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Introduction

Life is an ongoing struggle for order. While the second law of thermo-
dynamics predicts that in any closed system the degree of disorder
increases with time, biological systems exhibit a great amount of orga-
nization. Indeed, functional differentiation of the organism’s internal
structure is a necessity for the development of life. Such functional dif-
ferentiation is established through the formation of complex patterns.
As an example, eukaryotic cells are complex organisms which are, in
part, organized by smaller subunits, the organelles. On the level of
tissues, the establishment of spatial order is one of the most impor-
tant tasks in embryonic development. Starting from a homogeneous
cluster, cells differentiate to a variety of different forms of tissue. But
how can cells which share identical genetic information develop into
the correct cell types in order to build functioning organisms?

To understand the formation of spatial patterns mathematical mod-
els combining nonlinear reactions and diffusion have been extensively
studied. In his visionary work, Alan Turing investigated the stability
of the simplest possible reaction-diffusion system which is capable of
forming a pattern from a uniform state. In this lecture I will give
an introduction some to advanced topics in pattern formation. The
first part of this lecture deals with amplitude equations, which then
naturally motivate the study of travelling wave fronts. The second
part of this lecture therefore concerns wave propagation phenom-
ena, in particular waves propagating into unstable and metastable
states.
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1 Amplitude equations

In linear stability analysis we linearized around a homogeneous, un-
stable state, u−; we then studied the rate σ(q) of exponential growth
or decay of perturbations with a given wave number q. When tun-
ing some parameter ε the homogeneous state becomes marginally
unstable.

How the growth rate σ behaves near the onset of an instability de-
fines the class a specific instability belongs to. For example, if the
maximum of σ is located at a finite wave number for all values of ε
the instability is termed a type-I instability. If, on the other hand,
the maximum of σ corresponds to a homogeneous system (q = 0) for
ε < 0, while the maximum of σ is located at a finite wave length for
ε > 0 the instability is termed a type-II instability. Lastly, in type-III
instabilities homogeneous perturbations maximise σ for all values of
ε. For all types of instabilities the maximum growth rate at onset can
be real, corresponding to stationary patterns (s), or complex, leading
to temporal oscillations (o). For simplicity, we here focus on type-I-s
instabilities.

In linear stability analysis, the pattern resulting from a perturbation
of the unstable state is associated with the critical wave number, qc,
which is the first wave number to grow upon onset of the instability.
However, in realistic cases, the system is not tuned to be precisely at
the onset of the instability but beyond, such that a finite interval of
wave numbers grow exponentially in the linear regime [Figure 1(a)].
How is the exponential growth saturated? Which of the wave numbers
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Figure 1: (a) Beyond the onset of an instability many fourier modes grow exponen-
tially (shaded region). (b) The superposition of oscillators with similar
frequency leads to a slow beating in the overall amplitude.

is actually selected for pattern formation? To answer these questions
we have to take into account the non linear terms in the evolution
equations describing the pattern forming system. This is investigated
in the amplitude equation formalism. The general idea is that, near
onset, the time evolution of the many fields that describe a biological
system (e.g. the concentration of different transcription factors) can
be effectively captured by the evolution of a single, complex-value
field A(x, t) - called amplitude. The evolution equation of A(x, t) is
called amplitude equation.

To understand the meaning of the amplitude note that near onset
a constrained range of similar wave number is accelerated by the
dynamics. The resulting oscillation can be illustrated by the super-
position of two oscillators with almost equal frequencies,

cos(q1x) + cos(q2x) = 2 cos (∆q x/2) cos (qcx) , (1)

with ∆q = q2−q1 and qc = (q1 +q2)/2. For this example we hence find
an oscillation with the average wave number of the single oscillators,
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whose amplitude varies slowly with a wave number given by their
difference. The superposition of oscillations with similar frequencies
therefore leads to a “beating” in the overall amplitude. For a pattern
forming system exhibiting a type-I-s instability this means that the
strength of the pattern (the amplitude) varies much more slowly than
the pattern itself, cf. Figure 1(a).

To derive the amplitude equation we therefore make the ansatz that
a stationary pattern with wave number qc (maximising the growth
rate σ) is modulated by a slowly varying, complex amplitude,

u(x, t) = u− + A(x, t)︸ ︷︷ ︸
Amplitude

u0 e
iqcx︸ ︷︷ ︸

stationary pattern
with critical
wave number

+A(x, t)∗u0 e
−iqcx︸ ︷︷ ︸

complex conjugate

+ . . . , (2)

where u− is the unstable base state. This ansatz is sensible for type-I-
s instabilities. To illustrate the meaning of the complex amplitude we
write it in the form A(x, t) = a(x, t)eiϕ(x,t). Here, the real amplitude
a(x, t) gives the overall strength of the pattern. The complex phase
leads to a spatio-temporal distortion of the ideal pattern, and thereby,
importantly, it captures information about symmetries in the pattern.
To derive the evolution equation of A(x, t) one could in principle
substitute this ansatz into the partial differential equations describing
the time evolution of the biological system. One can, however, derive
the amplitude equation by symmetry arguments. Similarly to the
derivation of a Ginzburg-Landau theory in statistical physics we take
into account the simplest terms, which are in agreement with certain
fundamental symmetries of the system:

1. The amplitude equation should be invariant under translation
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of the pattern by a multiple of the critical wavelength of the
pattern, A → Aei∆ (translation symmetry). To see this we
substitute this transformation into the ansatz,

u(x, t) = A(x, t)eiϕ(x,t)u0e
iqcx + A(x, t)∗e−iϕ(x,t)u0e

−iqcx (3)
= A(x, t)u0e

iqc(x+∆/qc) + A∗(x, t)u0e
−iqc(x+∆/qc) . (4)

2. The amplitude equation should also remain unchanged upon
inversion of the spatial coordinates, i.e. complex conjugation
A→ A∗ and then x→ −x (parity symmetry)

While we here focus on a single extended coordinate, in two spatial
dimensions we would also require the system to be isotropic, i.e. to
be invariant under rotation.

