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Fermionic natural occupation numbers (NON) do not only obey Pauli’s famous exclusion principle
but are even further restricted to a polytope by the generalized Pauli constraints, conditions which
follow from the fermionic exchange statistics. Whenever given NON are pinned to the polytope’s
boundary the corresponding N -fermion quantum state |ΨN 〉 simplifies due to a selection rule. We
show analytically and numerically for the most relevant settings that this rule is stable for NON close
to the boundary, if the NON are non-degenerate. In case of degeneracy a modified selection rule is
conjectured and its validity is supported. As a consequence the recently found effect of quasipinning
is physically relevant in the sense that its occurrence allows to approximately reconstruct |ΨN 〉, its
entanglement properties and correlations from 1-particle information. Our finding also provides the
basis for a generalized Hartree-Fock method by a variational ansatz determined by the selection
rule.

PACS numbers: 03.67.-a, 05.30.Fk, 31.15.B-

I. INTRODUCTION

The rigorous treatment of N -particle quantum systems
is typically impossible from an analytic viewpoint and at
least very challenging from a numerical one. In particular
for macroscopic particle numbers this task is absolutely
hopeless. As a consequence effective reduced descriptions
have been developed. Prime examples are mean field ap-
proximations for identical particles like the Hartree-Fock
approximation describing the physical behavior of a sin-
gle particle in the self-consistent background field gener-
ated by all the other particles. Even more rudimentary
is the starting point for the description of many effects
in condensed matter physics. There, the interaction be-
tween the electrons is switched off and the correspond-
ing time independent N -electron Schrödinger equation
reduces to a 1-electron Schrödinger equation, describing
a single electron in the crystal field of the nuclei. The
interaction between the electrons is then reintroduced
by perturbation theoretical means (see e.g. [1]). Besides
the essential numerical simplifications of those 1-electron
approximations there is also an important related con-
ceptual simplification. Going from the complicated N -
particle to the more elementary 1-particle picture can
allow one to gain some insight into the physics of the
problem at hand. Indeed, we can easily imagine single
particles occupying energy shells as e.g. in atoms or lat-
tice sites and their time evolution is given by the hopping
of the particles between energy shells or lattice sites. This
is in contrast to the N -particle picture since the collective
many-particle behavior is often beyond any imagination.

Since physical effects are typically based on 2-particle
interactions it is a priori surprising that 1-particle meth-
ods as e.g. the Hartree-Fock method can provide at least
for some physical systems of interacting electrons rea-
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sonable results. As an example the ground state energies
of atoms are obtained by the Hartree-Fock ansatz with
an error of at most a few percent which even reduces for
atoms with larger atomic numbers [2]. Due to the success
of the 1-particle picture kinematical constraints on occu-
pation numbers are fundamentally important. This is
the reason why Pauli’s famous exclusion principle [3] has
often a strong impact on the behavior and the properties
of electronic systems. By restricting the occupancies of
quantum states some electronic transitions in atoms are
not possible anymore. In the same way the behavior of
solid state materials at low temperatures is determined
by the electrons around the Fermi level. Mathematically,
Pauli’s exclusion principle can be stated as

0 ≤ nϕ ≤ 1 , (1)

where nϕ is the particle number expectation value for
some 1-particle state ϕ. In 1926 Pauli’s exclusion prin-
ciple was identified by Dirac and Heisenberg [4, 5] as a
consequence of the antisymmetry of the corresponding
N -fermion quantum state under particle exchange. Only
in 1972 has it been shown, by Borland and Dennis [6],
that for a system of 3 fermions and a 6-dimensional 1-
particle Hilbert space the antisymmetry of the 3-fermion
quantum state leads to further restrictions on natural oc-
cupation numbers. Only recently it was shown [7–9] that
for settings of arbitrary fermion number N and arbitrary
dimension d of the 1-particle Hilbert space one has also
extra constraints on natural occupation numbers. Kly-
achko and Altunbulak [8, 9] provide an algorithm which
allows for each fixed N and d to calculate all restrictions.
These so-called generalized Pauli constraints are signifi-
cantly stronger than Pauli’s exclusion principle and give
rise to a polytope of mathematically possible occupation
numbers.

The central question for physical applications of this
new structure is whether concrete fermionic states as
e.g. ground states are pinned to the boundary of the poly-
tope, i.e. their occupation numbers saturate one of these
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linear inequalities. It has been claimed in [10] that pin-
ning as an effect in the 1-particle picture allows one to
reconstruct the structure of the corresponding N -fermion
quantum state |ΨN 〉. This is a generalization of the well-
known result that a set of occupation numbers all equal
to 1 or 0 can just arise from a single Slater determinant
|ΨN 〉 = |1, 2, . . . , N〉. The latter statement is also stable
in the sense that occupation numbers all approximately
equal to 1 or 0 imply |ΨN 〉 ≈ |1, 2, . . . , N〉 [2]. Although
pinning seems to be a quite spectacular effect, analytic
evidence was provided recently in [11] that fermionic
ground states may exhibit quasipinning rather than pin-
ning. There, it has been shown for a particular physical
system that the occupation numbers are very close, but
not exactly on the polytope boundary. This new effect
is only physically relevant when the structural implica-
tions of pinning are stable in the vicinity of the polytope
boundary and therefore also apply (approximately) for
quasipinning. To explore and eventually verify this kind
of stability is our goal. In that sense we also emphasize
the relevance of the quite recent development in quantum
physics and quantum chemistry [10, 12, 13], the investi-
gation of possible (quasi)pinning of atomic states.

Our work is arranged as follows. In Sec. II we intro-
duce some useful concepts for fermionic quantum sys-
tems, in particular an exact self-consistent expansion of
N -fermion quantum states in Slater determinants built
up from its own natural orbitals as well as a geomet-
ric picture for the description of fermionic occupation
numbers. Sec. III briefly reviews the concept of gen-
eralized Pauli constraints. In Sec. IV we explain that
pinning is physically relevant in the sense that it implies
strong structural implications for the corresponding N -
fermion quantum state. In the main part, Sec. V, we ver-
ify that quasipinning implies approximately these struc-
tural simplifications of pinning and eventually conclude
that quasipinning is also physically relevant. This is first
shown analytically for the so-called Borland-Dennis set-
ting of 3 fermions and a 6-dimensional 1-particle Hilbert
space and then by a numerical study extended to larger
settings. There we analyze randomly sampled quan-
tum states and verify possible structural implications for
those states which exhibit quasipinning.

