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Abstract 

We exploit the power of microrheology to measure the viscoelasticity of entangled F-

actin solutions at different length scales from 1 to 100 µm over a wide frequency range. 

We compare the behavior of single probe-particle motion to that of the correlated motion 

of two particles. By varying the average length of the filaments, we identify fluctuations 

that dissipate diffusively over the filament length. These provide an important relaxation 

mechanism of the elasticity between 0.1 and 30 rad/sec. 
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Semi-flexible polymer solutions exhibit a rich mechanical behavior which is due to 

contributions from structure and relaxation dynamics at many different length scales [1-

5]. Single filaments are characterized by their average contour length, L, and by their 

persistence length, lp = κ/kBT, where kBT is the thermal energy and κ is the bending 

rigidity. Due to their large lp, semi-flexible polymers become entangled at very low 

volume fractions with an elastic modulus that is enhanced by comparison to flexible 

polymers at similar volume fractions. Such solutions are characterized by the average 

distance between polymers, or mesh size, ξ. However, filaments are sterically hindered at 

the entanglement length, 5/15/4~ pe ll ξ , instead of the mesh size, as is the case for flexible 

polymers [3, 6]. An excellent model for semi-flexible polymers is the cytoskeletal 

protein, filamentous actin (F-actin). The monomeric form of actin (G-actin) polymerizes 

to form F-actin, which has lp ~ 15 µm [7, 8], much larger than its diameter, d ~ 7 nm [9]. 

The mesh size of entangled F-actin solutions is given by Ac/3.0=ξ , where cA is the 

actin concentration in mg/mL and ξ is in microns [10]. In addition, the average contour 

length of F-actin can be regulated through addition of the actin severing and capping 

protein, gelsolin [11]. In entangled F-actin solutions, the elastic modulus ( )G ω′  and the 

loss modulus ( )G ω′′  are dominated by single filament dynamics at frequencies ω > 100 

rad/sec, and exhibit a scaling of ω3/4 [1]. The lowest frequency of this regime is 

determined by the relaxation time of bending fluctuations over an entanglement length, 

Tkll Bpee /4ςτ ≈ , where ς is the effective friction coefficient of the filament in solution 

[12]. For 1−< eτω , the steric hindrance leads to a frequency-independent elastic plateau 

modulus, eBo lTkG 2/~ ξ  over a wide frequency range [12]. Neither of these regimes 
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should depend on L. However, at intermediate frequencies, bulk rheology experiments 

reveal a transition regime where the mechanical response is highly dependent on L [13]. 

These results cannot be explained by single filament models that do provide a good 

description for both the high and low frequency viscoelasticity. Surprisingly, there have 

been no attempts to identify the relaxation mechanisms in this transition regime.  

To elucidate the contributions to rheology from filament length requires a technique 

that couples to fluctuations over a wide range of length scales from le ~ 0.7 µm to lp ~ 15 

µm and over a broad range of frequencies. In this letter, we exploit microrheology to 

directly probe the mechanical response of entangled F-actin solutions at different length 

scales from 1 to 100 µm as we vary both mesh size and average filament length. We 

identify fluctuations that dissipate diffusively over the filament length as an important 

relaxation mechanism for elasticity between 0.1 and 30 rad/sec. Two-particle (2P) 

microrheology is used to probe fluctuations at large length scales (> 5 µm), and therefore 

to give a good approximation of bulk rheology [14], whereas one-particle (1P) 

microrheology is used to isolate the contributions of short-length-scale fluctuations (~ le) 

[15]. For a given mesh size, 1P microrheology exhibits a rapid transition from the single 

filament regime to the plateau regime. The transition is independent of L, but is sensitive 

to le. However, 2P microrheology shows enhanced viscoelastic relaxation at intermediate 

frequencies. The relaxation time of these additional fluctuations scales as L2, consistent 

with diffusion over the filament length up to lp [12]. Thus, we characterize length-scale-

dependent rheology and identify an important contribution to the mechanical response. 

