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These are a compilation of lecture notes giving the foundations
of non-equilibrium physics and stochastic processes. They are
intended as reading material for the preparation of a biophysics
practical involving the stochastic simulation of active Brownian
motion.
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1 Systems in an out of thermal
equilibrium

1.1 Non-equilibrium systems

Consider an isolated system. The second law of thermodynamics
tells us that this system will evolve into a state characterized by a
quantity termed entropy, S. The change in entropy vanishes if the
process is completely reversible so that isolated systems always
reach a state of thermodynamic equilibrium. Ludwig Boltzmann
derived a microscopic description of the entropy by considering
the probabilities of finding different microscopic configurations of
systems composed of many particles. In the ensuing framework
of statistical mechanics, the entropy is given by the number of
microscopic configurations Ω that are compatible with a given
macroscopic state of interest,

S = kB ln Ω . (1.1)

5



1 Systems in an out of thermal equilibrium

Immediately, many systems come to our mind that apparently
break this law, including virtually any biological system. A strik-
ing example is the self-organization of cells during embryonic de-
velopment, where an initially homogeneous cluster of cells gives
rise to complex organs, such as the heart or the brain. But if
isolated systems converge to thermodynamic equilibrium, what
makes a system being out of thermal equilibrium? Several possi-
bilities come to our mind:

1. The system may be closed but has not reached an equi-
librium state yet. Examples here include the Belousov-
Zhabotinsky (BZ) reaction and the universe we live in: there
are spatial structures and dynamics present, indicating that
it is clearly out of equilibrium, but is thought to ultimately
reach a state of maximum entropy.

2. The system is not isolated, but open, i.e. it exchanges
energy or particles with another system. However, this
does not necessarily lead to an out-of-equilibrium state,
as many open systems reach an equilibrium state that is
described by the canonical or grand canonical ensemble of
statistical mechanics. For the remainder of this section,
we will study open systems that are permanently out of
thermal equilibrium.
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1.1 Non-equilibrium systems

3. Finally, as a combination of the cases above, an open sys-
tem might ultimately reach an equilibrium state but hasn’t
arrived there yet. This includes for example disordered sys-
tems, where many components interact in different ways.
Such systems often exhibit frustration, where the energetic
minima of different components are incompatible. Frustra-
tion can lead to a behavior where thermodynamic equilib-
rium is approached very slowly and might never be fully
reached. Such systems serve, for example, as models for
understanding deep learning.

As we know from statistical physics, there are many open systems
that converge to equilibrium, for example when coupled to a
heat or chemical bath. What then drives an open system out
of equilibrium? To understand this, consider the dynamics of
a single particle in a many-body system following Hamiltonian
dynamics. How are the dynamics of this particle affected by the
other particles?

1. The other particles will hinder the ballistic motion of the
particle. From a coarse-grained perspective, this leads to
friction;

2. Repeated collisions with other particles give rise to a fluc-
tuating force on the particle.
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1 Systems in an out of thermal equilibrium

Figure 1.1: Collisions with other particles give rise to a random force.
As a result of this fluctuating force, the particle will undergo
a random trajectory.

The action of fluctuations and dissipation can be described in
terms in a probabilistic manner, where its position is described
by a random variable. Before we further study the properties
of this random variable, let us remind ourselves of some basic
concepts of probability theory.

1.1.1 Probability and information

We begin with the most elemental concept of probability theory:
A random variable X represents possible outcomes S of a ran-
dom phenomenon. S may be discrete (e.g. S = {x1, x2, ...}) or
continuous (e.g. S = R). A specific realization of the random
phenomenon is termed an event, E ⊆ S.
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1.1 Non-equilibrium systems

Example: Random variables

• A coin flip: S = {Head, Tail};

• The number of students in a class room: S = N.

Now we would like to quantify how likely different events are.
To do this, we consider an ensemble of similarly prepared sys-
tems, meaning that we fix all degrees of freedom that we can
control. The unspecified degrees of freedom, usually much larger
in number, may still give rise to random outcomes1. Consider an
ensemble with a large number of realizations, N . Then we define
the probability density function by computing a histogram:

pX(x) =

(number of systems with outcomes
between x and x + dx

)
Ndx

(1.2)

Often we drop the index X and simply write p(x). For continuous
random variables, the probability that a single realization takes
a value x is, therefore, p(x)dx.