II. CONCEPTS FOR FERMIONIC QUANTUM
SYSTEMS

In order to keep our presentation self-contained we
introduce some notation, the concept of natural or-
bitals and natural occupation numbers as well as a self-
consistent expansion of N -fermion quantum states. This
expansion in Slater determinants built up from its own
natural orbitals allows to study structural aspects of
fermionic quantum states more elegantly and suggests
a geometric picture for the description of natural occu-
pation numbers.

We begin by considering N identical fermions. Their

quantum states, assumed onwards to be pure, are given
by elements in the N -fermion Hilbert space

|ΨN 〉 ∈ ∧N [H(d)
1 ] ≡ H(f)

N (2)

of antisymmetric N -particle states, where we assume the

1-particle Hilbert space H(d)
1 to be finite, d-dimensional.

The concrete spatial form of the states in H(d)
1 as well

as the Hamiltonian describing the physics of that system
is not relevant for the following considerations. For a
given N -fermion state |ΨN 〉 the 1-particle reduced den-
sity operator (1-RDO) ρ1 is defined by tracing out N −1
fermions,

ρ1 ≡ N TrN−1[|ΨN 〉〈ΨN |] . (3)

The partial trace in Eq. (3) is well-defined, which fol-

lows directly from the natural embedding ∧N [H(d)
1 ] ≤(

H(d)
1

)⊗N

≡ HN of ∧N [H(d)
1 ] into the N -particle Hilbert

space HN (without any exchange-symmetry). Moreover,
due to the specific exchange symmetry it does not matter
which N − 1 fermions we trace out. Diagonalizing ρ1,

ρ1 =

d∑
k=1

λk |k〉〈k| , (4)

gives rise to the natural occupation numbers (NON) λk
and natural orbitals (NO) |k〉, the corresponding eigen-
states. This terminology also motivates the normaliza-
tion Tr1[ρ1] = λ1 + . . . + λd = N allowing us to inter-
pret the eigenvalues of ρ1 as occupation numbers. Con-
sequently, Pauli’s famous exclusion principle can be for-
mulated as

0 ≤ λk ≤ 1 , ∀k = 1, 2, . . . , d . (5)

Moreover, in Eq. (4) we order the NON decreasingly,
λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. The NO give rise to an or-
thonormal basis B1 ≡ {|k〉}dk=1 for the 1-particle Hilbert

space H(d)
1 . This basis is unique (up to global phases) as

long as the NON are non-degenerate, which we typically
assume, if not stated differently. B1 induces an orthonor-

mal basis BN for H(f)
N , the family of Slater determinants,

|i 〉 ≡ AN [|i1〉 ⊗ . . .⊗ |iN 〉] , (6)

where i ≡ (i1, . . . , iN ), 1 ≤ i1 < i2 < . . . < iN ≤ d
and AN is the antisymmetrizing operator on HN . Just
for ease of notation we skip the explicit dependence of
the elements in B1 and BN on |ΨN 〉 . Since BN is a

basis forH(f)
N we can expand every state inH(f)

N uniquely
w.r.t. BN , in particular also |ΨN 〉,

|ΨN 〉 =
∑
i

ci |i 〉 , (7)
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where we recall that |i 〉 depends on |ΨN 〉. Notice that the
self-consistency of this expansion imposes quite strong
restrictions on the set of expansion coefficients ci. They
reflect the fact that the corresponding 1-RDO (3) is di-
agonal w.r.t. the NO |k〉. In addition the occupation
number of |k〉 is λk, the k-th largest NON. As a conse-
quence of the self-consistent notation, we can express the
NON as an elementary function of the expansion coeffi-
cients ci. By denoting the particle number operator of
NO |k〉 by n̂k we find

λk = 〈ΨN |n̂k|ΨN 〉 (8)

=
∑
i,j

c∗i cj 〈i |n̂k|j 〉 =
∑
i

|ci|2 〈i |n̂k|i 〉 =
∑
i,k∈i

|ci|2 .

Eqs. (7), (8) allow us to introduce a geometric picture

for the description of NON, ~λ ≡ (λ1, . . . , λd) ∈ Rd. The
Pauli exclusion principle Eq. (5) restricts the space of

possible ~λ to the Pauli hypercube

C ≡ [0, 1]d ⊂ Rd . (9)

Of course, the ordering of the NON leads to a further
restriction and the normalization of the NON defines a
cut through C. We denote the 2d vertices of C by ~vl,
where l ⊂ {1, 2, . . . , d} and

∀j = 1, 2, . . . , d : (~vl)j =

{
1, j ∈ l

0, j 6∈ l
. (10)

However, according to Eq. (8), the vector ~λ of NON is
spanned only by those i ⊂ {1, . . . , d} which have length
N . We denote that set by IN and can rewrite Eq. (8) as

~λ =
∑
i∈IN

|ci|2 ~vi . (11)

This means that ~λ is the “center of mass” for masses
{|ci|2 | i ∈ IN} sitting at the

(
d
N

)
vertices ~vi, i ∈

IN . Moreover, we can identify those vertices with the
N -particle Slater determinants. By recalling Eq. (8),
Eq. (10) for vertices ~vi with i ∈ IN becomes

(~vi)j = 〈i |n̂j |i 〉 . (12)

This means that ~vi is the list of occupation numbers of the
Slater determinant |i 〉 w.r.t. the NO {|j〉}dj=1 of the given
state |ΨN 〉. This geometric picture is illustrated and in-
tensively used (in an even simpler form) in Sec. V A, by

studying the setting ∧3[H(6)
1 ].

