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The expression of genes is regularly characterized with respect

to how much, how fast, when and where. Such quantitative

data demands quantitative models. Thermodynamic models

are based on the assumption that the level of gene expression

is proportional to the equilibrium probability that RNA

polymerase (RNAP) is bound to the promoter of interest.

Statistical mechanics provides a framework for computing

these probabilities. Within this framework, interactions of

activators, repressors, helper molecules and RNAP are

described by a single function, the ‘regulation factor’. This

analysis culminates in an expression for the probability of RNA

polymerase binding at the promoter of interest as a function

of the number of regulatory proteins in the cell.
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Introduction
The biological literature on the regulation and expression

of genes is, with increasing frequency, couched in the

language of numbers. Four key ways in which gene

expression is characterized quantitatively are through

measurement of: (i) the level of expression relative to

some reference value; (ii) how fast a given gene is

expressed after induction; (iii) the precise relative timing

of expression of different genes; and (iv) the spatial

location of expression. In the first section of this review

we revisit particular examples of such measurements in

the bacterial setting. These provide the motivation for the
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models that form the main substance of this and the

companion article [1��]. Through much of these reviews

we call attention to particular revealing case studies rather

that giving a thorough coverage of the literature.

How much, when and where?

One class of particularly well-characterized examples of

gene expression levels includes cases associated with

bacterial metabolism and the infection of bacteria by

phage [2��,3]. This group will serve as the centerpiece

of this and the companion article. In the classic case of the

lac operon, several beautiful measurements have been

taken. These characterize the extent to which the genes

are repressed as a function of the strength of the operators,

their spacing and the number of repressor molecules [4–

6]. Similar measurements have been made for other genes

implicated in bacterial metabolism, in addition to those

tied to the decision between the lytic and lysogenic

pathways after infection of Escherichia coli by phage

lambda [7–11]. A second way by which the regulatory

status of a given system is quantified is by measuring when
genes of interest are being expressed. The list of exam-

ples is long and inspiring, and several representative case

studies can be found in the literature [12–14]. A third way

in which an increasingly quantitative picture of gene

expression is emerging is based on the ability to make

precise statements about the spatial location of the

expression of different genes. Here, too, the number of

different examples that can be mustered to prove the

general point is staggering [15–17]. The key point of

these examples is to note the growing pressure head of

quantitative in vivo data, which calls for more than a

cartoon-level description of expression.

The physicochemical modeling of the type of quantita-

tive data described above is still in its infancy. One class

of models, which will serve as the basis of this article,

comprises the so-called ‘thermodynamic models’ [18–

20]. The conceptual basis of this class of models is the

idea that the expression level of the gene of interest can

be deduced by examining the equilibrium probabilities

that the DNA associated with that gene is occupied by

various molecules — these include RNAP and a battery

of transcription factors (TFs) such as repressors and

activators. There is a long-standing tradition of using

these ideas to unravel the dynamics of gene expression

systems — particularly important examples being asso-

ciated with the famed lac operon and phage lambda

systems [18,21–26]. Importantly, the thermodynamic

models can serve as input to more general chemical

kinetic models.
www.sciencedirect.com
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Glossary

Boltzmann factor – For a given state of a thermal system, the

Boltzmann factor is the exponential of minus its energy, measured in

units of kBT. The ratio of equilibrium probabilities for any two states is

given by the ratio of their Boltzmann factors.

Partition function – The sum of the Boltzmann factors for all the

states available to a thermal system. The equilibrium probability of

observing a state of the system is its Boltzmann factor divided by the

partition function.

Regulation factor – The effective change of the number of RNA

polymerases available for binding to the promoter, resulting from the

action of transcription factors. The regulation factor is a function of

transcription factor concentrations, operator distances, protein–DNA

and protein–protein interactions. It is smaller than one for repression,

and larger than one for activation.