In the following, we summarise some important properties of
probability distributions:

1In a quantum system, even fixing all degrees of freedom can give random
outcomes
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1 Systems in an out of thermal equilibrium

• As we are certain to observe any outcome of a random phe-
nomenon the probability distribution is normalized,

∫
p(x)dx =

1.

• The joint probability that two random variables X and Y

take values between x and x + dx, and y and y + dy, respec-
tively, is p(x, y).

• The marginal probability is defined as p(x) =
∫

p(x, y)dy.

• Two random variables, X and Y , are independent if the
occurrence of one does not affect the other. In this case,
the joint probability density factorizes p(x, y) = p(x)p(y).

• The conditional probability that X takes a value x given that
Y takes a value y is p(x | y). This implies that p(x | y)p(y) =
p(x, y).

By noting that p(x, y) = p(y, x) and substituting the formula
relating conditional probabilities to joint probabilities we obtain
Bayes’ theorem,

p(x | y) = p(y | x)p(x)
p(y) . (1.3)

Bayes theorem allows us to calculate a conditional probability
p(x | y), termed posterior, in terms of a conditional probability
p(y | x) and some marginal probabilities which might be easier to
obtain.
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1.1 Non-equilibrium systems

Example: Do you have Covid?
As an example of Bayes’ theorem, we ask what is the probability
that someone has Covid given a positive (+) antigen test result.
We use Bayes theorem to express this conditional probability in
terms of the probability that a test result is positive given that
someone has Covid. This probability is called the true positive
rate and it is typically provided by manufacturers of diagnostic
tests. For antigen tests, this is about 70%. We have

p(Covid | +) = p(+ | Covid)p(Covid)
p(+) . (1.4)

How can we find the probability in the denominator? We
write

p(+) = p(+ | Covid)p(Covid) + p(+ | not Covid)p(not Covid) .

(1.5)
The conditional probability p(+ | not Covid) is called false positive
rate. It is reported by the manufacturers and typically is roughly
10%. If 1% of the population is infected with Covid, then the
computation above shows that a positive test indicates an actual
Covid infection with a probability of 6%. If you thought the
result would have been a larger percentage, you presumably did
not consider the relatively low base rate of 1%. This is known as
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1 Systems in an out of thermal equilibrium

the base rate fallacy.

We can summarize important features of probability distributions
and empirical data samples by calculating summary statistics.
Some of the most useful summary statistics are:

1. The mean or expectation value of a random variable is
〈x〉 =

∫
xp(x)dx;

2. The variance is a measure of the degree of variability of a
random variable and it is defined as var(x) =

〈
(x − 〈x〉)2

〉
.

3. The covariance measures the joint variability of two ran-
dom variables, cov(x, y) = 〈xy〉 − 〈x〉 〈y〉. The value of the
covariance is positive if the change in the value of one of
the random variables is associated with a change in the
other random variable in the same direction. The value is
negative if the associated change is in the opposite direction.

1.1.1.1 Entropy

The (Shannon) entropy quantifies our lack of knowledge about
the outcome of a random variable. It is defined as

H(X) = −
∫

dx p(x) log2 p(x) . (1.6)
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1.1 Non-equilibrium systems

By definition, the entropy is formally identical to the expectation
value of a quantity log2 [1/p(x)],

H(X) ≡
〈

log2

( 1
p(x)

)〉
. (1.7)

The quantity 1/p(x) is small if the probability associated with
the outcome x is high. It is large if the probability associated
with the outcome x is low. It, therefore, represents the degree of
surprise we have when learning about the outcome x. In other
words, it is the amount of information that we learn by being
informed about the outcome x. The Shannon entropy there is
the average information content or surprise that we can expect
over all possible outcomes of the experiment.

Example: Subject of study
Consider a random experiment, where we pick a random student
from a lecture on statistical physics lecture. We ask the student
what is their field of study. The response “physics” has low
information content, because we expect this answer with a high
probability. The corresponding entropy is low. If we now ask the
same question in the canteen, the answer will be less predictable.
Each answer has have higher information content and such that
the entropy is higher.
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1 Systems in an out of thermal equilibrium

Example: Coin toss
Consider a coin that shows a head with a probability q. In that
case the entropy is H = q log2 (1 − q) + (1 − q) log2 q. This means
that the entropy is highest for q = 1/2 when individual outcomes
are least predictable. The entropy vanishes if q = 1 where the
coin toss becomes completely predictable.