For a given orthonormal basis B1 = {|i〉}di=1 for the 1-

particle Hilbert space H(d)
1 we introduce the correspond-

ing fermionic creation and annihilation operators a†i , ai,
which create and annihilate a fermion in the state |i〉.
They fulfill the anticommutation relations

{aj , ak} = {a†j , a
†
k} = 0 , {aj , a†k} = δjk . (13)

Using this second quantization we can also express the
1-RDO as

〈j|ρ1|k〉 = 〈ΨN |a†jak|ΨN 〉 , ∀j, k = 1, . . . , d . (14)

In particular, if we choose as 1-particle basis the NO of
a given quantum state |ΨN 〉 we find for its NON

λj = 〈ΨN |a†jaj |ΨN 〉 . (15)

Since all particle number operators n̂j = a†jaj commute

with each other any function F (~λ) can be expressed as
expectation value

F (~λ) = 〈ΨN |F̂ |ΨN 〉 (16)

with

F̂ ≡ F (a†1a1, . . . , a
†
dad) . (17)

In the following, we frequently use this concept of assign-

ing an operator F̂ to any function F (~λ). We call F̂ the
operator of F w.r.t. the NO of the given state |ΨN 〉 or
just the operator of F . Typically, we will also skip the

index “ΨN” for operators a†j , ak, F̂ , . . . expressing their

dependence on the underlying quantum state |ΨN 〉.

III. GENERALIZED PAULI CONSTRAINTS
AND PINNING

The Pauli exclusion principle (5) is an elementary con-
sequence of the antisymmetry of N -fermion quantum
states under particle exchange. Since the antisymmetry
is a much stronger mathematical condition than Pauli’s
exclusion principle alone, it is not surprising that it leads
to further restrictions on NON strengthening the exclu-
sion principle. This is illustrated in Fig. 1. As explained

FIG. 1: The family of antisymmetric N−particle states de-
picted as an ellipse maps to the family of possible natural

occupation numbers ~λ (dark-gray), which turns out to be
a proper subset of the Pauli hyper cube (light-gray). The
“Hartree-Fock point” is shown as a red dot.

in Sec. II each N -fermion quantum state |ΨN 〉 can be

mapped to its vector ~λ = (λi)
d
i=1 of NON. These NON

do not only lie inside of the light-gray Pauli hypercube
(9) but are further restricted to the dark-gray polytope
(see Fig. 1). This polytope PN,d is determined by a finite
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family of so called generalized Pauli constraints (gPC),
linear conditions

D
(N,d)
i (~λ) = κ

(0)
i + ~κi · ~λ ≥ 0 , (18)

with ~κi ≡ (κ
(j)
i )dj=1, κ

(j)
i ∈ Z, j = 0, 1, . . . , d and

i = 1, 2, . . . , r(N,d). The number r(N,d) of such con-
straints (18) increases drastically with the dimension d
of the 1-particle Hilbert space. In contrast to Pauli’s
exclusion principle, the family of gPC depends on the
number N of fermions and the dimension d of the 1-
particle Hilbert space. In a ground-breaking work by
Klyachko and Altunbulak [8, 9] an algorithm was found,
which allows one to calculate for each fixed N and d those
constraints.

As an example we present the gPC for the setting

∧3[H(6)
1 ], which were already found in 1972 by Borland

and Dennis [6]

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1 , (19)

D(3,6)(~λ) ≡ 2− (λ1 + λ2 + λ4) ≥ 0 . (20)

We remind the reader that the NON are always ordered

decreasingly. Notice that the inequality D(3,6)(~λ) ≥ 0
is stronger than Pauli’s exclusion principle, which just
states that 2− (λ1 +λ2) ≥ 0. That some constraints take
the form of equalities (instead of inequalities) as those in
(19) is specific and happens only for the quite “small”

settings ∧3[H(6)
1 ], ∧2[H(d)

1 ] and ∧d−2[H(d)
1 ]. E.g. for the

settings ∧2[H(d)
1 ] the only restriction of NON is given by

the condition that every non-zero NON is evenly degener-
ate, λ2j−1 = λ2j , j = 1, 2, . . .. Although gPC taking the
form of equalities are much more restrictive than those
taking the form of inequalities we are, at least from a
physical viewpoint, more interested in the latter ones.
This is because their potential (quasi)saturation defines
a characteristic feature which may emerge from a physi-
cal mechanism, as e.g. the energy minimization.

Due to the particle-hole duality (see e.g. [14]) which is

based on a natural isomorphism ∧N [H(d)
1 ] ∼= ∧d−N [H(d)

1 ]
the polytope Pd−N,d follows from PN,d by replacing λi 7→
1 − λd−i+1, i = 1, 2, . . . , d. Consequently, the Borland-
Dennis setting is for our purpose the first non-trivial set-
ting. In the following if we consider an arbitrary setting

∧N [H(d)
1 ] with polytope PN,d we assume w.l.o.g. d ≥ 2N

and skip the superscript (N, d) of the gPC D
(N,d)
j as well

as its labeling index j.

It is important to notice that the polytope PN,d
emerges just from kinematics (antisymmetry of |ΨN 〉)
and is independent of the underlying Hamiltonian which
is responsible for the dynamics of the concrete physical
system. To explore the physical implications of this new
mathematical structure revealed by Klyachko and Altun-

bulak the first task is to understand where vectors ~λ of
occupation numbers of relevant fermionic quantum states
do lie. If we consider e.g. ground states of non-interacting

fermions confined by some external potential the position

of the corresponding ~λ-vector is obvious. The ground
state is given by a single Slater determinant |1, 2, . . . , N〉,
where each of the lowest N energy states of the exter-
nal trap is occupied by one fermion. Consequently, the

corresponding NON are given by ~λ = (1, . . . , 1, 0, . . .).
This point is shown in Fig. 1 as red dot. If we turn
on some interaction with coupling strength δ the NON
~λ(δ) will move away from the so-called “Hartree-Fock
point” (1, . . . , 1, 0, . . .). The central question is then

whether ~λ(δ) moves towards the middle of the polytope
or whether it still lies on the boundary of the polytope.
In the latter case we say that the NON are pinned to the
boundary of the polytope, an effect first time mentioned

by Klyachko in [10]. Mathematically, pinning of NON ~λ0

is defined by the saturation of a gPC D(~λ) ≥ 0,

D(~λ0) = 0 . (21)