Fold-change – The ratio of gene expression (e.g. transcription rate)

in the presence and absence of transcription factors. Within the

thermodynamic model, this fold-change is given by the ratio of

occupation probability of the promoter of interest by the RNA

polymerase holoenzyme, in the presence and absence of

transcription factors. For weak promoters that control the

transcription of typical bacterial genes, the fold-change in gene

expression is given approximately by the regulation factor.
The key aim of this and the accompanying article [1��] is

to show how the thermodynamic models yield a general

conceptual picture of regulation using what we call the

‘regulation factor’ (see Glossary). Such arguments are

useful because they enable direct comparison with quan-

titative experiments, such as those discussed above. The

purpose of models is not just to ‘fit the data’ (although

such fits can reveal which mechanisms are operative) but

also to provide a conceptual scheme for understanding

measurements and, more importantly, for suggesting new

experiments. It is also worth noting that when such

models fall short it provides an opportunity to find out

why and learn something new.

This article is, to a large extent, pedagogical and aims to

demonstrate how a microscopic picture of the various

states of the gene of interest can be mathematized using

statistical mechanics. The companion article [1��] is built

around the analysis of case-studies in bacterial transcrip-

tion and centers specifically on how the activity of a given

promoter is altered (the ‘fold-change’ [see Glossary] in

promoter activity) by the presence of transcription factors.

Thermodynamic models of gene regulation:
the regulation factor
The fundamental tenet of the thermodynamic models for

gene regulation is that we can replace the difficult task of

computing the level of gene expression, as measured by

the concentration of gene product ([protein]), with the

more tractable question of the probability ( pbound) that

RNAP occupies the promoter of interest. More precisely,

these models are founded on the idea that the instanta-

neous disposition of the gene of interest can be estab-

lished from the probability that various molecules —

RNAP, activators, repressors and inducers — are bound

to their relevant targets.
www.sciencedirect.com
Such models are based on a variety of different assump-

tions, all of which can and should be evaluated critically.

Perhaps the most glaring assumption is that of equili-

brium itself. This assumption can be examined quantita-

tively on the basis of the relative rates of transcription

factor binding, RNAP binding, open complex formation,

transcript formation and translation itself. For example, if

the rate for open complex formation is much smaller than

the rates for RNAP binding and unbinding from the

promoter, then the probability of finding the polymerase

on the promoter will be given by its equilibrium value. A

second key assumption of this class of models is the idea

that the probability of promoter occupancy by RNAP is

simply proportional to the level of expression of a given

gene. The difficulty lies in the fact that there are several

different mechanisms that can intervene between RNAP

binding and the existence of a functional gene product.

Despite these caveats, we argue that this class of models

is both instructive and predictive and, in those cases

where the models are found wanting, provides an oppor-

tunity to learn something.

In this review, we first analyse the probability that RNAP

will be bound at the promoter of interest in the absence of

any activators or repressors. This is followed by cases of

increasing complexity that involve batteries of transcrip-

tion factors. Although our preliminary discussion is

focused on the statistical mechanics of polymerase bind-

ing, the framework is the same for generic protein–DNA

and protein–protein interactions. For the purposes of this

review, we make the simplified assumption that the key

molecular players (RNAP and TFs) are bound to the

DNA either specifically or non-specifically. This question

has been addressed in the context of the l switch [27], for

the lac repressor [21,28] and for RNAP [29]. Stated

differently, as a simplification, we will ignore the con-

tribution of ‘free’ polymerase in the cytoplasm, in

addition to those RNAP molecules that are engaged in

transcription on other promoters. Relaxing this assump-

tion has no effect on the framework developed below.

Hence, to evaluate the probability of promoter occupancy

in this simple model, the reservoir of RNAPs will be the

non-specifically bound molecules (as shown in Figure 1a).

To evaluate the probability of polymerase binding

( pbound) we must sum the Boltzmann weights (see

Glossary) over all possible states of P polymerase mole-

cules on DNA [30��,31��]. P is the effective number of

RNAP molecules available for binding to the promoter.

Estimating this number in vivo is fraught with difficulty

because many RNAPs are engaged in transcription at any

given time and, as such, are not available for binding.

