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Problem 5.1 density matrix
For many quantum problems it is sufficient to consider only two states, by analogy to a spin 1/2 referred

to as ’spin up’ and ’spin down’. The corresponding Hilbert space E is then two-dimensional and operators
acting on E can be represented by 2 × 2 matrices. Show that any operator is represented by a linear
combination of the identity matrix I and the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
Construct the normed eigenstates |σk〉, k = 1, 2, 3 of the Pauli matrices and demonstrate that the eigenvalues
σ are given by ±1. Construct the projectors Λk+ = |+k〉〈+k| and consider density matrices ρ =

∑3
k=1 qkΛk+

with
∑

k qk = 1.

1. Express the projectors Λk+ in terms of the identity and the Pauli matrices. Show that the density
matrix can be written as

ρ =
1
2

(I + P · σ) , P = 〈σ〉 = Tr (σρ)

2. For the density matrix ρ a measurement of the observable σ1 is performed. Calculate the probability
W1+ that the system is found in eigenstate |+1〉 after the measurement. Interpret the result in terms
of the probabilities qk.

3. Determine the expectation and variance for measuring n · σ, i.e. 〈n · σ〉 and 〈(n · σ)2〉 − 〈n · σ〉2 for
arbitrary unit vectors n.

4. Evaluate the probabilities Wn± to find eigenvalues ±1 when measuring the observable n · σ for the
density matrix ρ.

5. Determine the density matrix that maximizes the functional S [ρ] = −Tr(ρ ln ρ) with the constraint
that probability is preserved Trρ = 1 and the average P = 〈σ〉 is known. In general P can have a
norm smaller than unity. Use appropriate Lagrange multipliers to enforce the constraints.



Problem 5.2 spin precession
A single spin described by density matrix ρ is exposed to a constant magnetic field. The Hamiltonian

for the problem is given by H = −(γ~/2)B · σ, where σ = (σ1, σ2, σ3) are the Pauli matrices. Use the von
Neumann equations to show that the magnetization P(t) = (γ~/2)Trρ(t)σ obeys the classical equation of
motion

Ṗ(t) = −B×P(t)
∗ Assume a collection of spins in an external magnetic field B0. Additionally there may be small random

local fields, such that the Larmor frequency ω = γB is statistically distributed. Assuming a Gaussian or
Lorentzian distribution for ω characterized by mean ω0 = γB0 and variance 1/T 2 derive the time dependence
of the average magnetization P(t) by averaging the solution of the classical equation of motion for a single
spin and show that it quickly looses phase coherence.

Problem 5.3 entangled states
The density matrix of a subsystem is usually in a mixed state even if the entire system is in a pure

state. Assuming that the wave function of the entire system is merely a product of wave functions for the
subsystem and the reservoir, show that the density matrix of the subsystem corresponds to a pure state.

If the total system is described by a pure state and the density matrix of the subsystem describes a pure
state, show that the wave function of the total system necessarily factorizes.

Can you construct a mixed state for the density matrix such that the subsystem is in a pure state?

Problem 5.4 Pressure ensemble
Use the NPT (constant pressure) ensemble with the phase space density

ρP = Z−1
P exp (−βH− βPV ) , ZP (T, P,N) =

∫ ∞

0
dV

∫
d3Nrd3Np

N !h3N
exp (−βH− βPV )

and the definition of averages to show that

ZP (T, P,N) = ZP (T, P0, N)〈eβ(P0−P )V 〉0 .

Here 〈·〉0 denotes averaging with respect to ρP at pressure P0. Derive the corresponding expansion of the
free enthalpy G(T, P,N) = −kBT lnZP (T, P,N) in terms of the cumulants of the volume.

In the thermodynamic limit, i.e. N →∞, P and T fixed, derive the thermodynamic relations

G(T, P,N) = F (T, 〈V 〉, N) + P 〈V 〉 , dG = −SdT + 〈V 〉dP + µdN