With these symmetries defined we can now construct an evolution
equation for A(x, t). To this end we take into account the lowest order
terms, which are invariant under these symmetry transformations.
The simplest time derivative consistent with these symmetries is
τ0∂tA, which defines the left hand side of the amplitude equation. A
first derivative in time is also what we expect from a driven dissipative
system. The right hand side potentially involves integer powers of A,
A∗, or combinations of both, but also spatial derivatives as well as
mixed terms. First note that any even power of A is not consistent
with the symmetries, e.g. A2 → A2ei2∆. This also holds true for some
odd powers, which can easily confirmed by simple calculations. On
the other hand, odd powers of A and its complex conjugate A∗ are
all invariant under the symmetry conditions. The simplest terms not
involving derivatives that lead to growth and saturation are therefore
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are εA and g0|A|2A = g0A
∗A2.

Also, while first order derivatives are invariant under the symmetries
we can rescale the amplitude A to eliminate them from the amplitude
equation. The lowest order derivative to appear in the amplitude
equation therefore is the second derivative, ξ2

0∂xxA.

Taken together we find

∂tτ0A(x, t) = εA(x, t)− g0|A(x, t)|2A(x, t) + ξ2
0∂xxA(x, t) . (5)

This is the amplitude equation for a type-I-s instability. Higher order
terms are neglected as near onset A(x, t) varies slowly in space and
time, which can be formalised by a multiple scales analysis. Since the
amplitude equation is therefore effectively derived as an expansion in
the small parameter ε, this also limits the validity of the amplitude
equation to slow distortions of ideal patterns near onset.

The parameters τ0, ξ0, and g0 are constants that depend on the details
of the biological system and must be calculated from the full evolution
equations of the dynamics. While these parameters must be known
in order to quantitatively describe pattern forming systems the shape
of the amplitude equation does not depend on these details. Indeed,
we can eliminate the physical constants by rescaling time, space, and
the amplitude. We set

Ã = √g0A , x̃ = x/ξ0 , t̃ = t/τ0 , (6)

such that the amplitude equation obtains the dimensionless form

∂tÃ(x, t) = εÃ(x, t)− |A(x, t)|2Ã(x, t) + ∂xxÃ(x, t) . (7)
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We can even eliminate the remaining parameter ε by substituting

Ã =
√√√√∣∣∣∣∣g0

ε

∣∣∣∣∣A , x̃ =
√
|ε|
ξ0

x , t̃ = ε

τ0
t . (8)

With this, the amplitude equation obtains the parameter-free form

∂tÃ(x, t) = ±Ã(x, t)− |Ã(x, t)|2Ã(x, t) + ∂xxÃ(x, t) , (9)

where the sign in the linear term is positive if ε > 0 and negative if
ε < 0. Despite the limited range of validity of the amplitude equation,
its importance arises from the fact that it does not depend on the
microscopic details of the pattern forming system. Rather, it only
depends on the universality class of the instability. In other words,
near the onset of an instability the form of the amplitude equation
only depends on symmetries, i.e. on the type of instability. Therefore,
near onset, the formation of spatio-temporal patterns is similar for
all systems which belong a given universality class. For example, all
one dimensional patterns with a finite wavelength pattern behave
similarly according to Eq. (9).

The dimensionless form of the amplitude equation not only tells us
something about the universality of pattern forming processes. The
absence of the small parameter ε in the rescaled amplitude equations
(9) immediately suggests the scaling behavior ofWe may also infer
the scaling behavior of the time and length scales, and the amplitude
near onset. The typical time scale of the dynamics is given by τ0/ε,
which diverges near onset. In other words, the time evolution of the
amplitude slows down near onset. The same holds true for the typical
length scale, which is ξ0/

√
ε. On the other hand, the amplitude scales
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with
√
ε, such that the intensity of the pattern grows linearly as we

approach onset.
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2 Fronts

Until now we looked at Fourier mode perturbations that were delo-
calised over the whole system. In reality, perturbations are constrained
to a finite region. Such a local perturbtion may then saturate before
spreading through the system. As the result one observes the propa-
gation of an interface with a stationary profile - a wave front. We are
therefore interested in front solutions of the amplitude equation. For
simplicity, we focus on real solutions u, which arise from real valued
perturbations. Consider equations of the form

∂tu = f(u) + ∂xxu , (10)

We are looking for solutions connecting the saturated state us with
the base state u0, and make a travelling wave ansatz,

u(x, t) = U(ξ), with ξ = x− ct , (11)

and the boundary conditions u(ξ → −∞)→ us and u(ξ →∞)→ u0.
Substituting this ansatz into the reaction-diffusion equation (10) we
obtain an ordinary differential equation for the stationary profile in
the co-moving frame, U ,

U ′′︸︷︷︸
mass 1

+ c U ′︸ ︷︷ ︸
friction c

+ f(U)︸ ︷︷ ︸
potential ∂UV

= 0 . (12)

What is the velocity of the propagating wave front? The possible
values of c are defined by the solvability of this differential equation.
While this leads, in general, to an eigenvalue problem involving a
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Figure 2: Reaction terms (top row) and potentials (bottom row) for two classes
of propagating wave fronts: front propagating into unstable states (left
column) and front propagating into metastable states (right column).

complicated, non linear differential equation we may get some insight
by noting that this equation describes a mechanical system, which we
can intuitively understand. The equation describes the time evolution
of the position of a ball of mass 1, which is sliding through a potential
V = ∫

f(U) dU with a friction c. The boundary conditions on the
front profile dictate that the ball initially starts at the upper fixed
point, us, and finally has to rest on the lower fixed point u0.