Fortunately, this problem is avoided when calculating the

fold-change for all the cases of interest, as we do in the

accompanying paper [1��]. This is because, in these cases,

the absence of activators results in a very small pbound

value and so P drops out of the problem.
Current Opinion in Genetics & Development 2005, 15:116–124
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Figure 1
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Probability of promoter occupancy (a) Schematic showing how, in the simple model, the DNA molecule serves as a reservoir for the RNAP molecules,

almost all of which are bound to DNA. (b) Illustration of the states of the promoter – either with RNAP not bound or bound and the remaining

polymerase molecules distributed among the non-specific sites. The statistical weights associated with these different states of promoter

occupancy are also shown. (c) Probability of binding of RNAP to promoter as a function of the number of RNAP molecules for two different

promoters. We assume the number of non-specific sites is NNS = 5 � 106, and calculate the binding energy difference using the simple relation

Depd ¼ kBT lnðKS
pd=KNS

pd Þ, where the equilibrium dissociation constants for specific binding (KS
pd) and non-specific binding (KNS

pd ) are taken from in vitro

measurements. In particular, making the simplest assumption that the genomic background for RNAP is given only by the non-specific binding of

RNAP with DNA, we take KNS
pd ¼ 10 000 nM [37], for the lac promoter KS

pd ¼ 550 nM [38] and for the T7 promoter, KS
pd ¼ 3 nM [39]. For the lac

promoter, this results in Depd = �2.9kBT and for the T7 promoter, Depd = �8.1kBT.
We calculate pbound by considering the distribution of P
RNAP on the non-specific sites (NNS), which make up the

genome itself, and a single promoter. Then we distin-

guish two classes of outcomes (shown in Figure 1b): all P
RNAP molecules bound non-specifically, or one RNAP

bound to the promoter and P�1 RNAP bound non-

specifically. Next, we count the number of different ways

that these outcomes can be realized. Once these states

have been enumerated, we weight each of them accord-

ing to the Boltzmann law: if e is the energy of a state,

its statistical weight is exp(�e/kBT). Finally, to compute

the probability of promoter occupancy, we construct

the ratio of the sum of the weights for the favorable

outcome (i.e. promoter occupied) to the sum over all of

the weights.

As noted above, this simple model includes two broad

classes of microscopic outcomes: (i) those in which all P
polymerase molecules are distributed among the non-

specific sites, and (ii) those in which the promoter is

occupied and the remaining P�1 polymerasemolecules

are distributed among the non-specific sites. To evaluate

the probabilities of these two eventualities we need to

know the number of different ways that each outcome can

be realized. The statistical question of how many ways

there are to distribute P polymerase molecules among
Current Opinion in Genetics & Development 2005, 15:116–124
NNS non-specific sites on the DNA is a classic problem in

combinatorics, and the result is

NNS!

P!ðNNS � PÞ!

The overall statistical weight of these states is based not

just on how many of them there are but also on their

Boltzmann weights according to

ZðPÞ|ffl{zffl}
statistical weight� promoter unoccupied

¼ NNS!

P!ðNNS � PÞ!|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
number of arrangements

� e�PeNS
pd =kBT|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Boltzmann weight

; (1)

where eNS
pd is an energy that represents the average bind-

ing energy of RNAP to the genomic background. The

correct treatment of the genomic background requires

explicit consideration of the distribution of binding ener-

gies of RNAP, and TFs, to different sites — both specific

and non-specific — on the DNA. The question of how to

treat this problem more generally than the simple-

minded treatment given here can be found in [32,33].

The total statistical weight can now be written as
www.sciencedirect.com



Transcriptional regulation by the numbers: models Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, Kuhlman and Phillips 119
ZtotðPÞ|fflfflffl{zfflfflffl}
total statistical weight

¼ ZðPÞ|ffl{zffl}
promoter unoccupied

þ ZðP � 1Þe�eS
pd=kBT|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RNAP on promoter

; (2)

where eS
pd is the binding energy for RNAP on the promoter

(the S stands for ‘specific’). The states and corresponding

weights, normalized by the weight of the promoter-

unoccupied states, Z(P), are shown in Figure 1b.

