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Definition:

Polymers are usually long molecules (high molecular weight) 
consisting of repeated units (monomers) of relatively small and 
simple molecules covalently bonded.

The process of covalent joining of the monomers is known as 
polymerization

Ethylene monomer Polyethylene

Deoxyadenosine
monophosphate

Synthetic polymers: Biopolymers:
Plastics, fibers, glues… Proteins, polysaccharides, 

Actin, DNA…
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Other structural factors

� Polymers can have different kinds of branched architectures

� Structural isomerisms (double bonds) � hindered rotations

� Stereoisomerism: Orientation of –R and –H groups to carbon plane

� Different types of monomer repeats: homopolymers, alternating, 
random….



The ideal chain

No correlation between polymer monomers seperated by long
distances along the polymer. 

� Short range correlations between neighboring monomers are not             
excluded

� Ideal chain models do not take interactions caused by       
conformations in space into account

� Ideal chains allow the polymer to cross itself
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Modelling a polymer

Imagining a blown up picture of a section of the polymer polyethylene in a 
certain conformation, could look like this: 

Conformations:

� Torsion angle φ

� Bond angle θ

Bond vectors:

Starting from one end we use vectors ri to     
represent the bonds

End-to-end vector:

The sum of all bond vectors

The ensamble average of <Rn>=0 due to isotropy

Mean square end-to-end distance:

Simplest non-zero average

1r
r

2r
r

3r
r

4r
r

5r
r

5R
r

∑
=

=
n

i
in rR

1

rr

∑∑
= =

⋅=⋅=
n

i

n

j
jinn rrRRR

1 1

2 rrrr

P
o
ly
m
e
rs



Freely jointed chain
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No correlation between the directions of different bond vectors. Θ and 
φ are free to rotate. All bond vectors have length l
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Freely rotating chain

Bond angle θ is fixed. Torsion angle φ still free to rotate.
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Ex: what is the correlation between vector r3 and r0?

Due to the free rotation around the torque angle, 
only the perpendicular component of r3 is passed
down.
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Inserting this expression in our equation for <R2>
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This is solved by manipulating sums, and by writing the rapidly
decaying cosine terms as an infinite series.

For calculation see Rubinstein p.56

The end result is:
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For range limited interactions this will always be the case

θ
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C∞ is called Flory’s characteristic ratio, and can be seen as a measure
of the stiffness of the polymer in a given ideal chain model. For the
rotating chain we have:

We see, that the introduction of correlation has not changed the n½

proportionality. We have just added a constant >1
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Kuhn length:

N
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ideal chains can be rescaled into a freely jointed chain, as long as the
chain is long compared to the scale of short range interactions

New segment length b is choosen so 
long, that neighbooring segments are
non-correlated � New chain is a freely
jointed chain

b is called the Kuhn length, and obviously holds information on
short scale interactions and stiffness. 
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Persistence length

The vector correlation term from the freely rotating chain, decays quickly
and can be written in terms of an exponential function

This is a consequence of the range limited interactions, and will always
be the case

Sp is the number of bonds in a persistence segment

The persistence length lp is the length of the persistence segment 

The persistence length lp is the length scale with which the decay
occurs
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End-to-end vector distribution:

We use the Central Limit Theorem which states:

CLT: Given a series of random variables; X1,X2,…Xn sampled from the
same pool of probability with a defined mean µ and variance σσσσ2, the
distribution of the sum S=X1+X2+…Xn will converge to a gaussian
distibution.

Mean and variance of the end-to-end vector is already known:

Mean µ=<R>=0 

Variance σσσσ2=<R2>-<R>2=<R2>=Nb2 

we get the probability distribution function in 3D:
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The Gaussian chain:

The gaussian chain is a chain made up of kuhn bonds that are assumed
gaussianly distributed
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We can now create the conformational distribution function of the entire
chain, by multiplying each bond distribution
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The bead-spring model is a mechanical representation of the Gaussian
chain

Each spring represents a Gaussianly distributed Kuhn segment

If the spring potential between two beads is 
defined as:
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The bond distribution function for a single 
segment can be found.
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Normalizing we get the known Gaussian distribution. 

One will also find the same mean quare end-to-end distance.



Force extension relations:

What happens when we apply a force F to stretch the
polymer

Looking at first at one segment
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Partition function for the entire chain
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The free energy is found in the standard way from the partition
function, and the average end-to-end distance for a given force 
can finally be found by differentiating the free energy
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One important limit to the force extension expression is that
of a small force. Taking only the first order of the Langevin
functions gives us:
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We obtain spring like behavior with the spring constant
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Spring constant is proportional to temperature. Higher
temperatures � greater forces necessary to stretch

Entropic effect � entropic spring
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The worm like chain:
P
o
ly
m
e
rs

Continous development of the freely rotating chain for small bond
angles θ, used for polymers with high stiffness

The meaningfull limits to take in this development are:

l � 0, θ � 0, but contour length nl and persistence length lp remain
the same

We calculate the mean square end-to-end distance:

We change the sum over segments into an integral over contour
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The integral can be solved to give the result:
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The two interesting limits are for the maximum end-to-end distance    
Rmax >>lp and Rmax <<lp

The ideel chain limit:

The rod like limit:
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r(s) is the radius vector of an arbitrary point on the
space curve s. The tangentvector u(s) and the
curvature are then:
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The energy per unit length of a bended beam is proportional to the
inverse of the radius of curvature squared which is the curvature
squared
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Real chains:
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� Long range interactions between monomers are taken into account

� Interactions between solute and polymer and between different
polymers

� Excluded volume and self avoiding random walks

� Dynamics

�

�

�



P
o
ly
m
e
rs Conclusion:

� For ideal chains correlations are finite. � for long chains we generally
have the expression: <R2>=C∞nl2

� For chains much longer than range of correlation � rescaling into freely
jointed chain with chain length b (Kuhn length): <R2>=Nb2

� Probability distribution function for end-to-end vector is Gaussian

� The force-extension relation for the freely jointed chain is well discribed
by the Langevin function

� For low forces, a Hook’s relationship with an entropic spring constant
descibes the extension



P
o
ly
m
e
rs References:

[1] Michael Rubinstein and Ralph H. Colby.

Polymer physics

[2] Masai Doi.

Introduction to polymer physics

[3] Hiromi Yamakawa.

Modern Theory of Polymer Solutions.

http://www.molsci.polym.kyotou.ac.jp/archives/redbook.pdf

[4] Justin Bois

Rudiments of polymer physics

www.its.caltech.edu/~bois/pdfs/poly.pdf

[5] Thomas Franosch. 

Polymers

[6] Fredrik Wagner. Diploma thesis

Polymers in confined geometry