Naturally, the shape of the potential V (U) defines the dynamics of the
ball. We here focus on two generic classes of potentials, as depicted in
Figure 2: in the first case, the reaction term f(U) is zero at u0 with
f ′(U) > 0, and it vanishes at u1, but with f ′(U) < 0. For homogeneous
systems f therefore has an unstable fixed point at u− and a stable
fixed point at u+. The potential therefore exhibits a well at u−, which
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is surrounded by flanks of equal height. It is intuitively clear, that
a ball starting on the top of the right flank will eventually rest at
u− for any positive value of the friction c. Translated to the problem
of velocity selection of propagating wave fronts this mean that there
is a continuous spectrum of front solutions with different velocities
that solves Eq. (10). Henceforth we refer to these solutions as fronts
propagating into unstable states.

In the second class of models we will be interested in, the reaction
term f has three roots, at u0, u1, and u2, where f ′(u−) < 0, f ′(u0) > 0
and f ′(u+) < 0. Such reaction terms lead to bistable dynamics of the
homogeneous system: a system prepared in the state u0 will remain
there exponentially long. Only a large enough perturbation will lead
to excitation and an acceleration of the dynamics towards the upper
stable fixed point, u+. The potential now has two maxima, at u− and
u+, as well as a local minimum at u0. From the sliding ball analogy we
infer that there is only a discrete value of the friction which would lead
to a ball starting at u+ to rest at u−. We refer to the solutions of such
partial differential equations as fronts propagating into metastable
states.

It is important to note that propagating wave fronts arise in nearly
all fields of science - not only as solutions of amplitude equations.
For example, fronts propagating into unstable states have been used
to describe range expansion processes, such as the expansion of bac-
terial populations of epidemic spreading. Fronts propagating into
metastable states arise, for example, in ecology when populations
are subject to a strong Allee effect. Both classes of propagating wave
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fronts have been studied extensively in the literature. In the following,
we will give a short overview on some of the concepts which play a
role in both classes of wave fronts.

2.1 Front propagation into unstable states

Fronts propagating into an unstable state are an ubiquitous phe-
nomenon in nature. They describe, for example, the spreading of
advantageous genes [1] or infectous diseases [2]. Recently, they have
attracted considerable attention as a model for the range expansion
of bacterial populations [3–5].

As we have seen in the sliding ball analogy fronts propagating into
unstable states allow, in principle, for a continuous spectrum of front
solutions. From this continuous spectrum possible velocities, which
one is selected by the expansion dynamics? For simplicity, we here
focus on the Fisher-Kolmogorov equation,

∂tu(x, t) = εu(x, t)− u(x, t)2 + ∂xxu(x, t) . (13)

It is easy to see that the reaction term comprises a stationary, ho-
mogeneous state at u− = 0, which is unstable, and a stable, homo-
geneous state at u+ = 1. Hence, small perturbations of the unstable
state grow exponentially and ultimately saturate. In the context of
bacterial range expansion the unstable state corresponds to an un-
populated system containing nutrients. The the stable state describes
a fully occupied system, where all nutrients have been consumed for
reproduction. If the unstable state is perturbed in a confined region
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the saturated solution will spread through the system. In other words,
we expect a wave front to propagate into the unstable state.

One of the central insights in the theory of front propagation into
unstable states is that the velocity of the front is determined by its
tip. This is intuitive, as in the bulk the system rests in its saturated
state, while perturbations in the tip are exponentially accelerated.
Since concentrations in the tip are small we may therefore start
by linearizing around the unstable state and write solutions in the
form

u(x, t) = 1
2π

∫
dq eiqx+σ(q)t

︸ ︷︷ ︸
Propagation of IC
in space and time

∫
dx′ u0(x′)eiqx

′

︸ ︷︷ ︸
Fourier transform

of initial conditions

. (14)

Note that the integral is only defined for sufficiently local initial
conditions. We evaluate the integral at a moving point x = vt,

u(x = vt, t) = 1
2π

∫
dq e[iqv+σ(q)]t

∫
dx′ u0(x′)eiqx

′
. (15)

For large times wave numbers are rapidly varying, which leads to a
decoherent superposition of wave modes, effectively cancelling out
each other. The integral is therefore dominated by the region, where
argument of the exponential varies most slowly, the stationary phase.
This stationary determined is given by ∂q[iqv + σ(q)] = 0, or equiva-
lently

v = i
dσ
dq

∣∣∣∣∣
q=qs

, (16)

from which we can derive the stationary point qs. With this, employing
the stationary phase approximation, we write our ansatz as

u(x = vt, t) ∝ e[iqsv+σ(qs)]t. (17)
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If v is chosen to correspond to the velocity of the travelling wave front
the profile should be stationary. Making use of this self-consistency
requirement, we assume that the solution in the tip of the front neither
grows nor decays exponentially, i.e. the real part of the argument
vanishes, <[iqsv + σ(qs)] = 0. This yields a second equation for the
front velocity,

v∗ = <[σ(qs)]
=[qs] .

(18)

Let’s look at the application of this result to the Fisher-Kolmogorov
equation. The spectrum

σ(q) = ε− q2 , (19)

from which we obtain the equations that determine the velocity,

v = 2iqs and v = i
ε− q2

s

qs
. (20)

We first find that the stationary point is given by qs = i
√
ε. From

this the velocity follows as

v∗ = 2
√
ε . (21)

This is the linear spreading velocity of the front: the velocity with
which small perturbations of the unstable state grow and spread
according to the evolution equations obtained by linearizing the full
model around the unstable state.