To find the probability of RNAP being bound to the

promoter of interest, we calculate

pbound ¼ ZðP � 1Þe�eS
pd=kBT

ZtotðPÞ
: (3)

Note that the numerator in this case is the statistical

weight of all microscopic states in which the promoter is

occupied, and the denominator is the statistical weight of

all microscopic states. If we now divide top and bottom

by ZðP � 1Þe�eS
pd
=kBT

and use the functional form given in

Equation 1, the probability of promoter occupancy is

given by the simple form

pbound ¼ 1

1 þ NNS

P
eDe pd=kBT

; (4)

where we have introduced the notation De pd ¼ eS
pd � eNS

pd
[34]. To obtain the last equation we made the simplifying

assumption that P � NNS. The results computed above

can be depicted in graphical form (as shown in Figure 1c)

by plotting the probability of promoter occupancy as a

function of the number of RNAP molecules for two

different promoters. For this particular case we have used

several rough estimates, explained in the figure legend,

concerning the binding energies of RNAP molecules to

specific and non-specific sites on the DNA in a typical

bacterial cell. One interesting speculation is that the high

probability of RNAP occupancy for the T7 promoter,

even in the absence of transcription factors, could be

related to the infection mechanism of T7 phage [35]. In

contrast, it is also interesting to note the very low prob-

ability of occupancy of the lac promoter in this simple

model in the absence of activation. We view Equation 4 as

characterizing the ‘basal’ transcription rate in this simple

model. In light of this result, the key conceptual outcome

of the remainder of this review is the idea that the presence

of transcription factors (activators and repressors, etc.) has

the effect of altering Equation 4 to the simple form

pbound ¼ 1

1 þ NNS

PFreg
eDe pd=kBT

; (5)

where we introduce the regulation factor, Freg. The

regulation factor should be seen as describing an effective

increase (for Freg > 1) or decrease (for Freg < 1) of the
www.sciencedirect.com
number of RNAP molecules that are available to bind the

promoter.

To illustrate precisely the idea of the regulation factor, we

show how activators recruit [3] RNAP to the promoter of

interest. The recruitment concept is illustrated in sche-

matic form in Figure 2a, where it is seen that the activator

molecule recruits the polymerase through favorable con-

tacts characterized by an adhesive energy, eap The point

of the schematic is to show how the various states of

occupancy of the promoter and activator binding site can

be assigned Boltzmann weights, which can then be used

to compute their probabilities.

Once again, the first step in our analysis is to determine

the total statistical weight. This is obtained by summing

the Boltzmann weights of all of the eventualities asso-

ciated with the activators and polymerase molecules

being distributed on the DNA (both non-specific sites

and the promoter). As seen in Figure 2a, there are four

classes of outcomes: (i) both the activator site and pro-

moter unoccupied; (ii) just the promoter occupied by

polymerase; (iii) just the activator site occupied by acti-

vator; and (iv) both of the specific sites occupied. This is

represented mathematically as

ZtotðP;AÞ ¼ ZðP;AÞ|fflfflfflffl{zfflfflfflffl}
empty sites

þ ZðP � 1;AÞe�eS
pd=kBT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

RNAP on promoter

þ ZðP;A � 1Þe�eS
ad=kBT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

activator on specific site

þ ZðP � 1;A � 1Þe�ðeS
pdþeS

adþe paÞ=kBT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RNAP and activator bound specifically

; (6)

where the statistical weight for P polymerase molecules

and A activator molecules distributed among NNS non-

specific sites is given by

ZðP;AÞ ¼ NNS!

P!A!ðNNS � P � AÞ!|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
number of arrangements

� e�PeNS
pd =kBT e�AeNS

ad =kBT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
weight of each state

(7)

In Figure 2a the weights of the four states are normal-

ized by the weight of the empty state Z(P,A). In Equation

7 we use the notation exd to characterize the binding

energy of molecule X to DNA, and superscripts S and NS
to signify specific or non-specific binding, respectively.

Dexd ¼ eS
xd � eNS

xd is the difference between the two.