Geometrically, this means that ~λ0 lies on the correspond-
ing facet FD of the polytope PN,d defined by

FD = {~λ ∈ PN,d |D(~λ) = 0} . (22)

For applications below, it is essential to distinguish be-

tween the saturation of gPC D(~λ) ≥ 0 and that of the
ordering constraints λi − λi+1 ≥ 0. Consequently, we
also need to distinguish between the facets FD of PN,d
corresponding to the saturation of D(~λ) ≥ 0 and the re-
maining facets defined by λi = λi+1. Since it will turn
out that only the saturation of gPC has some physical
meaning we restrict the concept of pinning just to gPC.

In particular, if we say that the NON ~λ are lying on the
boundary of the polytope PN,d we have in mind that it

lies on a facet FD corresponding to some gPC D(~λ) ≥ 0.

IV. POTENTIAL PHYSICAL RELEVANCE OF
PINNING

In this section we explain the potential physical rel-
evance of pinning. Two quite elementary reasons were
already mentioned in [10, 15]:

1. For a pinned ground state some gPC may be active
for the energy minimization in the sense that any
further minimization would violate it. In that sense
this gPC would have a strong impact on the ground
state energy.

2. For a quantum system initially prepared in a pinned
state |ΨN 〉 its time evolution |ΨN (t)〉 from the
viewpoint of the 1-particle picture is limited. Since

the corresponding vector ~λ(t) of NON can never
leave the polytope it cannot evolve in an arbitrary
direction.
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Besides those two reasons for a possible relevance of
pinning for concrete physical systems a central ques-
tion is whether pinning as effect in the 1-particle pic-
ture provides any information about the corresponding
N -fermion quantum state |ΨN 〉. That this is not absurd
is indicated by a well-known result (see e.g. [2]). Any
N -fermion quantum state |ΨN 〉 with NON

~λ = (1, . . . , 1︸ ︷︷ ︸
N

, 0, . . .) ≡ ~λHF (23)

can be written as one single Slater determinant, |ΨN 〉 =
|1, 2, . . . , N〉. Even more important is the stability of this
structural implication. Indeed, it can easily be shown

(see e.g. [2, 16]) that |ΨN 〉 with NON ~λ ≈ ~λHF can ap-
proximately be written as one single Slater determinants,
|ΨN 〉 ≈ |1, 2, . . . , N〉. This stability is the reason why the
Hartree-Fock method is a meaningful approximation.

Now we explain that this structural implication can be
generalized to pinning of NON to an arbitrary point on
the polytope boundary (i.e. not necessarily the “Hartree-
Fock point”). Its stability is the main result of our work
and is explored in Secs. V A, V B. Consider a generalized

Pauli constraint D(~λ) ≥ 0 (recall Eq. (18)) and for a
given N -fermion state |ΨN 〉 introduce the corresponding

operator D̂ΨN
(according to Sec. II, where we now add

an index “ΨN” for clarity),

D̂ΨN
= κ(0)1+ κ(1)a†1a1 + . . .+ κ(d)a†dad . (24)

Note that since κ(i) ∈ Z we have spec(D̂ΨN
) ⊂ Z. D̂ΨN

is

not positive semi-definite. Let P
(±)
ΨN

denote the projection

operator onto the positive/negative eigenspace of D̂ΨN
.

Assume for a moment that D̂ΨN
is positive semi-definite.

In that case if the NON ~λ0 of |ΨN 〉 are pinned by D(~λ) ≥
0, we find (recall (16))

0 = D(~λ0)

= 〈ΨN |D̂ΨN
|ΨN 〉

= 〈ΨN |P (+)
ΨN

D̂ΨN
P

(+)
ΨN
|ΨN 〉

≥ ‖P (+)
ΨN

ΨN‖2L2 , (25)

where we used in the last step that spec(D̂ΨN
) ⊂ Z and

‖·‖L2 is the L2-norm. This implies ‖P (+)
ΨN

ΨN‖L2 = 0 and
that |ΨN 〉 only has weight in the 0-eigenspace. However,

since D̂ΨN
is not positive semi-definite it seems in prin-

ciple possible to have pinning, D(~λ0) = 0, with non-zero
weights of |ΨN 〉 in the positive and negative eigenspaces

of D̂ΨN
. In that case those two weights should cancel

each other in the expression for D(~λ),

D(~λ) = 〈ΨN |D̂ΨN
|ΨN 〉 (26)

= 〈ΨN |P (−)
ΨN

D̂P
(−)
ΨN
|ΨN 〉︸ ︷︷ ︸

≤0

+ 〈ΨN |P (+)
ΨN

D̂ΨN
P

(+)
ΨN
|ΨN 〉︸ ︷︷ ︸

≥0

.

However, one finds the surprising result which was al-
ready implicitly stated in [10].

Theorem 1. Given |ΨN 〉 ∈ ∧N [H(d)
1 ] with non-

degenerate NON ~λ pinned by a gPC D(·) ≥ 0. Then,

|ΨN 〉 has weight only in the 0-eigenspace of D̂ΨN
,

D̂ΨN
|ΨN 〉 = 0 . (27)

Equivalently, the self-consistent expansion (7), |ΨN 〉 =∑
i ci |i 〉, obeys the selection rule for Slater determinants

D̂ΨN
|i 〉 6= 0 ⇒ ci = 0 . (28)

Note that D̂ΨN
|i 〉 can easily be calculated since the

Slater determinants |i 〉 are the eigenstates of D̂ΨN
with

eigenvalues di ∈ Z. Hence, di follows immediately from

di = 〈i |D̂ΨN
|i 〉 = κ(0) +

d∑
k=1

κ(k) δ[k ∈ i ] , (29)

where δ[k ∈ i ] yields 1 if k ∈ i and 0 otherwise. This
selection rule impressively shows the strength of the self-
consistent notation (7).