In our derivation of the linear spreading velocity we took the fourier
transform of the initial conditions and evolved this in space and time.
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In order for this ansatz to be well-defined we must assume that the
initial conditions are sufficiently localized, i.e. they have compact
support. In many real applications this is not the case. Remarkably,
it turns out that all initial conditions which are sufficiently step,
i.e. which decay faster than exp(λ∗x), asymptotically take the linear
spreading velocity v∗.

Indeed, the significance of the linear spreading velocity goes far be-
yond the propagation speed of Fisher waves. For any front propa-
gating into an unstable state, it is intuitively clear that stable wave
solution must propagate faster than the linear spreading of small
perturbations, v ≥ v∗.

The linear spreading velocity therefore provides a unifying concept
for a large variety of fronts: If v = v∗, as in the example of the
Fisher-Kolmogorov equation, the front is termed a pulled front. The
propagation speed of pulled fronts is determined by the leading edge
of the front, such that the front is being “pulled along” by its tip. The
velocity of the leading edge, as obtained by linearizing the evolution
equations, therefore defines the speed of the front. Contrarily, fronts
whoose velocity is larger than the linear spreading velocity, v > v∗

are called pushed fronts. For pushed fronts nonlinear terms influence
the front’s velocity and one might think these fronts are being pushed
by nonlinear terms in the bulk region behind the front.
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2.2 Front propagation into metastable states

Bistable systems are ubiquitous in nature. For example, genetic switches
are bistable systems that store the activation state of a gene [6, 7].
On the other hand, in population dynamics, a minimum population
size is often needed to establish a stable population. In this case one
says that the population is subject to a strong Allee effect [8].

While in Turing’s simple model the locally stable state looses its
stability due to diffusive transport, we are here interested in how
pattern formation is possible if the stable state is globally stable
to small perturbations. Such systems are commonly called excitable
media and they arise in a variety of fundamental problems in biology,
chemistry, physiology and medicine [9]. As we will see, excitable me-
dia may admit the propagation of waves. These waves are paramount
for some of the most fundamental processes in living organisms [9]:
Excitable electrical waves are used by some single cell organisms such
as Paramecium to control the mechanical rotation of their cilia, allow-
ing them to adjust their swimming motions. Such excitable electrical
waves also prevent multiple sperm cells from merging with an egg.
When a first sperm has entered the egg an excitable wave triggers a
rapid change in the egg’s membrane preventing other sperms from
entering.
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2.2.1 Front propagating into metastable states in
homogeneous environments

What can we infer about the solutions of Eq. (10) if the reaction
term is bistable? If the potential V (u) = ∫

f(u)du has two local
maxima at concentrations u− and u+, separated by a minimum, i.e.
the reaction term is bistable, solutions are stationary profiles moving
with a constant velocity c,

u(x, t) = U(ξ), ξ = x− ct , (22)

with U(ξ → ±∞) → u±. The shape U(ξ) of the front profile can
be obtained by solving the stationary differential equation, ∂xxU +
∂UV (U) = 0. Such solutions are called traveling wave solutions and,
as discussed above, they allow us to formulate Eq. (10) in terms of
an ordinary differential equation, namely

U ′′ + cU ′ + ∂UV (U) = 0 . (23)

Here, the prime denotes derivatives with respect to ξ. Equation (23)
can be interpreted in terms of an analogous mechanical problem: it
may be interpreted as a force balance equation for a particle (sliding
ball) with mass 1, friction c and potential V (φ). The boundary condi-
tions are determined by the asymptotic values u± of the front profile,
i.e. the ball starts at one maximum and ends at the other maximum.
To determine the front’s velocity we have to solve the Eigenvalue
problem defined by Eq. (23). In the language of the sliding ball anal-
ogy, this problem can be formulated as follows: for which friction c
does the ball, when starting at the maximum u+ at high concentra-
tions, stop exactly at the maximum u− at low concentrations? If the
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friction is positive, solutions are traveling waves propagating in the
positive x direction. On the other hand, if the friction is negative, the
front propagates into the negative x direction.

To derive an expression for the front’s velocity we multiply Eq. (23)
with φ′ and integrate over ξ. We obtain

∫ ∞
−∞

f(U)dUdξ dξ +
∫ ∞
−∞

U ′′U ′dξ + c
∫ ∞
−∞

(U ′)2dξ = 0 . (24)

From the asymptotic values of the front solution, U(±∞) = u± we
find that the first term on the left hand side equals − ∫ u+

u− f(U)dU ≡
−∆V . The second integral on the left hand side vanishes, as one may
see by employing the substitution law. We obtain an expression for
the front’s velocity,

c = ∆V∫∞
−∞(U ′)2dξ . (25)

Therefore, two factors determine the speed of the propagating wave
front: the difference in potential between the stable states gives the
direction of propagation and the absolute value of the velocity. If ∆V
is positive, the front propagates into the positive x-direction and vice
versa for negative values of ∆V . The denominator can be thought of
as a measure for the maximum steepness of the front. We infer that
steep fronts move slower than shallow fronts.
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2.2.2 Front propagation into metastable states in
inhomogeneous environments

Turing’s mechanism has long been thought to be active in early devel-
opmental processes, such as the segmentation of embryos. However,
it turned out that this is not the case. Indeed, Turing patterns are
translationally invariant, which is not a desirable property if one want
to define precisely located patterns. In principle, the stripe patterns
arising through Turing’s mechanism could be positioned through
appropriate boundaries, but then it is unclear what happens if the
wavelength of these patterns is of the order of the system size, as in
early development.