An associated concept is that of the conditional entropy, which
is the average uncertainty about a random variable X given an
observation of the random variable Y ,

H(X | Y ) = −
∫

dy p(y)
∫

dx p(x | y) log2 p(x | y). (1.8)

This is essentially an average with respect to p(y) of the Shannon
entropy associated with the conditional probability p(x|y).

1.1.1.2 The Kullback-Leibler divergence

The Kullback-Leibler divergence is a measure of the distance
between two probability distributions p(x) and q(x) defined over
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1.1 Non-equilibrium systems

the same space S. It is defined as

D(p||q) =
∫ ∞

−∞
dx p(x) log

(
p(x)
q(x)

)
(1.9)

≡ 〈log p(x) − log q(x)〉p . (1.10)

By definition, we see that this is a weighted average of the loga-
rithmic difference between two distributions, hence the interpreta-
tion as a distance measure. Usually, p is an empirical distribution
obtained from a histogram and q is a theoretical model.

Example: Variational autoencoders
In machine learning, the Kullback-Leibler divergence is used ex-
tensively, for example in variational autoencoders. These archi-
tectures typically consist of two parts, an encoder, and a decoder.
The encoder has the function of mapping the input features to
the parameters of some distribution, for example, a Gaussian. A
point is then sampled from this distribution and the decoder tries
to reconstruct the input as precisely as possible from this sample.
To enforce that the encoder learns a specific distribution, in this
example a Gaussian, the Kullback-Leibler divergence is used in
the loss function to compare the encoded distribution to the pre-
ferred one. When these are very different, the Kullback-Leibler
term in the loss function will penalize the network, such that it
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1 Systems in an out of thermal equilibrium

eventually learns the correct distribution.

1.1.1.3 Mutual information

Mutual information measures the amount of information that can
be obtained about a random variable X from knowledge about
another random variable Y ,

I(X; Y ) ≡
∫

dxdy p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (1.11)

The mutual information can also be expressed in terms of the
entropy and the conditional entropy,

I(X; Y ) = H(Y ) − H(Y | X) . (1.12)

The first term on the right-hand side can be interpreted as the
amount of uncertainty about Y . The second term described what
X does not tell us about Y . The difference between the two, the
mutual information, therefore measures the amount of uncertainty
about Y that is removed by knowing X.
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1.1 Non-equilibrium systems

1.1.1.4 Important probability distributions

Simple random experiments often produce widely used probabil-
ity distributions. We now discuss a few of these distributions
which appear in a wide range of applications. The most widely
used probability distribution is the normal distribution, which is
in the context of physics also often called the Gaussian distribu-
tion. The prevalence of the normal distribution stems from the
fact that it is the limiting distribution of random experiments,
where the random variable is the result of a summation of other
random variables. The central limit theorem states that under
quite general conditions the sum of N independent and identically
distributed random variables follows a normal distribution,

p(x) = 1
σ

√
2π

e− (x−µ)2

2σ2 , (1.13)

with mean µ and standard deviation σ, scaling as 1/
√

N .

Consider a random experiment, where the random variable is
given by the counting of statistically independent events. The
number of events, k, in a given time interval then follows a Poisson
distribution with probability density function

p(k) = λk

k! e−λ , (1.14)
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1 Systems in an out of thermal equilibrium

where the parameter λ gives the average number of events in this
time interval.

If we now consider the same experiment, but we measure the time
x that passed between two successive events, then, if the events
are statistically independent, this time follows an exponential
distribution,

p(x) = λe−λx . (1.15)

Since these times must be positive we have the additional require-
ment that p(x) = 0 for x < 0.

1.1.2 The fluctuation-dissipation theorem

We are now in a position to describe the random variable repre-
senting the position of the particle. This random variable follows
a stochastic generalization of Newton’s equation, known as the
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1.1 Non-equilibrium systems

Langevin equation,

mv̇ = − mγv︸ ︷︷ ︸
Dissipative friction,
friction coefficient γ

+ F︸︷︷︸
Macroscopic force
acting on particle

+ ξ (t) .︸ ︷︷ ︸
Randomly fluctu-
ating force

(1.16)

The Langevin equation contains a deterministic part, describing
the macroscopic force exerted by friction, a part that is described
by a random variable representing the fluctuating force stemming
from random collisions with other particles. Due to the central
limit theorem, the random variable ξ(t) follows a normal (Gaus-
sian) distribution with the following properties:

〈ξ(t)〉 = 0 (1.17)〈
ξ(t)ξ(t′)