The proof of Theorem 1 is by far not elementary but
rather involved. It can be performed adopting con-
cepts like moment maps used in symplectic geometry (see
Lemma 2.1. in Ref. ([17])).

To emphasize the importance of Theorem 1 and Selec-
tion Rule (28) we study an example.

Example 1. Consider a state |Ψ3〉 ∈ ∧3[H(6)
1 ] with non-

degenerate NON ~λ. The gPC are given by (19) and
(20). The gPC (19) can be interpreted as inequalities,
which are always saturated [8]. Consequently, Selec-
tion Rule (28) implies structural simplifications for any

|Ψ3〉 ∈ ∧3[H(6)
1 ] expanded self-consistently,

|Ψ3〉 =
∑

1≤i1<i2<i3≤6

ci1,i2,i3 |i1, i2, i3〉 . (30)

Then only those Slater determinants |i1, i2, i3〉 with ex-
actly one index ik in each of the three sets {1, 6}, {2, 5}
and {3, 4} can show up in the expansion. These are
the 23 = 8 Slater determinants |1, 2, 3〉, |1, 2, 4〉, |1, 3, 5〉,
|1, 4, 5〉, |2, 3, 6〉, |2, 4, 6〉, |3, 5, 6〉 and |4, 5, 6〉. Note that
this structural simplification is not in contradiction with
the dimension

(
6
3

)
= 20 of the 3-fermion Hilbert space

∧3[H(6)
1 ], since the six 1-particle states {|j〉}6j=1 depend

on |Ψ3〉.
If in addition the NON ~λ are also pinned by the gPC

(20), Selection Rule (28) leads to the most general form

|Ψ3〉 = α|1, 2, 3〉+ β|1, 4, 5〉+ γ|2, 4, 6〉 . (31)

The three coefficients are such that

λ1 = |α|2 + |β|2 , λ2 = |α|2 + |γ|2 , λ3 = |α|2 . (32)
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This example demonstrates the strength of the self-
consistent expansion (7) and the significant reduction
from twenty to three Slater determinants spanning

|Ψ3〉 ∈ ∧3[H(6)
1 ], in case of pinning.

For the later purpose we define

Definition 1. For the setting ∧N [H(d)
1 ], a corresponding

gPC D(~λ) ≥ 0 and a given state |ΨN 〉 ∈ ∧N [H(d)
1 ] with

non-degenerate NON and NO {|i〉}di=1 consider the cor-

responding operator D̂ΨN
(recall Eq. (17)). We denote

the orthogonal projection operator on the 0-eigenspace of
D̂ΨN

by PD. PD projects onto the linear space spanned by
all those Slater determinants |i 〉, which fulfill Selection
Rule (28).

Note also that for a gPC (18) with κ(i) = κ(j) we
find PD = Pπi,jD, where πi,j just swaps the i-th (λi)
and j-th argument (λj) of D(·). This means that the
family of Slater determinants |k1, . . . , kN 〉 spanning the
PD-subspace is invariant under swapping the indices i
and j in all Slater determinants.

Let us summarize all insights up to now.

Remark 1. Pinning corresponds to specific and simpli-
fied structures of the corresponding N -fermion quantum
state |ΨN 〉. In that sense the occurrence of pinning is
physically relevant. It is also remarkable that pinning
as phenomenon in the 1-particle picture allows one to re-
construct the structure of |ΨN 〉 as object in the important
N -particle picture.

Theorem 1 and Remark 1 provide a first insight into
whether pinning may exist in realistic physical systems:

Remark 2. Consider a physical system of a few interact-
ing fermions in a continuous space confined by some ex-
ternal potential without any exact symmetry. By express-
ing any state |ΨN 〉 of that system (e.g. the ground state)
as a linear combination of Slater determinants built up
from its NO according to (7) it is unlikely that some (or
even almost all) expansion coefficients do exactly vanish.
As a consequence of Theorem 1 and Selection Rule (28)
therein pinning may, in fact, not show up for such realis-
tic physical systems. However, if the system has certain
symmetries as e.g. rotational or translational invariance
manifesting itself in the existence of good quantum num-
bers Q as e.g. the total angular momentum or the total
wave number of interacting electrons only Slater deter-
minants with the same quantum numbers Q do show up
in the expansion of |ΨN 〉. In that case at least, it seems
more feasible, in principle, to have pinning.

According to Remark 2 pinning in its idealized exact
form may not show up for realistic fermionic systems.
However, since systems of few fermions in a steep exter-
nal potential as e.g. a harmonic trap have the strong ten-
dency to minimize their energy a few specific N -fermion
configurations are strongly preferred. For the expansion
(7) of the ground state |ΨN 〉 this means that all except

just a few weights |ci|2 are quite small. By recalling that

D(~λ) = 〈ΨN |D̂ΨN
|ΨN 〉 (33)

depends continuously on |ΨN 〉 one cannot rule out that
some generalized Pauli constraints are at least approxi-
mately saturated [19]. For the ground state of a system of
three harmonically coupled fermions in a harmonic trap
this effect of quasipinning rather than pinning was found
analytically [11].

According to those first analytic results and Remark 2
the central question is whether Theorem 1 is stable: Do

NON ~λ in the vicinity of some polytope facet FD imply
that the corresponding N -fermion state |ΨN 〉 has approx-
imately the specific and simplified structure expressed by
Selection Rule (28)?

Unfortunately, such stability of Selection Rule (28) is
not given for the whole vicinity of the polytope boundary
as the following example shows.

Example 2. For the Borland-Dennis setting ∧3[H(6)
1 ]

with the gPC (19), (20) consider a state of the form

|Ψ3〉 = γ |1, 3, 5〉+
√
|γ|2 + |δ|2 − ε |1, 2, 4〉+ δ |2, 3, 6〉 .