During the development of an embryo cells differentiate into a variety
of distinct cell types, such as nerve cells, phosphoreceptor cells of the
retina in the eye, or muscle cells. How form and patterns emerge
from a homogeneous cluster of cells has already fascinated Aristo-
tle in the fourth century B.C.. He described the multiple forms of
morphogenesis in birds, plants and cephalopods, already noting that
an animal’s egg contained the “potential” for its later differentiation.
In 1969, Lewis Wolpert was the first to propose that asymmetric
concentrations of a chemical signal (morphogens) provide positional
information for the developmental system [10]. The positional signal
serves as an input to the gene regulatory system allowing the cell or
nucleus to differentiate accordingly.

An important example arises in the early embryogenesis of Drosophila
melanogaster where maternal morphogen gradients provide positional
information for downstream gene regulatory processes [11–14]. The
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morphogen Bicoid is translated from RNA which is located at the
anterior end of the egg. The combined effect of this source, degrada-
tion and diffusion leads to an exponentially decreasing concentration
of Bicoid. This gradient defines an anterior-posterior axis, thereby
providing positional information to processes determining cell differ-
entiation.

The first gene activated by Bicoid is called Hunchback, which is ex-
pressed at the anterior end of the embryo. Importantly, it exhibits
a sharp on-off boundary changing from its largest to its lowest con-
centration in only one tenth of the egg’s length along the anterior-
posterior axis [Fig. 3(b)]. Experimental studies have shown that the
production of Hunchback is governed by cooperative self-activation
and cooperative activation by Bicoid [13, 15–17]. As Hunchback again
serves as a positional signal for downstream developmental processes,
such as the formation of the gap genes giant, krüppel and knirps,
the exact position of the Hunchback front is pivotal to the embryo’s
fate [13]. Hence, the boundary’s stability to extrinsic perturbations
or internal noise is paramount.

Spatially inhomogeneous activation is also relevant in other contexts.
In ecology, birth rates may have spatial dependence, e.g. due to spatial
variance in temperature or resource availability [18, 19]. In cell biology,
bistability and spatially inhomogenous activation has been proposed
as a mechanism responsible for the polarization of cells [20–22].

Motivated by these processes, we will in the following extend the
methodology developed in the previous section to situations, where
waves propagating into metastable states are subject to spatially
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Figure 3: (a) The model comprises self-activation with a rate depending nonlinearly
on the concentration a, degradation and activation by an external posi-
tional signal M(x). (b) Two types of gradients: exponential decay (dashed
line) and a sigmoidal profile ensuing from regulating an exponentially
decaying input (solid line). (c) The potential for different values of the
front position q. The sliding ball analogy states that the front localizes
where the two maximum values of the potential are equal. (d) Sketch
of the bifurcation diagram and traveling wave solution of Eq. (10). Blue
lines denote stable solutions while the dashed (red) line corresponds to the
unstable branch. Wave fronts (black lines and shaded area) penetrating
the bistable region slow down and eventually come to rest at a stable fixed
point of the front dynamics.

varying influences. To this end, we will investigate a broad class of
bistable diffusion-reaction models with reaction terms comprising self-
activation, external activation, and degradation. While self-activation
and degradation are assumed to be spatially uniform, the external
activation is taken to be position-dependent.

While we will employ a model framework, which is inspired by early
Drosophila embryogenesis it is important to note that we should not
expect such a model to give quantitatively correct descriptions of real
biological systems. Indeed, the details of gene regulatory networks in
embryogenesis are not fully understood, even today. A quantitative
analysis of a model comprising many parameters is therefore not al-
ways the best strategy. Therefore, we will study the simplest model
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allowing for the stable establishment of a sharp boundary. In the
context of embryogenesis it can be thought of as a coarse grained
biochemical network, which despite being simple comprises essential
characteristics of the more complex networks found in biology. Specif-
ically, we consider a one-dimensional system where diffusing particles
are subject to three types of reactions: First, there are gain processes
with a concentration-dependent rate that accounts for self-activation
in gene regulatory systems or reproduction in population dynamics.
Typically, these rates are small for low concentrations, then rise and
finally saturate at high concentrations. In populations dynamics, this
behavior is referred to as the strong Allee effect [8, 24]. In gene reg-
ulation, it can be due to cooperative transcription factor binding to
a gene promoter. A common choice for the overall reaction rate is
krR

n
a0

(a) with the Hill function

Rn
a0

(a) ≡ an/(an0 + an) , (26)

kr the maximum intrinsic production rate, and a the particle con-
centration. The Hill coefficient n measures the degree of cooperative
binding in the promoter region, or, in ecology, the strength of an
Allee effect. Second, we account for loss processes, where particles
vanish with a certain rate λ. Third, in addition to self-activation,
there may also be external sources for particle production. Here, we
are interested in systems where this source is position-dependent
and characterized by the overall rate kMM(x). The prefactor kM
denotes the maximum rate of external activation, and M(x) is a
monotonically decreasing positive density profile with normalization
M(0) = 1. In the simplest case, where the profile results from a
source-degradation dynamics [25, 26], it is exponential M(x) = e−x/ξ
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with the decay length ξ, cf. Fig. 3 (a). Prominent examples are the
concentration profile of Bicoid in Drosophila [25] and temperature or
nutrient gradients in population dynamics [27]. Since the production
of Hunchback by Bicoid is mediated by cooperative binding, the profile
M(x) entering the overall production rate is commonly described by
M(x) ∼ Rm

I0
(e−x/ξ) [15]. The exponentially decaying signal induced

by maternal source-degradation dynamics serves as an input to the
gene regulation system. The latter is described by a Hill coefficient
m typically in the range from 1 to 5, and an activation threshold I0.
The model is summarized in Fig. 3(a).