〉
= Aδ(t − t′), (1.18)

where the amplitude A captures the strength or variance of the
fluctuating force and the δ-function ensures that the random fluc-
tuations are uncorrelated in time. To understand the connection
between dissipation and fluctuations, we consider the dynamics
in the absence of an external force, i.e. F = 0. The Langevin
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1 Systems in an out of thermal equilibrium

equation in Fourier space then reads

−iωṽ = −mγṽ + ξ̃, (1.19)

with ṽ =
∫

dt exp{(iωt)v(t)}, and this has the formal solution

ṽ(ω) = 1
−imω + mγ

ξ̃(ω) ≡ R(ω)ξ̃(ω). (1.20)

R(ω) is defined as the response function of the system, and its
imaginary part is in fact related to the fluctuations in the system.
To see this, let us first define the spectral density as the Fourier
transform of the correlation function,

Sξ(ω) =
∫ ∞

−∞
dteiωt 〈ξ(t)ξ(0)〉 (1.21)

= A , (1.22)

where we used the Eq. (1.18) of the pairwise correlations to com-
pute the integral. With this, we get

Sv(ω) =
〈
ṽ(ω)ṽ(ω′)

〉
(1.23)

= 1
| − iωm + γm|2

Sξ(ω) (1.24)

= A

m2(ω2 + γ2) , (1.25)
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1.1 Non-equilibrium systems

which can be transformed back to the time domain, yielding

〈
v(t)2

〉
= 1

2π

∫ ∞

−∞
dωe−iωtSv(ω) (1.26)

= A

2m2γ2 , (1.27)

where in the last step we calculated the contour integral using
the residual theorem.

In thermal equilibrium, the average kinetic energy per degree
of freedom is connected to the temperature according to the
equipartition theorem,

1
2m 〈v〉2 = kBT

2 . (1.28)

This leads to the Einstein relation

A = 2mγkBT, (1.29)

which relates the strength of the fluctuating force to the temper-
ature, T . The Einstein relation allows us to rewrite the spectral
density in the form

Sv(ω) = 2mγkBT

m2(ω2 + γ2) . (1.30)

This equation relates the generation of kinetic energy due to a
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1 Systems in an out of thermal equilibrium

fluctuating force to its dissipation to heat due to friction. Fluc-
tuations and dissipation are therefore linked, a manifestation of
the fluctuation dissipation theorem of which the Einstein rela-
tion is a special case. In order to derive the general form of the
fluctuation-dissipation theorem we note that

Im R(ω) = mω

m2(ω2 + γ2) (1.31)

= ω

m(ω2 + γ2) . (1.32)

With this, we obtain the fluctuation-dissipation theorem in its
general form,

Sv(ω) = 2kBT

ω
Im R(ω) . (1.33)

Therefore, in equilibrium, loss of energy by dissipation is strictly
balanced by an intake of energy through fluctuations.

How can we then bring a system out of equilibrium? Let us
couple the particle to an additional energy reservoir. To this
end, we consider the example of self-propelled, or chemotactic,
bacteria, such as e.Coli. Chemotactic bacteria consume chemical
energy via nutrients. This energy is translated into a rotation
of protein chains called flagella, and ultimately into a kinematic
force F = εκv. The movement of the bacterium is then described
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1.1 Non-equilibrium systems

Figure 1.2: Many bacteria, such as e.Coli can move by converting chemi-
cal energy into rotational energy of their flagella. This gives
rise to forward motion.

by a Langevin equation of the form

mv̇ = − mγv + εκv︸ ︷︷ ︸
dissipation term

+Fext + ξ(t). (1.34)

Chemotactic bacteria counteract dissipative friction by taking
in chemical energy from the environment. They uncouple fluc-
tuations and dissipation and therefore operate out of thermal
equilibrium. As the total system is closed and obeys the second
law of thermodynamics, this leads to production of entropy in
the environment.
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1 Systems in an out of thermal equilibrium

Remark:
In fact, the rate of energy dissipation, J , which is a measure of how
far away the system is from equilibrium, is equal to the magnitude
of the deviation from the fluctuation-dissipation theorem,

J =
∫ ∞

−∞

dω

2π

[
C̃(ω) − 2kBT Im R(ω)

]
. (1.35)

Example: Fluctuation-dissipation relations

• Bacteria convert ATP into ADP in order to drive the rota-
tion of flagella for self-propulsion. Energy is dissipated in
this process, leading to an increase in temperature in the
environment.