For the purposes of this simple model we have assumed

that the reservoir for the activator molecules is the geno-

mic DNA, although there is strong evidence that, in the

case of the lac operon, many of the activators (cAMP

receptor proteins; CRPs) are actually in the cytoplasm

[36]. In contrast, as will be seen in the following paper

[1��], in our actual applications of thermodynamic models

to real operons, the question of whether the reservoir is

non-specific DNA or the cytoplasm never arises.
Current Opinion in Genetics & Development 2005, 15:116–124
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Figure 2
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Statistical mechanics of recruitment (a) Schematic showing the relationship between the various states of the promoter and its regulatory region,

and their corresponding weights within the statistical mechanics framework. (b) Fold-change in promoter activity as a function of the number of

activated (inducer-bound) CRP molecules, according to Equations 5 and 8, for different values of the adhesive interaction energy between

activator and RNAP. As in Figure 1, Dead ¼ kBT lnðKS
ad=KNS

ad Þ, with KNS
ad ¼ 10 000 nM [40] and KS

ad ¼ 0:02 nM [41]. These in vitro numbers are

chosen as a representative example to provide intuition for the action of activators. Applications to in vivo experiments are given in the

accompanying paper [1��]. Several different representative values of the adhesive interaction ead that are consistent with measured activation are

chosen to illustrate how activation depends upon this parameter.
As usual, to compute the probability of interest, we

construct the ratio of the sum of weights for all those

outcomes that are favorable (i.e. polymerase bound to the

promoter) to the sum of weights over the total set of

outcomes Ztot(P,A). This results in a value of pbound that

adopts precisely the form described in Equation 5. The

regulation factor, Freg (A), is given by

FregðAÞ ¼
1 þ A

NNS
e�Dead=kBT e�ea p=kBT

1 þ A

NNS
e�Dead=kBT

; (8)

where we have made the additional assumption that

NNS 	 P, A. Note that if the adhesive interaction

between polymerase and activator goes to zero, the

regulation factor itself goes to unity. Furthermore, for

negative values of this adhesive interaction (i.e. activator

and polymerase like to be near each other) the regula-

tion factor is greater than one, which translates into

an apparent increase in the number of polymerase

molecules available for binding to the promoter. This

claim can be seen more clearly if we define the fold-

change in promoter activity as the ratio of the probab-

ility that RNAP is bound in the presence of transcription
Current Opinion in Genetics & Development 2005, 15:116–124
factors to the probability that it is bound in the abs-

ence of transcription factors: fold-change = pbound(P, A)/
pbound(P, A = 0). The fold-change is plotted in Figure 2b

for typical values of the adhesive interaction eap and

the other binding parameters, for the simple model in

which the reservoir for CRP is assumed to be non-specific

DNA.

Similar arguments can be made for the action of repressor

molecules. Consider repression by R repressor molecules

that can bind to an operator (with energy eS
rd ) that overlaps

with the promoter. By enumerating the different states

with their associated weights in a way similar to that used

in Figure 2a and noting that the state where both the

repressor and RNAP bind to their sites is not allowed, we

can again derive the form for promoter occupation, Equa-

tion 5, but this time with the regulation factor,

FregðRÞ ¼
1

1 þ R

NNS
e�Derd=kBT

: (9)

The above scheme can be extended further to describe

co-regulation by two or more activators and/or repressors.

For example, in the case of activation considered above, if

the binding of the activator to its operator site is assisted
www.sciencedirect.com



Transcriptional regulation by the numbers: models Bintu, Buchler, Garcia, Gerland, Hwa, Kondev, Kuhlman and Phillips 121

Table 1

Regulation factors for several different regulatory motifs.

