same property.
Rotational symmetry dictates there is a unique scalar/pseudo vector that can be built from # and p up
to a prefactor.

e) Discuss the field lines of the electric field as well as the vector potential. Discuss the surfaces of
constant scalar potential.

Problem 2.4 Vector potential

- —

The vector potential A corresponding to a solenoidal field é, div B = 0, B=V x A, may be obtained
by evaluating the line integral (Poincaré’s lemma)

—

1
A@) = —/0 uw(Z — ) x B(Z(u)) du (%)

for straight lines Z(u) = zo + u(Z — Z).
a) Recall Ampere s law of magnetostatics, V x B = 47 / c. Thus in the case of a current-free
region, 7 = 0, a scalar magnetostatic potential ¢,; may by introduced, B = —VgoM, where
V20 = 0. Empoly Poincaré’s lemma to determine a vector potential Aofa magnetic octupole
field corresponding to the potential
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b) Evaluate the curl of the integral representation (%) for A to prove that indeed B = V x A
provided div B = 0.

Problem 2.5 Minimal coupling

Consider the non-relativistic motion of a particle characterized by the Lagrangian

L(Z,Z,t) =

m %:i"’ ff(:n t) — qp(Z,t),

2
where ¢(Z,t) and A(Z,t) are a time-dependent scalar and vector field, respectively.

a) Derive the corresponding Euler-Lagrange equations and interpret the force terms in terms of
electric and magnetic fields, E(Z,t) and B(Z,t).



b) Recall that a change
L(Z,%,t) — L(Z,7,t) + d
Z,%,t) — L(Z, —=
7 ) ) b dt C
does not affect the principle of least action. Show that the additional terms can be absorbed by
defining new fields ¢’, A’. What does this imply for the electric and magnetic fields?

c) Perform a Legendre transform, p' = 85/8:?, to derive the corresponding Hamilton function,
H = p-& — L. Distinguish carefully between the canonical momentum p and the kinetic
momentum mxZ. Derive the canonical equations of motion.

Due date: Tuesday, 5/8/07, at 9 a.m.