• In turbulence, velocity fluctuations of the flow are induced
at large spatial scales. The kinetic energy of these fluc-
tuations then cascades from large to small spatial scales.
At a smaller spatial scale, these fluctuations dissipate by
viscosity into heat.
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2 Theory of stochastic processes

2.1 Stochastic processes

A stochastic process is a collection of random variables indexed
by a “time” t, X(t). An important class of stochastic processes
are Markov processes, where the probability of finding the system
in astate X at time t only depends on the previous state, but not
on any other state further in the “past”,

P
(
x(ti) | x(ti−1), x(ti−2), ...

)
= P

(
x(ti) | x(ti−1)

)
. (2.1)

In order to describe a stochastic process the best we can achieve
is finding the probability that X takes a value x at time t, which
we denote by P (x, t). There are two strategies of how we can
achieve this:

1. We may consider specific realisations of X(t). In this case,
the time evolution of X(t) is given by equations of Langevin
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2 Theory of stochastic processes

type,
ẋ = f(x, t) + ξ(t) , (2.2)

where the first term, f(x, t) describes the deterministic com-
ponent of the time evolution and the second term, ξ(t), is
a stochastic process describing noise. We can then average
over many realisations of ξ to obtain a histograms that ap-
proximate p(x, t). This approach was followed by Langevin.

2. We may also directly consider the probability P (x, t) and
derive differential equations describing its time evolution,

d
dt

p(x, t) = F (p, x, t). (2.3)

This approach was followed by Einstein in his work on
Brownian motion.

We will study the connections between both approaches in more
detail at a later point. A conceptual difference is that the Langevin
approach assumes that fluctuations in the steady state are entirely
determined by a “bath” represented by the noise term, ξ(t). The
Master equation approach on the other hand provides a general
framework for general Markov processes.
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2.1 Stochastic processes

2.1.1 Langevin approach (stochastic differential
equations)

Langevin’s equation for a Brownian particle is a simple example of
a stochastic differential equation (SDE). As any system involving
higher order derivatives with respect to time can be written in
terms of a set of first order differential equations, the general
form of stochastic differential equation is

ẋ = a(x, t) + b(x, t)ξ(t). (2.4)

In this equation, a(x, t) captures the deterministic part of the sys-
tem, and b(x, t)ξ(t) the stochastic part. Two classes of stochastic
differential equations can be distinguished based on the explicit
form of b(x, t):

• A stochastic differential equation is termed to have additive
noise if the amplitude of the noise term is independent of
the value of x(t), b(x, t) = b ≡ const;

• A stochastic differential equation is term to have multiplica-
tive noise if the amplitude of the noise term is a function
of x(t) b(x, t) = b(x).
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2 Theory of stochastic processes

We can also write stochastic differential equations in differential
form,

dx = a(x, t)dt + b(x, t)dW (t) , (2.5)

where we have defined the noise increment dW (t) ≡ ξ(t)dt, which
can be integrated to obtain W (t) =

∫ t
0 ξ(t)dt. W (t) is called a

Wiener process or, in the physics literature, Brownian motion.
The Wiener process is a Markov process, such that the increments
dW (t) are independent of the current state W (t).

The differential form is formally solved by

x(t) = x(0) +
∫ t

t0
a(x, s)ds +

∫ t

t0
b(x, s)dWs . (2.6)

This begs the question of how the integral with respect to dWs

should be interpreted? To see this, let us follow the approach
taken for the definition of the Riemann integral and define a
partition Πn subdividing the time domain into n intervals. With
this, we can define the stochastic integral as

∫ t

t0
f(s)dWs = lim

|Πn|→0

n∑
j=1

f(t∗
j )
(
Wtj+1 − Wtj

)
. (2.7)

The integral is then defined as a weighted sum, where the weights
themselves are random variables. Therefore, the integral produces
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2.1 Stochastic processes

Figure 2.1: Discretization of a stochastic integral

a random variable. In contrast to Riemann integrals, for stochas-
tic integrals the positions in a given interval at which we choose
to evaluate the function f impact the value of the integral.