In the limit of a large system size, fluctuations are of minor impor-
tance and the spatio-temporal dynamics is then aptly described by a
reaction-diffusion equation, which in dimensionless form reads

∂tu = f(u, x) + ∂xxu . (27)

Here,
f(u, x) ≡ rRn

u0
(u) +M(x)− u (28)

comprises self-activation, external activation and degradation. Con-
centration u, time t, and space x are measured in units of kM/λ, 1/λ
and

√
D/λ, respectively. The ratio r ≡ kr/kM denotes the relative

amplitude of self-activation and external activation mediated through
M(x).

Sliding ball analogy for inhomogeneous systems Traveling wave
solutions of Eq. (10) may be localized due to the combined effect of
spatially varying external sources and bistability [21, 22, 28]. The
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basic mechanism can be best understood in terms of the well-known
sliding ball analogy [9], which here is complicated by the fact that the
reaction term is space-dependent. Since in most biological situations a
steep profile in u is induced by a smooth external profileM(x), we may
assume a separation of length scales ξ �

√
D/λ and ξ much smaller

than the system size. Then one can make a generalized traveling wave
ansatz

u(x, t) = U(x− q(t), y), (29)

where x is a fast varying variable describing changes in the concentra-
tion profile, y = x/ξ is a slowly varying variable describing changes in
the external profile M(x), and q(t) denotes the front position. Substi-
tuting the generalized traveling wave ansatz into Eq. (27) we obtain
to leading order in the inverse length of the external gradient,

−q̇∂xU = ∂xxU + ∂UV (U, y) +O(ξ−1) . (30)

This differential equation may be interpreted as a force balance for a
particle (sliding ball) with mass 1, friction q̇ and potential V (u, y) =∫ u f(ũ, y)dũ. Importantly, the potential parametrically depends on y,
see Figure 3(b). For parameter regimes where V has two maxima at
u+(x) and u−(x), and a local minimum at us(x), the velocity q̇ must
be chosen such that the sliding ball starting from the upper branch
u+ ends up at the lower branch u−. The front speed is proportional
to the difference between the two maxima of V (u, y) and becomes
zero if the Maxwell condition

∆V (y) ≡
∫ u+

u−
f(u, y)du = 0 (31)
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is satisfied. More quantitatively, in analogy to the homogeneous
case [9, 29, 30], one finds

q̇ ≈ ∆V (q)∫∞
−∞[∂xU(x− q, y)]2dx ≡ c(q) , (32)

where U(x − q, y) is the traveling wave solution. The denominator
roughly equals the maximum steepness of the front profile, and implies
that steep fronts move slower along the gradient [9]. One may also
arrive at this equation employing a variational ansatz calledWhitham
principle [29, 30]. With Eq. (32) we have transferred the partial
differential equation, Eq. (10), to an ordinary differential equation
describing the time evolution of the front positions. We can now
employ the standard methods of non linear dynamics to calculate
the dynamics of the front profile in an inhomogeneous environment
defined by M .

Derivation of the localization position The above analysis shows
that the velocity of the wave front is proportional to the potential dif-
ference between the stable states. As this potential explicitly depends
on the position of the front it is natural to ask whether there is any
position q0 where the potential difference, and thereby the velocity,
vanishes. For simplicity we here focus on monotonically decreasing
activating gradients M(x). Equation (27) admits traveling waves so-
lutions if the potential V (u, x) = ∫ u dũ f(ũ, x) exists locally. In our
case we can analytically perform the integral and obtain

V (u, x) = −u
[
u

2 −M(x)− r + F

(
un

un0

)]
, (33)
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where F (z) ≡ 2F1(1, 1/n, 1+1/n,−z) and 2F1 is the Gauss hypergeo-
metric function. The wave localizes if the difference in the maximum
values of the potential is zero, ∆V (q0) = 0.

To proceed, we need to know the location of the stable points as a
function of M(x). In our class of models, a single branch of stable
solutions at high concentrations typically undergoes a fold bifurca-
tion for decreasing concentrations of the morphogen M(x) (growing
x), where the system is bistable on a confined spatial interval, see
Figure 3 (d). For low values of M(x) (large x), a single branch at low
concentrations remains. Within the bistable regime, the velocity c(q)
may change sign and thereby lead to a localization of the traveling
wave front. We next calculate the concentrations corresponding to
the stable states by finding the roots of the reaction term f(u, x). For
the lower stable state, u−, we expand the Hill function in the reaction
term about u = 0 in powers of u,

Rn
u0

(u) =
∞∑
k=1

(−1)k+1
(
u

u0

)kn
, (34)

i.e. for low concentrations the first nonlinear term is of order un. For
large concentrations, we expand the Hill function as a Laurent series,
obtaining

Rn
u0

(u) = 1−
∞∑
k=1

(−1)k
(
u

u0

)−kn
, (35)

such that the first non linear correction is of order u−n. To calculate
the stable states we therefore linearize f(u, x) in u and find

u+(x) ≈M(x) + r and u−(x) ≈M(x) . (36)

With this, we are now in a position to give an approximate expression
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for the difference between the two maximum values of the poten-
tial,

∆V (q) = V (u+(q))− V (u−(q)) (37a)

= r

2

r + 2M(q)F
M(q)n

un0

− 2
(
M(q) + r

)
F

(M(q) + r)n
un0

 .
(37b)

As ∆V is to a good approximation linear inM(x) we linearize around
M(x) = 0,

∆V (x) ≈ 1
2r

r +M(x)

2− 2
1 +

(
r
u0

)n
− 2rF

(
rn

un0

) . (38)

The localization position q0 is then determined by ∆V (q0) = 0. Solv-
ing this equation for the concentration of the external source at which
the front localizes, M(q0), we find