G-actin solutions are prepared by dissolving lyophilized G-actin in Millipore water 

and dialyzing against G-buffer (2 mM Tris HCl, 0.2 mM ATP, 0.2 mM CaCl2, 0.2 mM 
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DTT, 0.005% NaN3, pH 8.0) at 4 °C for 24 hours; the solutions are used within seven 

days. G-actin is mixed with polystyrene particles of radius, a = 0.42 µm, coated with PEG 

to prevent nonspecific binding of protein to the bead surface [16]. Modifying the surface 

chemistry of the particles has only a small effect on the particle mobility [16]; this 

suggests that local heterogeneities, such as those due to depletion or binding to the bead, 

have little influence on these microrheology measurements. We vary L through the 

addition of gelsolin [11]. Actin polymerization is initiated by adding 1/10 of the final 

volume of 10x F-buffer (20 mM Tris HCl, 20 mM MgCl2, 1 M KCl, 2 mM DTT, 2 mM 

CaCl2, 5 mM ATP, pH 7.5) and mixing gently for 10 seconds. The sample is loaded into 

a glass chamber and sealed with high-vacuum grease. After equilibrating for one hour at 

room temperature, the sample is imaged with an inverted microscope in bright field 

(objective: 63x; N.A. = 0.70, air). A scrambled-laser source is used to increase intensity 

at high frequencies. We record the motions of particles at 30 and 3700 frames/sec using a 

fast digital camera (Phantom v5) with an exposure time of 260 µs, yielding a frequency 

range of nearly 5 decades from 0.05 to 2000 rad/sec. To achieve good statistical 

accuracy, we image approximately one hundred particles in the field of view, capture 

several thousand frames, and average over eight sets of data. Particle centers are 

identified in each frame to an accuracy of 20 nm and particle trajectories are determined 

[17] to calculate the ensemble averaged mean-squared displacement 〉∆〈 )(2 τx  (1P MSD). 

For a solution of 1.0 mg/mL F-actin with a mesh size ξ = 0.3 µm, the filament 

length qualitatively alters the time evolution of the 1P MSD. For L = 0.5 µm, the 1P MSD 

evolves as ~ τ0.85 over the entire frequency range probed, as shown by the open symbols 

in Fig. 1(a), indicating that the sample is close to a Newtonian fluid. By contrast, for 
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longer filaments, the particle motion shows a transition between two regimes of temporal 

evolution. When L = 2 µm, the 1P MSD evolves as ~ τ0.75 below 0.01 sec and crosses 

over to show little time evolution after 0.1 sec, as shown by the open symbols in Fig. 

1(b). Similar behavior is observed when L is increased to 5 µm and to 17 µm, as shown 

by the open symbols in Fig. 1(c) and (d) respectively. At long times (> 0.1 sec), the 1P 

MSD depends on L for mL µ2≥  and becomes more constrained as L is increased. 

Moreover, for different L, there is remarkable similarity in the short-time (< 0.01 sec) 

behavior of the 1P MSD and in the crossover time τc between the two regimes. 

To probe dynamics at length scales much larger than a, we use 2P microrheology. 

We calculate the two-particle displacement correlation tensor, and scale this to a (2P 

MSD) [14, 15]. Physically, the 2P MSD reflects the extrapolation of the long-wavelength 

thermal fluctuations of the medium to the particle size [14]. When L a≈ , as in the case 

for L = 0.5 µm, 2P MSD matches 1P MSD reasonably well over the entire frequency 

range probed, as shown by the closed symbols in Fig. 1(a). However, a discrepancy in 

both magnitude and time dependence is observed for samples with L a> . For instance, 

for L = 2 µm, the 2P MSD is an order of magnitude smaller than the 1P MSD at τ = 0.1 

sec, as shown by the closed symbols in Fig. 1(b); moreover, it scales as τ0.7 whereas the 

1P MSD shows little time evolution after 0.1 sec. Similar discrepancy between 1P and 2P 

MSDs is observed as L is increased to 5 µm and 17 µm, as shown by the closed symbols 

in Fig. 1(c) and (d) respectively. For all the samples with mL µ2≥ , the 2P MSD is about 

an order of magnitude smaller than the 1P MSD at τ = 0.1 sec, and exhibits a scaling τα 

with exponent α varying from 0.7 to 0.5. Compared to the insensitivity of the 1P MSD to 

filament length, the 2P MSD exhibits changes in both slope and magnitude as L is varied. 
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Remarkably, despite their discrepancies, the 1P and 2P MSDs converge to similar values 

at a time scale, τm, as indicated by the arrows; τm increases dramatically as L is increased.  