Remark: (Insert title)
To see this, consider taking the left end point, t∗

j = tj , and the
right end point t∗

j = tj+1. For f(t) ≡ Wt we find in the first
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2 Theory of stochastic processes

case〈
n∑

j=1
Wtj

(
Wtj+1 − Wtj

)〉
=

n∑
j=1

〈
Wtj

(
Wtj+1 − Wtj

)〉
(2.8)

=
n∑

j=1

〈
Wtj

〉〈
Wtj+1 − Wtj

〉
(2.9)

= 0. (2.10)

However, in the second case we have

n∑
j=1

Wtj+1

(
Wtj+1 − Wtj

)
=

n∑
j=1

〈(
Wtj+1 − Wtj

)2
〉

(2.11)

=
n∑

j=1
(tj+1 − tj) (2.12)

= t − t0, (2.13)

where we used that we can subtract the expression from the first
case, since it is equal to zero.

There are two common choices for the discretization of stochastic
integrals:

1. The Itô integral: t∗
j = tj , i.e. the left end point, and

2. the Stratonovich integral: t∗
j = 1

2 (tj+1 − tj), i.e. the mid
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2.1 Stochastic processes

point).

Throughout this lecture we will use Itô’s interpretation of the
stochastic integral.

In addition to the integral, also the chain rule cannot be straight-
forwardly carried over from conventional calculus. For a given
stochastic process, x(t), what is the stochastic differential equa-
tion describing f (x(t))? To find out, we Taylor expand f(x(t))
and obtain

df (x(t)) Taylor= ∂f

∂t
dt + ∂f

∂x
dx + 1

2
∂2f

∂x2 + ... (2.14)

= ∂f

∂t
dt + ∂f

∂x
+ 1

2
∂2f

∂x2

(
a2dt2 + 2abdtdW + b2dW 2

)
+ ...

(2.15)

=
(

∂f

∂t
+ a

∂f

∂x
+ b2

2
∂2f

∂x2

)
dt + b

∂f

∂x
dW + ... (2.16)

In the second line we substituted the expression for dx, and in
the last equality we used that dx(t) ∝

√
dt.

Remark:
The scaling dx(t) ∝

√
dt means that the differential increments

scale with the square root of the time increments. This follows
from the fact that the typical distance covered by a Brownian
motion, the standard deviation of its displacements, increases
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2 Theory of stochastic processes

with the square root of time.

Example: Geometric Brownian motion
Under healthy conditions, loss of cells in a tissue must be bal-
anced by proliferation of other cells. Mutations on the DNA
can, however, break this balance, such that mutated cells have a
proliferative advantage over healthy cells. Deterministically, the
concentration x of cancer cells in the tissue follows

ẋ = ax. (2.17)

The rate of proliferation, a, is itself subject to many influences,
such as metabolic states or biochemical signals from the environ-
ment,

a = µ + σξ(t) . (2.18)

We can therefore write the time evolution of the concentration of
tumor cells as an SDE, which in differential form reads

dx = µxdt + σxdW (t) . (2.19)

After dividing by x we find

dx

x
= µdt + σdW (t), (2.20)
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2.1 Stochastic processes

to which we apply Itô’s formula for f(x) = log x,

dy = d (log x) =
[
µ − σ2

2

]
dt + σdW (2.21)

= dx

x
− σ2

2 dt , (2.22)

where for the second equality we substituted the expression for
dx/x. Therefore,

dx

x
= d (log x) + 1

2σ2dt . (2.23)

Integrating and using that
∫ t

0 dx/xdx = −µt − σW (t), we
get

log x

x0
=
∫ t

0

dx

x
− 1

2σ2t = µt + σW (t) − 1
2σ2t, (2.24)

and it finally follows that

x(t) = x0e
(

µ− 1
2 σ
)

t+σWt . (2.25)

In other words, the solution is the exponential of a Wiener process
with drift µ
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Figure 2.2: The evolution of the number of tumor cells (blue) in healthy
cell tissue (black) can be described by a geometric Brownian
motion stochastic process.

2.1.2 Einstein approach

We now take a complementary point of view and ask how the prob-
ability density function p(x, t) changes over time. More specifi-
cally, we seek to derive differential equations for the probability
p(x, t | x0, t0) of ending up in state x at time t when starting at
x0 at time t0. The stochastic process X(t) can take multiple
paths from x0 and x, so that p(x, t | x0, t0) is obtained by sum-
ming up contributions of all possible paths. The mathematical
equivalent of this statement is called the Chapman-Kolmogorov
equation,

p(x, t | x0, t0) =
∫

dx′ p(x, t | x′, t′)p(x′, t′ | x0, t0) (2.26)

The goal is now to derive an equation for the time evolution of
p(x, t), i.e. an equation of the form d

dtp(x, t) = .... To do this,
consider the case t′ → t. The gain of probability in state x is
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Figure 2.3: Multiple stochastic paths from x0 to x are possible, such that
the total probability is given by the sum over all these paths.

counteracted by a loss of probability to other states. We then
obtain the so-called Master equation,

d

dt
p(x, t) =

∫
dx′ w(x|x′)p(x′, t)︸ ︷︷ ︸

flux into state x

+
∫

dx′′ w(x′′|x)p(x, t)︸ ︷︷ ︸
flux out of state x

.