(34)
with |γ| > |δ| and ε > 0. State (34) is indeed self-
consistent since its NO are given by {|j〉}6j=1 and their
occupancies λj are non-degenerate and decreasingly or-
dered. The approximate saturation of the gPC (20) is

D(3,6)(~λ) = ε, which can be made arbitrarily small by
choosing ε in Eq. (34) arbitrarily small. However, state
(34) maximally contradicts a possible stability of Selec-
tion Rule (28). None of the three suggested Slater de-
terminants in Ex. 1 shows up. However, state (34)
has the specific property that possible strong quasipinning
(i.e. ε � 1 ) is equivalent to an approximate saturation
of the ordering constraints λ3−λ4 ≥ 0 since λ3−λ4 = ε,
i.e. both NON become degenerate.

The specific instability of Selection Rule (28) shown
by Ex. 2 is not surprising, at least from a heuristic view-
point. First, notice that the three Slater determinants
|1, 3, 5〉, |1, 2, 4〉 and |2, 3, 6〉 in Eq.(34) are related to the
three Slater determinants |1, 4, 5〉, |1, 2, 3〉 and |2, 4, 6〉 in
Eq.(31) corresponding to pinning of non-degenerate NON
(Ex. 1) by a swapping of the integers 3 and 4. Second,
the self-consistent expansion (7) to which Selection Rule
(28) refers to is based on ordered NO {|i〉}. However, if
two NON λi and λi+1 are identical the choice of NO |i〉
and |i + 1〉 is not unique anymore. In that sense it is
not surprising that for the case of quasidegenerate NON
with λi ≈ λi+1 not only Slater determinants |j 〉 lying
in the PD-subspace (recall Def. 1) can show up in the
self-consistent expansion (7) but also those obtained by
swapping the integers i and i + 1. That this is indeed a
correct modification of Selection Rule (28) for the case
of degenerate and pinned NON is strongly suggested by
our following results on quasipinning and its structural
implications.
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V. QUASIPINNING AND STABILITY OF
SELECTION RULE (28)

The discussion in Sec. IV has shown that the NON
of an energy eigenstate |ΨN 〉 of a realistic model hamil-
tonian may not be pinned by gPC since |ΨN 〉 may not
fulfill the quite restrictive Selection Rule (28) for Slater
determinants in Theorem 1. More realistic is the effect
of quasipinning which was found for a model system [11].
However, the occurrence of this effect is only physically
relevant when Selection Rule (28) still applies at least
approximately. To investigate the possible stability of
Selection Rule (28) is the goal of this section. We also
quantify the stability in particular for the regime char-
acterized by an additional approximate saturation of an
ordering constraint λi − λi+1 ≥ 0.

We start by providing a lower bound on the stability
for all N and d. The following result states quantitatively

that whenever given NON ~λ are close but not exactly on
a polytope facet FD any corresponding state |ΨN 〉 has at
least some weight outside the PD-subspace:

Theorem 2. Recall Def. 1 and Eq. (24). For NON ~λ

belonging to the setting ∧N [H(d)
1 ] and a gPC D(·) ≥ 0 we

have

1− ‖PDΨN‖2L2 ≥
D(~λ)

‖D̂ΨN
‖op

, (35)

where ‖D̂ΨN
‖op is the operator norm.

The proof is elementary and is shown in Appendix A.
The following example gives an illustration of Theorem
2

Example 3. For the gPC (20) and (50) of the setting

∧3[H(6)
1 ] and ∧3[H(7)

1 ], respectively, the maximal eigen-

value ‖D̂Ψ3
‖op of the corresponding D̂Ψ3

-operator is al-
ways given by 2. Then Theorem 2 provides for each gPC
of those two settings the following lower bound on stabil-
ity

1− ‖PDΨ3‖2L2 ≥
1

2
D(~λ) . (36)

A. Borland-Dennis setting

The Borland-Dennis setting is the “smallest” setting
with nontrivial gPC (cf. Eqs. (19) and (20)). Since on
the other hand the number of gPC increases drastically
for increasing N and d it is due to the manageable struc-
ture of its polytope P3,6 the most relevant setting for
physical applications. Potentially relevant might be also

the setting ∧3[H(7)
1 ] whose polytope is described by four

gPC and is studied in Sec. V B 1. Since already the next

larger settings ∧3[H(8)
1 ], ∧4[H(8)

1 ], ∧3[H(9)
1 ] and ∧4[H(9)

1 ]
are described by 31, 14, 51 and 59 gPC, respectively,

their potential relevance for physical application is not

obvious. E.g. that a given vector ~λ of NON is pinned to
the polytope boundary of such a setting is useless with-

out the specification of the concrete facet which ~λ lies on.
Even more important, the central question of the mecha-
nism behind quasipinning needs to be addressed for every
gPC separately and therefore seems to make less sense for
settings with more than just a very few gPC.

As a consequence, we explore the possible stability of
Selection Rule (28) for the Borland-Dennis setting first.
This will be done analytically and numerically.

For any given state |Ψ3〉 ∈ ∧3[H(6)
1 ] conditions (19)

imply according to Ex. 1 structural simplifications:

|Ψ3〉 = α|1, 2, 3〉+ β|1, 2, 4〉+ γ|1, 3, 5〉
+δ|2, 3, 6〉+ ν|1, 4, 5〉+ µ|2, 4, 6〉
+ξ|3, 5, 6〉+ ζ|4, 5, 6〉 . (37)

The eight coefficients α, . . . , ζ obey further restrictions,
guaranteeing that the NON are decreasingly ordered and
that ρ1 is diagonal w.r.t the NO |k〉, k = 1, 2, ...6. Con-
sequently, we have

λ4 = |β|2 + |µ|2 + |ν|2 + |ζ|2

λ5 = |γ|2 + |ν|2 + |ξ|2 + |ζ|2

λ6 = |δ|2 + |µ|2 + |ξ|2 + |ζ|2 (38)

and the largest three NON follow from Eq. (19). In the
following we will use the geometric picture introduced
in Sec. II (recall in particular Eqs. (9), (11)). Due to
the three conditions (19) the NON are not independent
and we choose λ4, λ5 and λ6 as the free variables and
the polytope P3,6 reduces to a polytope P̂3,6 of possible
vectors ~v ≡ (λ4, λ5, λ6) ⊂ R3. This reduced polytope