M0 ≡M(q0) ≈
1
2r

[
1 +

(
r

u0

)n] (u0

r

)n [
2F

(
rn

un0

)
− 1

]
. (39)

To obtain an intuitive understanding of the expression for the front
position M0 we investigate the dependence of M0 on the parameters
r and u0. To this end, we first take the derivative with respect to
r,

∂rM0 = 1
2

(
u0

r

)n [
1 + n−

(
r

u0

)n
− 2nF

(
rn

un0

)]
. (40)

In bistable systems the relative amplitude of self-activation r is typi-
cally greater than the activation threshold u0. Noting that F (z) ∼ 1/z
for z → ∞ we get ∂rM0 ≈ 1/2 , proving that M0 is linear in r. On
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the other hand, taking the derivative with respect to u0 we get

∂u0M0 = 1
2

(
u0

r

)n−1 {
2
[
1 + n+

(
r

u0

)n]
F

(
rn

un0

)
− 2− n

}

≈ 1
2

(
u0

r

)n−1
· 2

(
r

u0

)n
·
(
u0

r

)
(41)

= 1 ,

which proves that M0 is also linear in u0. Note that although the
arguments above strictly hold in the limit n → ∞ we numerically
found that they are valid even for relatively small values of n. In
conclusion, we showed that M0 can be approximated by a linear
function of the form

M0 ≈ g(n) · (u0 − r/2) , (42)

where the pre factor g(n) only depends on n. By taking the limit
n → ∞ first, and then doing the above calculations we find that
g(n)→ 1 for n→∞.

Stability with respect to extrinsic perturbations We now know
that there is concentration M0 where the velocity of the front van-
ishes. But does the front really localize at this position? To answer
this question we are now interested in the stability of the fixed point
q0 of the differential equation 32. Only if this fixed point is stable
the front dynamics will be attracted towards this position. In the fol-
lowing, we therefore perform a linear stability analysis around q0, i.e.
we investigate how the front reacts to extrinsic perturbations. How a
localised front reacts to perturbations is also highly relevant for real
biological systems: for example, to ensure robust embryonic develop-
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ment the established segment boundaries should not be susceptible
to changes in the environmental conditions.

To be stable against extrinsic perturbations the front should both
relax back quickly into its equilibrium position and be insensitive
to perturbations in the driving signal M(x). Since a high relaxation
rate implies that a front can follow changes in the signal quickly,
the two stability criteria seem to be somewhat at odds. However, as
shown below, they are in full accordance with the latter being less
restrictive.

The relaxation rate of the front back into its equilibrium position q0

can be assessed within the framework of a linear stability analysis [31].
Mathematically, the relaxation rate is obtained by expanding Eq. (32)
at q0:

c(q) = −σ(q − q0) +O(q − q0)2 , (43)

where σ ≡ − ∂qc(q)|q=q0
. The quantity σ measures the stability of

the fixed point q0, such that large values of σ correspond to a stably
localized front. Taking the derivative of Eq. (32) with respect to the
position q we find

σ = −∂M(q)∆V (M(q)) · ∂qM(q)∫∞
−∞[∂xU(x− q)]2dx

∣∣∣∣∣∣
q=q0

(44)

revealing that extrinsic stability is determined by three factors: In
the numerator, the first factor describes how sensitively the potential
difference of the stable states depends on the external source. The
second factor, µ ≡ |∂M(q)/∂q |q0

, gives the steepness of the external
profile at the localization position. While, therefore, a steeper source
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profile enhances front stability, the steepness of the front profile, given
by the denominator, has the opposite effect. The reason simply is
that according to Eq. (32), steeper fronts move slower and therefore
also relax back more slowly.

For monotonically decreasing external activation ∂qM(q) is always
negative, while the denominator of Eq. (44) can only be positive.
According to Eq. (38), ∂M(q)∆V (M(q)) is positive, such that the sta-
bility σ of the localized front is also positive. We therefore find that
the wave front stably localizes at a position q0 determined by the
expression level M0 of the activating morphogen.

One can also more quantitatively derive the stability of the localised
wave front by making an ansatz for the stationary solution of Eq. (10).
By making use of the approximate expressions for the stable states,
u+(x) and u−(x) we assume a connection of the stable states as shown
in Fig. 3(d),

U(x− q) = M(x) + r

 1− 1
2e
x−q (x < q)

1
2e
−(x−q) (x ≥ q)

, (45)

which is a good approximation when n is not too small. Indeed, using
M(q0) ≈ u0− r/2 we find that un/(un0 + un) evaluates to 1 for q < q0

and 0 for q > q0. Hence,

f(U, x) + ∂xxU = ∂xxM(x) ∼ ξ−2 ≈ 0 . (46)

This confirms thatU is an approximate stationary solution of Eq. (27).

Advanced pattern formation



Contents 32

Literature

1. M. C. Cross and H. Greenside, Pattern Formation and Dynam-
ics in Nonequilibrium Systems, Cambridge University Press,
Cambridge (2009)

2. W. v. Sarloos, Front propagation into unstable states, Physics
Reports 386, 2-6 (2003)

3. S. Rulands, B. Klünder, E. Frey, Stability of localized wave fronts
in bistable systems, Phys. Rev. Lett. 110, 038102 (2013)

4. S. Rulands, Heterogeneity and spatial correlations in stochastic
many-particle systems. From embryogenesis to evolution. PhD
Thesis, Ludwig-Maximilians-University Munich (2013)

Advanced pattern formation



References 33

References
1 R A Fisher. The Wave of Advance of Advantageous Genes. Annals of Eugenics,
7(355), 1937.

