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Problem set 10

Tutorial 10.1 Dielectric sphere

A dielectric sphere of radius R characterized by a E,
dielectric constant ¢ is placed in an initially uni-

form electric field E(). For convenience, choose the
center of the sphere as the origin and consider Ejy ~
along the z-axis. Then the problem exhibits an

_—

axial symmetry, which simplifies the problem.

a) Determine the electrostatic potential ¢(&) inside the sphere, |#| < R, and outside the sphere,
|Z] > R. Formulate appropriate matching conditions at the surface of the sphere. Recall that
the most general axially symmetric solution of Laplace’s equation VZ¢ = 0 in polar coordinates,
Z = r(sin cos ¢, sin ¥ sin ¢, cos ), is given in terms of

o(Z) = Z (agre + bgr_(Hl)) Py(cos ),
=0

where Py(t) denotes the Legendre polynomials and ay, by are undetermined coefficients.

b) Derive the corresponding electric field E(Z). Extract the polarization P(Z) inside the sphere
and find the total induced dipole moment p of the dielectric sphere. Determine the effective
polarizability of the sphere o defined by p'= an.

c) Show that charges accumulate at the surface of the sphere and determine the induced surface
charge density o.



Problem 10.2 Magnetic shielding — p-metal

A p-metal is a nickel-iron alloy that has a very high magnetic permeability p ~ 10* — 106 > 1. The
technical application of these materials is the screening of static (or low-frequency) magnetic fields,
which cannot be attenuated by other methods.

Consider a spherical shell of magnetic permeability ¢ and inner an outer radii R; and R,, respectively,
placed in a previously uniform magnetic field H.. The medium inside and outside of the shell has a
magnetic permeability p = 1.

a) Argue that one can introduce a scalar magnetic potential ¢as to represent the field H= —ﬁcpM,
and show that it fulfills the Laplace equation V2p; = 0 in each region.

b) State the appropriate matching conditions for ¢p; at the interfaces r = R; and r = R,,.

c¢) Recalling that the most general solution of the Laplace equation with cylindrical symmetry is
provided by

o (F) = Z (CL@T‘E + bgrf(ul)) Py(cosv),
£=0

determine the magnetostatic potential in each region. Calculate explicitly the corresponding
magnetic field H inside of the shell.

d) Determine the leading behavior of the field inside of a thin shell of a p-metal for g — oco. Discuss
why a p-metal provides an effective shielding.

Problem 10.3 Legendre polynomials

Consider the following partial differential equation

A solution is provided by the function
1
V1=2rt+1r2’

which serves as a generating function for the Legendre polynomials Py(t), i.e., a Taylor expansion with
respect to r, ¥(r,t) = S50, r*Pu(t), defines the functions Py(t).

¢(T= t) =

1<r<l, —-1<t<1,

a) Show by explicit substitution that 1 (r,t) indeed solves the partial differential equation (x).

b) Identifying t = cos¥ reveals that (r,t) corresponds to the Coulomb potential of a unit charge
located on the z-axis at unit distance from the origin. Thus ¥ (r,t = cos®)) solves the Laplace
equation in polar coordinates

V2)(r, cos ) = L 0 <r28¢> + L 0 <sin§a¢> =0.

r2 or or 72 sin v 90U o

Using this observation derive the partial differential equation (x).

c¢) Determine explicitly Py(t = £1) observing that for ¢ = +1 the Taylor series of 1(r,t) becomes
elementary.

d) Employ the symmetries of ¢(r,t) to argue that Py(¢) is a symmetric (anti-symmetric) function
for even (odd) 4.

e) Inspect the Taylor series to demonstrate that Py(t) is a polynomial of order ¢.

Hint: Expand the square root in & = 2rt — r2.

f) Calculate and sketch the first four Legendre polynomials (¢ =0, ... 3).



g) Substitute the Taylor series of ¥ (r,¢) in the partial differential equation (x). Comparing the
coefficients of r* confirm that the Py(t) satisfy the second order differential equation, i.e., they
are indeed Legendre polynomials,

% [(1 - tg)dlzt(t)] + 00+ 1)P(t) =0, —-1<t<1. (x%)

h) Show that (1—2rt+r2)0¢/0r = (t—7r)y. Make use of this result to derive the recursion relation
CPyq(t) — (20+ D)t Pi(t) + (0 4+ 1) Ppyq(t) = 0.
Similarly, verify that (1 — 2rt +1r2)01/0t = 1 and prove
Pl () — 26P () + P, (£) = Pu(t)
i*) Show that the Legendre polynomials are orthogonal in the following sense,

2

- S,
2w+1¢

/ LAt PyP (1)
1

Hint: Employ the differential equation (x%) to show that
1
0 +1)— (6 +1)] / APy (t)Py (1) = 0

-1

and conclude that orthogonality holds. The normalization follows by considering [dtt(r,t)%. First
perform the integration directly; then use the Taylor expansion in r and the orthogonality property.

Due date: Tuesday, 7/3/07, at 9 p.m.