P̂3,6 is shown in Fig. 2, and is spanned by the four vertices

~v(a) = (0, 0, 0) , ~v(b) =

(
1

2

1

2
, 0

)
~v(c) =

(
1

2
,

1

4
,

1

4

)
, ~v(d) =

(
1

2
,

1

2
,

1

2

)
. (39)

Due to the ordering constraints, 1
2 ≥ λ4 ≥ λ5 ≥ λ6 ≥ 0,

P̂3,6 lies in the lower, left, front octant. Fig. 2 also shows
the strength of the geometric picture. Each (reduced)
vector ~v = (λ4, λ5, λ6) is the “center of mass” of the 8
“masses” |α|2, . . . , |ζ|2 sitting at the eight vertices of the
(reduced) Pauli cube [0, 1]3. These vertices ~vi can be
identified with the eight Slater determinants |i 〉 used in
the expansion (37), since their occupancies (〈i |n̂j |i 〉)6

j=1

w.r.t. {|j〉}6j=1 coincide with ~vi. Therefore, we assigned
the Slater determinants |i 〉 as well as the correspond-
ing Greek letters α, . . . , ζ to them in Fig. 2. The eight
weights |α|2, . . . , |ζ|2 need to fulfill the self-consistency

condition ~v ∈ P̂3,6. Pinning by gPC (20) is given when-

ever ~v ∈ P̂3,6 lies on the (red) plane which is spanned by
the points α, µ and ν. The distance of arbitrary NON
vectors ~v to the (red) plane is a measure for the strength
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|1,3,5

|3,5,6

|4,5,6

|2,4,6

|2,3,6

|1,2,3

|1,4,5

|1,2,4

FIG. 2: Reduced polytope P̂3,6 (gray) of possible (independent)
NON ~v ≡ (λ4, λ5, λ6), where one of its four vertices lies at the
center, ( 1

2
, 1
2
, 1
2
), of the cube [0, 1]3. For a detailed explanation

see text.

of the possible quasipinning by gPC (20). In general,
since the polytopes PN,d are finite-dimensional all norms
are equivalent. In particular it can be seen (see e.g. [18])
that the distances to some facet FD corresponding to a

gPC D(~λ) ≥ 0 are given by

dist2(~λ, FD) =
D(~λ)

‖~κ‖2
, dist1(~λ, FD) =

D(~λ)

‖~κ‖∞
, (40)

where dist2 and ‖~κ‖2 are the l2/Euclidean-distance, dist1

the l1-distance, ‖~κ‖∞ the max norm and ~κ from Eq. (18)
is a normal vector of FD. For the gPC (20) of the
Borland-Dennis setting we find

dist2(~λ, FD(3,6)) =
D(3,6)(~λ)√

3

dist1(~λ, FD(3,6)) = D(3,6)(~λ) . (41)

Therefore, we just choose D(~λ) as the natural measure

for quasipinning by gPC D(~λ) ≥ 0.

Now, we explore the stability of Selection Rule (28).

For non-degenerate NON ~λ ∈ FD(3,6) , according to Ex. 1,
|Ψ3〉 is spanned just by the three points α, µ and ν, the
vertices of the (red) plane in Fig. 2. For quasipinning the
stability can be violated as was shown by Ex. 2. There,
|Ψ3〉 was spanned by the points β, γ and δ, which span
the (green) plane, defined by

Q(λ4, λ5, λ6) = D(3,6)(1− λ4, λ5, λ6) = 0 (42)

where we skipped the first three variables λ1, λ2, λ3

and treat from now on D(3,6) as function of just ~v =

(λ4, λ5, λ6). The (green) plane is related to the (red)
plane

D(3,6)(λ4, λ5, λ6) = 0 (43)

by a swapping of λ3 and λ4, i.e. by replacing λ4 by 1−λ4

(recall gPC (19)). Geometrically, we easily see that a
strong quasipinning for the state in Ex. 2 with a dis-
tance ε � 1 to FD(3,6) is equivalent to an approximate
saturation of the ordering constraint ∆λ = λ3 − λ4 ≥ 0
(i.e. λ4 ≈ 1

2 ). For such a regime, λi ≈ λi+1, we suggested
below Ex. 2 a modified selection rule. According to it
not only Slater determinants lying in the PD-subspace
but also those in the Pπi,i+1D-subspace can show up in
the expansion (7), where πi,i+1 is the swap-operator for
coordinate λi and λi+1. On the other hand, this also sug-
gests that even if some ordering constraint λi−λi+1 ≥ 0
is (approximately) saturated all the Slater determinants
neither lying in PD- nor in the Pπi,i+1D-subspace should
not carry any significant weights.

The following analytic result provides first insights into
the stability of Selection Rule (28).

Theorem 3. For a given |Ψ3〉 ∈ ∧3[H(6)
1 ] expanded ac-

cording to Eq. (37) we have

|ξ|2 + |ζ|2 ≤ D(3,6)(~λ) . (44)

In particular, this means that possible quasipinning by
(20) implies an approximate structural simplification for
|Ψ3〉.

The proof of this important theorem is presented in
Appendix B.