Using the generalized Stokes Einstein relation, we interpret 1P and 2P MSDs to 

obtain a good approximation of the viscoelasticity probed by 1P and 2P microrheology, 

respectively [18]. When L = 0.5 µm, the 1P and 2P microrheology match reasonably well 

over the entire frequency range, as shown by the triangles and squares respectively in Fig. 

2(a); G′′  dominates and shows a scaling ω0.85 over the frequency range probed. However, 

as the filament length is increased, we observe a dramatic difference between the 1P and 

2P microrheology, as shown by the triangles and squares respectively in Fig. 2(b)-(d). 

Similar behavior is observed for the 1P microrheology for samples with mL µ2≥ . For 

ω > 30 rad/sec, G′  and G′′  scale as ω3/4, as indicated by the solid lines; whereas for 

ω < 30 rad/sec, a plateau is observed for G′ . The transition is rapid and occurs at 

approximately the same frequency for samples with mL µ2≥ . In contrast to the 

insensitivity of 1P microrheology to L, 2P microrheology shows enhanced viscoelasticity 

that is L-dependent. However, despite these discrepancies, the 1P and 2P elastic moduli 

converge to similar values at the lowest frequencies. The convergence frequency of the 

1P and 2P elastic moduli is proportional to 1
mτ
− , decreasing dramatically as L increases. 

To elucidate the origin of the discrepancy between 1P and 2P microrheology, we 

quantify the dependence of τc and τm on L. For a more accurate estimation of τc, we 

determine the retardation spectra from regularized fits to the 1P MSDs [19]. The value of 

τc obtained from the peak in the spectrum is independent of L, as shown by the open 

symbols in Fig. 3. By contrast, τm is strongly dependent on L, as shown by the closed 

symbols in Fig. 3, and scales as 2~ Lmτ , as shown by the dashed line. 
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The 1P microrheology probes the viscoelastic behavior at length scales of 2a ~ 0.84 

µm. Above 1
cτ
−  ~ 30 rad/sec, it is remarkably insensitive to L and shows a frequency 

dependence that is compatible with ω3/4. This suggests that 1P microrheology probes 

bending fluctuations of single filaments at these frequencies. In this regime, single 

filament dynamics dominate the mechanical response until filaments become sterically 

hindered at the entanglement length. The characteristic time scale for bending 

fluctuations to relax over le is Tkll Bpee /4ςτ ≈  [12]. This time scale has no dependence on 

L, consistent with our observation for τc in Fig. 3. At frequencies below 1
cτ
−  ~ 30 rad/sec, 

1P microrheology shows an elastic plateau for samples with the longest filaments. The 

concentration dependence of the 1P plateau modulus G0 for L = 17 µm, shown by the 

symbols in Fig. 4(a), is in good agreement with theoretical estimates [3, 4], shown by the 

solid line. This elastic plateau results from steric hindrance of the filaments at the 

entanglement length. The modulus probed by the 1P mircorheology for 1
cω τ −<  

apparently corresponds to this plateau. For a small bead that couples to single-filament 

eigenmodes that are themselves coupled to collective modes of an overdamped elastic 

background, the 1P MSD is 2 ( ) {1 ( / ) ( ) / 2} {1 [ , ]}a a bx t A t erf t B bt b tπ∆ = − + − Γ − , where 

a=1/2, b=3/4, Γ is the incomplete Gamma function and t is in units of τc [20]. The best 

fits for this model are in good accord with experiment, as shown by the solid lines 

through the 1P MSD’s in Fig. 1, except at the longest times, where filament reptation 

leads to further increase in the data.  

In contrast to 1P microrheology, 2P microrheology shows enhanced viscoelastic 

relaxation which is filament length dependent at intermediate frequencies. The relaxation 
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time of this extra dissipation can be identified as τm, which scales as 2~ Lmτ , as shown in 

Fig. 3. This is reminiscent of diffusion, consistent with longitudinal density fluctuations 

that relax diffusively up to lp [3, 12], as shown schematically in the inset of Fig. 3. 

Transverse thermal fluctuations in filament lead to fluctuations in the quantity of material 

present in each segment of le; these density fluctuations diffuse along the filament [2]. 

Thus the lowest frequency of these excitations that affect 2P microrheology is determined 

by the time taken for the fluctuations to diffuse a filament length, 2)/( eeL lLττ ≈  [12]. 