Case Regulation factor (Freg)

1. Simple repressor

R

ð1 þ rÞ�1

1 þ ½R�
KR

� ��1

2. Simple activator

A

1 þ ae
�
eap

kBT

1 þ a

1 þ ½A�
KA

f

1 þ ½A�
KA

3. Activator recruited by a helper (H)

AH
1 þ a

1 þ he
�
eha

kBT

1 þ h
e
�
eap

kBT

1 þ a
1 þ he

�
eha

kBT

1 þ h

1 þ ½H�
KH

þ ½A�
KA

f þ ½A�
KA

½H�
KH

fv

1 þ ½H�
KH

þ ½A�
KA

þ ½A�
KA

½H�
KH

v

4. Repressor recruited by a helper (H)

RH 1 þ 1 þ he
�

ehr

kBT

1 þ h
r

0
BB@

1
CCA

�1
1 þ ½H�

KH

1 þ ½H�
KH

þ ½R�
KR

þ ½R�
KR

½H�
KH

v

5. Dual repressors

R2R1

ð1 þ r1Þ�1ð1 þ r2Þ�1

1 þ ½R1�
KR1

� ��1

1 þ ½R2�
KR2

� ��1

6. Dual repressors interacting

R2R1

1 þ r1 þ r2 þ r1r2e
�
er1r2

kBT

0
@

1
A

�1

1 þ ½R1�
KR1

þ ½R2�
KR2

þ ½R1�
KR1

½R2�
KR2

v

� ��1

7. Dual activators interacting

A2A1

1 þ a1e
�
ea1 p

kBT þ a2e
�
ea2 p

kBT þ a1a2e
�
ea1 p þ ea2 p þ ea1a2

kBT

1 þ a1 þ a2 þ a1a2e
�
ea1 p þ ea2 p

kBT

1 þ ½A1�
KA1

f1 þ ½A2�
KA2

f2 þ ½A1�
KA1

½A2�
KA2

f1f2v

1 þ ½A1�
KA1

þ ½A2�
KA2

þ ½A1�
KA1

½A2�
KA2

v

8. Dual activators cooperating via looping

A2A1

1 þ a1e
�
ea1 p

kBT þ a2e
�
ea2 p

kBT þ a1a2e
�
ea1 p þ ea2 p þ Floop

kBT

ð1 þ a1Þð1 þ a2Þ

1 þ ½A1�
KA1

f1 þ ½A2�
KA2

f2 þ ½A1�
KA1

þ ½A2�
KA2

f1f2v

1 þ ½A2�
KA2

� �
1 þ ½A1�

KA1

� �

9. Repressor with two DNA binding units and DNA looping

R1R2
1 þ rm þ rm

1 þ ra
e
�
Derad þ Floop

kBT

0
B@

1
CA

�1
1 þ ½R�

Ka

1 þ ½R�
Km

� �
1 þ ½R�

Ka

� �
þ ½R�½L�

KmKa

10. N non-overlapping activators and/or repressors acting independently on RNAP

ANR2A1

Freg1 � Freg2 ���� �FregN Freg1 � Freg2 ���� �FregN

Regulation factors for several different regulatory motifs. In the schematics of the motifs appearing in the first column, the inverted ‘T’

symbol indicates repression, arrows represent activation, and a dashed line is for DNA looping. The second column gives the regulation factor

in terms of the number of transcription factors (TFs) in the cell and their binding energies, and the third column provides a translation of the

regulation factor into the language of concentrations and equilibrium dissociation constants (used in the following paper [1��]). For an arbitrary

TF we introduce the following notation: in the second column, x is the combination X
NNS

e�Dexd=kBT , and [X] in the third column denotes

the concentration of transcription factor X. KX = [X]/x is the effective equilibrium dissociation constant of the TF and its operator sequence on

the DNA. Furthermore, in the third column we introduce f ¼ e�exp=kBT for the ‘glue-like’ interaction of a TF and RNAP, and v ¼ e�ex1x2
=kBT for

the interaction between two TFs. In cases 8 and 9, Floop is the free energy of DNA looping, v in case 8 is defined as e�Floop=kBT , while [L] in case

9 is the combination NNS
Vcell

e�Floop=kBT , Vcell being the volume of the cell.
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Figure 3

(b)

(a)

