SoSe 05

Set 3 5/02/05

T IV: Thermodynamik und Statistik (Prof. E. Frey)

Problem set 3

Problem 3.1 Liouville's theorem

Show that the time evolution for a classical system in terms of Hamilton's equations leaves the phase space density $\rho(\{q_i, p_i\})$ for the microcanonical/canonical ensemble invariant. Introduce new generalized coordinates $Q_l = Q_l(\{q_i, p_i\})$ and generalized momenta $P_l = P_l(\{q_i, p_i\})$ such that the transformation is canonical, i.e. the Poisson brackets fulfill

$$\{Q_k, Q_l\} = 0, \qquad \{P_k, P_l\} = 0, \qquad \{P_k, Q_l\} = \delta_{kl}$$

Recall that Hamilton's equations are covariant under such transformations and show that the phase space density remains stationary if expressed in terms of the new variables.

Problem 3.2 variational principle

Find the distribution function of momenta $f(\mathbf{p})$ that maximizes the functional

$$H=-\int d^3p f({f p}) \ln f({f p}) \, .$$

with the constraint that $f(\mathbf{p})$ is normalized to $\int d^3p f(\mathbf{p}) = n$ and the kinetic energy is fixed to $n^{-1} \int d^3p f(\mathbf{p}) p^2 / 2m = \epsilon$.

Problem 3.3 Harmonic oscillator

The Hamilton function of a classical harmonic oscillator in an external field \mathbf{F} is given by

$$\mathcal{H} = \frac{\mathbf{p}^2}{2m} + \frac{m\omega^2}{2}\mathbf{r}^2 - \mathbf{F} \cdot \mathbf{r}$$

- 1. Assuming that the oscillator is in contact with a thermal reservoir at fixed temperature T calculate the free energy of the oscillator using the canonical ensemble. Derive expressions for the energy and entropy of the oscillator.
- 2. Evaluate the mean elongation $\langle \mathbf{r} \rangle$ in the canonical ensemble.
- 3. Evaluate the moment generating function for the spatial coordinate $\langle \exp(\mathbf{f} \cdot \mathbf{r}) \rangle$ and the corresponding cumulant generating function and relate them to the partition sum and free energy. Evaluate all cumulants.

Problem 3.4 Dipoles

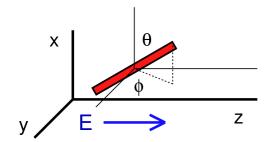
Consider a non-interacting gas of N identical rod-like molecules, each with mass m, moment of inertia I and electric dipole moment μ . The configuration of each molecule is described by 5 generalized coordinates, i.e. the location of the center of mass \mathbf{r} and the two spherical angles defining the direction of the rod θ , ϕ (see figure). From classical mechanics we know that the Lagrangian of an individual molecule in an electric field \mathcal{E} (pointing along the z-axis) is given by

$$\mathcal{L} = \frac{m}{2}\dot{\mathbf{r}}^2 + \frac{I}{2}(\dot{\theta}^2 + \dot{\phi}^2\sin^2\theta) + \mu\mathcal{E}\cos\theta$$

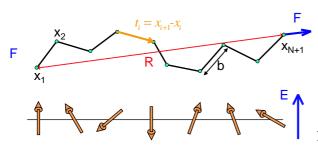
- (a) Derive the corresponding Hamilton function in terms of the generalized momenta \mathbf{p}, p_{θ} and p_{ϕ} .
- (b) Calculate the canonical partition integral of N non-interacting dipoles

$$Z(T,V,N) = rac{1}{N!h^{5N}} \int \left[\prod_{i=1}^N d^3 \mathbf{r}_i d heta_i d\phi_i d^3 \mathbf{p}_i dp_{i, heta} dp_{i,\phi}
ight] \exp(-\mathcal{H}/k_B T)$$

- (c) Calculate the pressure and average total energy. Discuss your results and, in particular, compare with an ideal gas of point-like molecules for $\mathcal{E} = 0$.
- (d) Calculate the average polarisation $\mathcal{P} = \sum_{i=1}^{N} \langle \mu \cos \theta_i \rangle$; plot \mathcal{P} as a function of the external field and temperature and discuss the limits of small and large electric fields.
- (e)* How can you map the statistical mechanics of a freely jointed chain (N rods of length b connected by free hinges; see figure), where a force F is applied at both ends, to the above results?



Rod-like molecule in an external field ${\mathcal E}$



Freely jointed chain under tension

Problem 3.5 Kinetic energy

For a fluid of N structureless classical particles the Hamilton function reads

$$\mathcal{H} = \sum_{k=1}^N rac{\mathbf{p}_k^2}{2M} + \mathcal{V}\,.$$

Here the potential energy \mathcal{V} depends only on the coordinates \mathbf{r}_i . Calculate the probability distribution of the kinetic energy in the canonical ensemble, i.e with a phase space density

$$\rho(\{\mathbf{p}_i, \mathbf{r}_i\}) = Z^{-1} \exp(-\beta \mathcal{H}).$$

Note that the phase space integrals factorize into a kinetic and potential part.