2 Denis Mollison. Spatial contact models for ecological and epidemic spread. J.
Roy. Stat. Soc. B, pages 283–326, 1977.

3 Oskar Hallatschek, Pascal Hersen, Sharad Ramanathan, and David R Nelson.
Genetic drift at expanding frontiers promotes gene segregation. Proc. Natl. Acad.
Sci. USA, 104(50):19926–19930, 2007.

4 O Hallatschek and D R Nelson. Gene surfing in expanding populations. Theo-
retical Population Biology, 73(1):158–170, 2008.

5 K S Korolev, Mikkel Avlund, Oskar Hallatschek, and David R Nelson. Ge-
netic demixing and evolution in linear stepping stone models. Rev. Mod. Phys.,
82(2):1691, 2010.

6 Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts,
and Peter Walter. Molecular Biology of the Cell. Garland Science, New York, 4
edition, 2002.

7 Alexander Altland, Andrej Fischer, Joachim Krug, and Ivan G Szendro. Rare
Events in Population Genetics: Stochastic Tunneling in a Two-Locus Model with
Recombination. Phys. Rev. Lett., 106(8):88101, February 2011.

8 P A Stephens, W J Sutherland, and R P Freckleton. What Is the Allee Effect?
Oikos, 87(1):185–190, 1999.

9 Micheal Cross and Henry Greenside. Pattern formation and dynamics in nonequi-
librium systems. Cambridge University Press, New York, 2009.

10 L. Wolpert. Positional information and the spatial pattern of cellular differentia-
tion. J. Theor. Biol., 25(1):1–47, October 1969.

11 Wolfgang Driever and Christiane Nüsslein-Volhard. A gradient of bicoid protein
in Drosophila embryos. Cell, 54(1):83–93, July 1988.

Advanced pattern formation



References 34

12 Wolfgang Driever and Christiane Nüsslein-Volhard. The bicoid protein deter-
mines position in the Drosophila embryo in a concentration-dependent manner.
Cell, 54(1):95–104, July 1988.

13 F J P Lopes, F M C Vieira, D M Holloway, P M Bisch, and A V Spirov. Spatial
Bistability Generates hunchback Expression Sharpness in the Drosophila Embryo.
PloS Comput. Biol., 4(9):e1000184, January 2008.

14 Filipe Tostevin, Pieter Rein ten Wolde, and Martin Howard. Fundamental lim-
its to position determination by concentration gradients. PloS Comput. Biol.,
3(4):e78, April 2007.

15 D S Burz, R Rivera-Pomar, H Jäckle, and S D Hanes. Cooperative DNA-binding
by Bicoid provides a mechanism for threshold-dependent gene activation in the
Drosophila embryo. EMBO J,, 17(20):5998–6009, October 1998.

16 Michael W Perry, Jacques P Bothma, Ryan D Luu, and Michael Levine. Precision
of Hunchback Expression in the Drosophila Embryo. Curr. Biol., 22(23):2247–
2252, October 2012.

17 J Treisman and C Desplan. The products of the Drosophila gap genes hunch-
back and Krüppel bind to the hunchback promoters. Nature, 341(6240):335–7,
September 1989.

18 Rory Putman and Stephen D. Wratten. Principles Of Ecology. University of
California Press, Berkeley, 1984.

19 Tamás Czárán. Spatiotemporal Models of Population and Community Dynamics.
Springer, New York, 1998.

20 William M Bement, Ann L Miller, and George von Dassow. Rho GTPase activity
zones and transient contractile arrays. BioEssays, 28(10):983–93, October 2006.

21 Y Mori, A Jilkine, and L Edelstein-Keshet. Wave-pinning and cell polarity from
a bistable reaction-diffusion system. Biophys. J., 94(9):3684–3697, January 2008.

22 Y Mori, A Jilkine, and L Edelstein-Keshet. Asymptotic and bifurcation analysis

Advanced pattern formation



References 35

of wave-pinning in a reaction-diffusion model for cell polarization. SIAM J. Appl.
Math., 71(4):1401–1427, December 2011.

23 A. M. Turing. The Chemical Basis of Morphogenesis. Philos. T. Roy. Soc. B,
237(641):37–72, August 1952.

24 Caz M Taylor and Alan Hastings. Allee effects in biological invasions. Ecol. Lett.,
8(8):895–908, 2005.

25 Oliver Grimm, Mathieu Coppey, and Eric Wieschaus. Modelling the Bicoid
gradient. Development, 137(14):2253–2264, 2010.

26 O Wartlick, P Mumcu, A Kicheva, T Bittig, C Seum, F Jülicher, and M González-
Gaitán. Dynamics of Dpp signaling and proliferation control. Science,
331(6021):1154–9, March 2011.

27 Patrick C Tobin, Stefanie L Whitmire, Derek M Johnson, Ottar N Bjø rnstad,
and Andrew M Liebhold. Invasion speed is affected by geographical variation in
the strength of Allee effects. Ecol. Lett., 10(1):36–43, January 2007.

28 T H Keitt, M A Lewis, and R D Holt. Allee effects, invasion pinning, and species’
borders. Am. Nat., 157(2):203–16, February 2001.

29 A K Abramyan and S A Vakulenko. Nonlinear Ritz method and the motion of
defects. Teoret. Mat. Fiz., 155(2):202–214, 2008.

30 S Vakulenko, Manu, J Reinitz, and O Radulescu. Size Regulation in the Segmen-
tation of Drosophila: Interacting Interfaces between Localized Domains of Gene
Expression Ensure Robust Spatial Patterning. Phys. Rev. Lett., 103(16):168102,
January 2009.

31 S Wiggins. Introduction to Applied Nonlinear Dynamical Systems and Chaos.
Springer, Berlin, 1990.

Advanced pattern formation