Promoter

Repressor

Promoter
oaom

oa

Activator
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om

DNA bending in transcription regulation. (a) DNA looping enables Lac repressor to bind to the main and the auxiliary operators simultaneously,

thereby increasing the weight of the states in which the promoter is unoccupied. This leads to stronger repression than in the single operator

case. (b) DNA bending by the activator leads to cooperative binding of the two activators because the free energy cost of bending is paid only

once. This leads to a boost in activation above that provided by independent binding of the two activators [45].
itself by a helper protein, which might bind to an adjacent

site [1��], then the regulation factor still has the form

given in Equation 8 but with the number of activators, A,

replaced by an effective number of activators

A0 ¼ A
1 þ H

NNS
e�Dehd=kBT e�eha=kBT

1 þ H

NNS
e�Dehd=kBT

: (10)

Note that the multiplicative factor in Equation 10 has the

same form as in Equation 8 except that now the number

of helper molecules, H, appears in the expression, and the

interaction energy eha refers to that between the helper

molecules and activators. In fact, this is the generic

expression describing the recruitment of one DNA-

binding protein by another, and it is not limited to

activator–RNAP recruitment.

The introduction of the regulation factor enables a dis-

cussion of various regulatory motifs in a unified way, as

made explicit by Table 1. These examples will be

discussed in the context of particular bacterial gene-

regulatory systems in the ensuing paper. The main point

captured by this table is that the conceptual picture of

thermodynamic models is identical regardless of regula-

tory motif and involves summing all of the relevant states.

It culminates in the regulation factor which, as will be

shown in the companion [1��], is equal to the measurable

fold-change of promoter activity.
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As a final example, we consider the way in which DNA

looping can play a role in dictating the regulation factor.

Indeed, recent work by Vilar and Leibler [31��] and Vilar

and Saiz [42��] and others [25,43] has shown how the

thermodynamic models can be applied to regulatory

control by looping. In the accompanying paper [1��],
we apply these ideas to the particular question of how

such regulation depends upon the distance between the

two binding sites, but content ourselves here with a

discussion of the conceptual basis. Two distinct looping

scenarios are shown in Figure 3. In case (a), a repressor

molecule, which can bind to two distinct regions on the

DNA, loops out the intervening region. The classic

example of this mode of action is the Lac repressor. In

case (b), one protein, such as CRP, favorably bends the

DNA so that a second activator can contact RNAP,

although paying a lower free energy cost than it would

if it were acting alone. In both cases, the free energy cost

associated with making a DNA loop is outweighed by the

benefit of additional binding energy between the repres-

sor and DNA [case (a)] and between the activator and

RNAP [case (b)].

In summary, the statistical mechanical framework

described here can be used to consider several different

regulatory motifs [11,26,30��,32,33,44], as showcased in

Table 1. In each of the cases considered in the table, the

probability of promoter occupancy is given by Equation 5,

with the sole change from one case to the next being the

form adopted by the regulation factor itself.
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Conclusions and future prospects
We argue that as a result of the increasingly quantitative

character of data on gene expression there is a correspond-

ing need for predictive models. We have reviewed a series

of general arguments about the way in which batteries of

transcription factors work in generic ways to mediate

transcriptional regulation. The models described here

result in several important classes of predictions. The

application of these ideas to particular bacterial scenarios

forms the substance of the second article [1��].

Though ideas like those presented here have the poten-

tial to serve as a quantitative framework for thinking

about transcriptional regulation, there are several out-

standing issues. Some especially troubling features of

these models are: (i) what are the precise conditions

under which equilibrium assumptions are acceptable?

(ii) When can the probability of RNAP binding at a

promoter serve as a surrogate for gene expression itself?

(iii) What is the role of fluctuations? (iv) These models

pretend that the basal transcription apparatus is a single

molecule that interacts with transcription factors, whereas

the transcription apparatus is a complex that is itself

probably subject to recruitment for its assembly. Despite

these concerns, our view is that thermodynamic models

have long demonstrated their utility and it will be of great

interest to carefully explore their consequences experi-

mentally. Case studies using the thermodynamic models

are reviewed in the accompanying paper [1��].
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