(2.27)

Example: Gene expression
Certain parts of the DNA called genes are read out by special
molecules (polymerases) and transcribed into mRNA molecules.
These mRNA molecules are then translated to proteins, which
perform a biological function. What is the probability that n

35



2 Theory of stochastic processes

Figure 2.4: The gain of probability to be in state x at time t coming
from state x′ is counteracted by a loss of probability to other
states.

such mRNA molecules are produced in a time interval t? To
answer this question we make two assumptions, namely that the
production events are statistically independent and that initially
there are 0 molecules. The Master equation for this process
reads:

d
dt

p(n, t) = λ [p(n − 1, t) − p(n, t)] . (2.28)

We will solve this equation by introducing a characteristic func-
tion

G(s, t) =
〈
eins

〉
=
∑

n

p(n, t)eins. (2.29)
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After substituting this into the Master equation we obtain

∂tG(s, t) = λ
[
eis − 1

]
G(s, t), (2.30)

which is solved by

G(s, t) = eλt
[
eis−1

]
. (2.31)

This characteristic function can be transformed back, yielding a
Poisson distribution,

p(n, t) = (λt)n

n! e−λt (2.32)

Remark: Detailed balance
In a closed and isolated system, the dynamics will reach a
steady state that is typically described by a Boltzmann distri-
bution,

0 =
∫

dx′ w(x|x′)p(x′, t) −
∫

dx′′ w(x|x′′)p(x, t). (2.33)

Using time reversal symmetry of the microscopic dynamics it can
be shown that in equilibrium this equation even holds for every
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element of the sums independently,

w(x | x′)
w(x′ | x) = peq(x)

peq(x′) . (2.34)

Systems for which this holds are said to obey detailed bal-
ance.

In most cases, the Master equation is not directly solvable. How-
ever, if the transition kernel w(x | x′) decays sufficiently fast in
|x − x′| and the distribution p(x, t) is smooth on the scale of
typical jump sizes, we can Taylor expand the Master equation in
x − x′. Setting ∆x ≡ x − x′ we can write

∂tp(x, t) =
∫

d ∆x [w(x | x − ∆x)p(x − ∆x, t) − w(x + ∆x | x)p(x, t)] .

(2.35)
Now note that since

∫
d ∆x [w(x + ∆x | x) − w(x − ∆x | x)] = 0,

we can Taylor expand w(x | x−∆x)p(x−∆x, t) around x, obtain-
ing the Kramers-Moyal expansion of the Master equation,

∂tp(x, t) =
∞∑

n=1

(−1)n

n! ∂n
x αn(x)p(x, t) . (2.36)

The expansion coefficients αn(x) are the moments of the transition
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probabilities,

αn(x) =
∫

d∆x w(x + ∆x | x)∆xn . (2.37)

If we truncate this expansion at second order we obtain the
Fokker-Planck equation

∂tp(x, t) = −∂xα1(x)p(x, t) + 1
2∂2

xα2(x)p(x, t) . (2.38)

The two terms on the right hand side are called the drift (∂t 〈x〉 =
〈α1〉) and diffusion terms, respectively. Usually, the Fokker-
Planck equation is a good approximation for the Master equa-
tion but it fails in describing the tails of probability distribu-
tions.

Example: Poisson process
Introducing a rescaled variable x ≡ n/N with p(x, t)dx =
p(n, t)dn, we obtain a Fokker-Planck approximation to the Master
equation of the Poisson process,

∂tp(x, t) = − λ

N
∂xp(x, t) + λ

2N2 ∂2
xp(x, t), (2.39)
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which is solved by

p(x, t) = N√
2πλt

e− 1
2λt

(Nx−λt)2
. (2.40)

Figure 2.5: Comparison of the exact solution of the Poisson process
(purple) and its approximation by the Fokker-Planck equa-
tion (blue).
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