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Problem set 10

Problem 10.1 chemical reactions
For a mixture of r components the fundamental relation for the Gibbs free energy (free enthalpy) reads

dG = −SdT + V dP +
∑

j

µjdNj ,

where µj , Nj are the chemical potential and particle number of the corresponding species, and the sum runs
over all components. Assume that there is a chemical reaction

0 

∑

j

νjAj ,

where νj are stoichiometric coefficients and Aj are the symbols of the chemical components. Introduce a
reaction variable ξ such that the particle changes fulfill dNj = νjdξ. Since the reaction variable is not fixed,
the Gibbs free energy will adjust ξ in order to render G minimal. Derive the condition

∑
j νjµj = 0 for the

chemical potentials in equilibrium.
For dilute gases the chemical potentials can be well approximated by the fundamental equation of a general
ideal gas

µj = kBT [χj(T ) + ln(cjP )] .

The quantitiy χj(T ) is a function of T only, and cj = Nj/N , N =
∑

j Nj is the concentration of the j-th
component. Show that in equilibrium the concentrations satisfy the mass action law∏

j

c
νj

j = Kc(P, T )

and determine the equilibrium constant Kc(P, T ). Discuss the pressure dependence of the chemical equilib-
rium for the reactions 2H2 + O2 
 2H2O, 3H2 + N2 
 2NH3.
Show that the heat of reaction is given by(

dH

dξ

)
P

= −T
∂

∂T

∑
j

νjµj


P,Nj

,

where H is the enthalpy. Relate the heat of reaction to the equilibrium constant of the chemical reac-
tion. Find the temperature dependence of Kc(T, P ) if the heat of reaction is approximately temperature-
independent.



∗ A mean field model for the dynamics towards equilibrium is given in terms of a rate equation for the
reaction coordinate

dξ

dt
= k→

∏
j,νj<0

c
−νj

j − k←
∏

j,νj>0

c
νj

j

with positive kinetic rates k→ > 0, k← for the forward and backward reaction.
Discuss the gain and loss terms in the rate equation and motivate the ansatz for the respective rates.

Derive rate equations for the change of species number for the two example reactions specified above.
Show that in the kinetic rates k→, k← are connected to the equilibrium constant Kc(P, T ).
Demonstrate that for such a reaction kinetics the Gibbs free energy is decreasing(

dG

dt

)
T,P

≤ 0

and equality holds in equilibrium only.
Consider the reaction for concentrations close to equilibrium cj = ceq

j +δcj to show that the rate equation
reduces to

dξ

dt
=
−L

kBT

(
∂G

∂ξ

)
T,P

where the Onsager coefficient L is positive.

Problem 10.2 critical properties of the van-der Waals fluid
The empirical equation of state of a van-der Waals fluid reads(

P +
N2a

V 2

)
(V −Nb) = NkBT ,

where P, V = Nv, T and N denote the pressure, volume, temperature, and the number of particles, respec-
tively, and a, b are some non-universal constants. Show that by introducing reduced variables P̂ = P/Pc, v̂ =
v/vc, T̂ = T/Tc with Pc = a/27b2, vc = 3b, kBTc = 8a/27b one obtains a parameter-free form(

P̂ +
3
v̂2

)
(3v̂ − 1) = 8T̂ .

Demonstrate that P̂ = v̂ = T̂ = 1 corresponds to a critical point, i.e. (∂P/∂v)T = (∂2P/∂v2)T = 0. Expand
the reduced pressure for small t = T̂ − 1, φ = v̂− 1 [Answer: P̂ = 1+4t− 6tφ− 3φ3/2+O(φ4, tφ2) ]. Derive
the free energy per particle close to the critical point. Convince yourself that one has to use a Maxwell
construction for t < 0 and discuss the shape of the coexistence curve in a P–v diagram. Evaluate the specific
heat per particle cV = CV /N above and below Tc at v = vc. Calculate the isothermal compressibility κT

(a) at v = vc for temperatures T > Tc.
(b) at the coexistence boundary for T < Tc.