However, 1P microrheology fails to probe contributions from these long-wavelength 

fluctuations because 1P motion can sense only fluctuations on length scales of the bead 

size, which relax much faster [21]. By contrast, 2P microrheology does sense these 

fluctuations because it probes motion at much longer length scales. Therefore, 1P 

microrheology underestimates the bulk response, and the difference between 1P and 2P 

microrheology disappears when 1
Lω τ −< , as the long-wavelength longitudinal fluctuations 

have diffusively dissipated. The 2P microrheology shows that this additional relaxation 

leads to ( ) ( ) 1 2~ ~G Gω ω ω′ ′′ ; this scaling behavior is not predicted theoretically [3, 12]. 

As a further test, we compare the concentration dependence of the time scales to 

theoretical predictions. The cA-dependence of τc, shown by the symbols in Fig. 4(b) is in 

excellent agreement with the theoretical prediction 6.14 ~~ −
Aee clτ , shown by the solid 

line. The cA-dependence of τm, shown by symbols in Fig. 4(c), is also in excellent 

agreement with the prediction 8.02 ~/~ −
AeeL clττ  [12], shown by the solid line. 

All of our results are obtained using polystyrene probe particles with a = 0.42 µm; 

we find no dependence on a and observe similar behavior for particles up to 1 µm in 
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radius. By comparison, measurements using silica probe particles and a two-laser 

tracking system did exhibit a particle-size dependence for even larger probes, 2.5 µm in 

radius [22]. A deviation between the 1P and 2P microrheology was attributed to effects of 

depletion [3]. By contrast, we see no convincing evidence of this, although, for the 

longest actin filaments, the 2P MSD does not fully converge with the 1P MSD. It is 

conceivable that there are slight effects of adhesion on the surface of either set of probe 

particles, which leads to the difference in behavior. However, our essential conclusion, 

that there is a length-scale dependence of the elasticity due to relaxation of longitudinal 

fluctuations, is robust and independent of small discrepancies in different measurements.  

These results suggest that in entangled F-actin solutions, the mechanical response 

changes as the different length scales in the system vary. Microrheology can be used to 

probe length scale dependent rheology. Moreover, the results also suggest that 1P 

microrheology may be more useful for measurements of cross-linked networks of 

semiflexible filaments, where contributions from long-wavelength longitudinal 

fluctuations are reduced. The results highlight the sensitivity of the rheology of entangled 

solutions of semi-flexible polymers to the length scales that determine both network 

geometry and filament properties; this provides new insight into the origin of the scaling 

behavior of the rheology that has yet to be fully described theoretically.  
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Figure Captions: 

 

FIG. 1 (Color online). Comparison of one- (open symbols) and two- (closed symbols) 

particle MSDs in 1.0 mg/mL F-actin with particle radius a = 0.42 µm for average 

filament length (a) 0.5 µm, (b) 2 µm, (c) 5 µm and (d) 17 µm. The arrows in (b) (c) and 

(d) indicate the time when 1P and 2P MSDs converge. The solid lines through the data 

show the best fit to the 1P MSD using the model described in the text; the slight 

discrepancy at long times reflects effects of filament reptation, which are not included in 

the theory.   

 

FIG. 2 (Color online). Comparison between the elastic modulus, ( )G ω′  (closed 

symbols), and loss modulus, ( )G ω′′  (open symbols) obtained from one- (triangles) and 

two- (squares) particle microrheology for average filament length (a) 0.5 µm, (b) 2 µm, 

(c) 5 µm and (d) 17 µm. The solid lines in (b) (c) and (d) show a scaling of ω3/4. 

 

FIG. 3 (Color online). The filament-length dependence of τm (closed symbols) and τc 

(open symbols) in 1.0 mg/mL F-actin with particle radius a = 0.42 µm. Different symbols 

represent data from different experiments. The dashed line shows a scaling of L2. The 

dotted line shows a scaling of L0. The inset is a schematic sketch showing longitudinal 

density fluctuations of a filament confined in a tube due to the presence of other 

filaments. Correlated motion of two separated particles couples to these fluctuations. 
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FIG. 4 (Color online). The concentration dependence of (a) the plateau modulus, G0 

(symbols), (b) τc (symbols), and (c) τm (symbols). The lines in (a)-(c) show the scaling 

indicated. The average filament length is 17 µm and the particle radius is 0.42 µm. 
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