To gain additional information and a potential im-
provement of the upper bound in Eq. (44) we explore
the weight |ξ|2 + |ζ|2 numerically. We sample random

FIG. 3: Sampling of states |Ψ3〉 ∈ ∧3[H(6)
1 ] confirms Theorem

3. Left: |ξ|2 + |ζ|2 is bounded from above by D(3,6)(~λ), the red
straight line. Right: Even stronger bounds are revealed by a
resolution w.r.t. λ3 − λ4.

states |Ψ3〉 ∈ ∧3[H(6)
1 ]. For all states exhibiting quasip-

inning, which we define here as D(3,6)(~λ) ≤ 0.01 [20] we
calculate the corresponding NO, NON and the expan-
sion coefficients α, . . . , ζ for the self-consistent expansion
(37). The result of the sampling process is shown in
Fig. 3. On the left we can see that the weight |ξ|2 + |ζ|2
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is indeed linearly bounded from above by D(3,6)(~λ). The
numerical results on the left do not change qualitatively
by extending the range of the horizontal axis from the

regime of strong quasipinning D(3,6)(~λ) ≤ 0.01 to arbi-

trary values D(3,6)(~λ). On the right we explore the tight-
ness of the bound in Theorem 3 as a function of λ3−λ4.
The reason for considering only the difference between
λ3 and λ4 will become clearer at the end of this section
(Sec. V A). We can infer that bound (44) is tight for a
maximal distance between λ3 and λ4, which corresponds

to the “Hartree-Fock point” ~λ = (1, 1, 1, 0, 0, 0). For the
regime λ3 − λ4 ≈ 0 the estimate (44) could be strength-

ened by reducing the upper bound D(3,6)(~λ) by a factor
1
2 .

Although Theorem 3 is already quite a strong result
on potential physical relevance of quasipinning it is still
even not clear whether Selection Rule (28) is stable when-
ever none of the ordering constraints is approximately
saturated. The numerical investigation by sampling ran-
dom states provides the answer. This is shown in Fig. 4.
On the left is shown the square of the L2-weight (recall

FIG. 4: Sampling of states |Ψ3〉 ∈ ∧3[H(6)
1 ] shows that Se-

lection Rule (28) is stable for the Borland-Dennis setting as
long as the ordering constraint λ3 − λ4 ≥ 0 is not approxi-
mately saturated (left). On the right: For fixed quasipinning

D(3,6)(~λ) there is a lower bound (red straight line) on the L2-
weight 1− (|α|2 + |µ|2 + |ν|2).

Def. 1) 1 − ‖PD(3,6)Ψ3‖2L2 = 1 −
(
|α|2 + |µ|2 + |ν|2

)
di-

vided by D(3,6)(~λ) for randomly sampled states |Ψ3〉 ∈
∧3[H(6)

1 ]. Selection Rule (28) is stable whenever quasip-
inning implies that ‖PDΨ3‖2L2 ≈ 1. We can see that this
is the case except for the regime λ3 ≈ λ4.

On the right side of Fig. 4 we can see that Selec-
tion Rule (28) also applies in the converse direction. If

D(3,6)(~λ) is still finite not all weight can lie in the PD(3,6) -
subspace. There, the lower bound 1

2 (red straight line)
is in agreement with Ex. 3.

The numerical results shown in Fig. 4 can also be un-
derstood analytically:

Theorem 4. For given |Ψ3〉 ∈ ∧3[H(6)
1 ] expanded ac-

cording to Eq. (37) we find

‖Pπ3,4DΨ3‖2L2 = |β|2+|γ|2+|δ|2 ≤ D(3,6)(~λ)

λ3 − λ4
+3D(3,6)(~λ) .

(45)

Theorem 4 explains that a violation of Selection Rule
(28) is only possible if the approximate saturation of λ3−
λ4 ≥ 0 is at least as strong as the quasipinning by (20).
This is in agreement with Ex. 2. There the violation
Eq.(28) was related to an approximate saturation of λ3−
λ4 ≥ 0. The proof of Theorem 4 is presented in Appendix
C.

FIG. 5: For randomly sampled states |Ψ3〉 ∈ ∧3[H(6)
1 ] there is

shown the ratio of |β|2 + |γ|2 + |δ|2 and D(3,6)(~λ) as function
of λ3 − λ4 compared to the red curve describing the function

1
λ3−λ4

+3 (on the left). Indeed, for no approximate saturation
of λ3−λ4 ≥ 0 also the three coefficients β, γ and δ are bounded

by D(3,6)(~λ). From the right, we can infer that the possible

divergence of |β|
2+|γ|2+|δ|2

D(3,6)(~λ)
is hyperbolic in λ3 − λ4 and the

red straight line shows that one can lower the upper bound in
(45) on the scale O((λ3 − λ4)0).

Now, we compare the quantitative prediction of The-
orem 4 with the numerical results obtained by randomly

sampling states |Ψ3〉 ∈ ∧3[H(6)
1 ] shown in Fig. 5. On

the left, we plot the relation between |β|2+|γ|2+|δ|2

D(3,6)(~λ)
and

λ3 − λ4. Again, as already shown in Fig. 4 weights not

lying in the PD(3,6) -subspace are bounded by D(3,6)(~λ) as
long as λ3−λ4 6≈ 0. In contrast to the other two weights
outside of the PD(3,6) -subspace, |ξ|2 and |ζ|2, the three
weights |β|2, |γ|2 and |δ|2 lying on the (green) plane in

Fig. 2 are not necessarily quite small when D(3,6)(~λ) ≈ 0
and (λ3−λ4)→ 0 (recall also Ex. 2). The possible diver-

gence of |β|
2+|γ|2+|δ|2

D(3,6)(~λ)
is also compared on the left with

the hyperbolic divergence 1
λ3−λ4

+3 (red curve) suggested

by Eq.(45). According to the right side of Fig. 5 and the
red straight line shown there, the bound in Theorem 4
for |β|2 + |γ|2 + |δ|2 can be improved on the basis of the
numerical sampling results on the scale O((λ3−λ4)0) by
reducing it to

|β|2 + |γ|2 + |δ|2 ≤ D(3,6)(~λ)

λ3 − λ4
−D(3,6)(~λ) . (46)

This together with the analytic result (44) in Theorem 3
and the normalization of |Ψ3〉 on one hand and Ex. 3 on
the other hand finally yields

D(3,6)(~λ)

2
≤ 1−

(
|α|2 + |µ|2 + |ν|2

)
≤ D(3,6)(~λ)

λ3 − λ4
. (47)

Eq. (47) shows again that Selection Rule (28) is stable
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as long as the ordering constraint λ3 ≥ λ4 is not approx-
imately saturated. This also means that an approximate
saturation of any other ordering constraint λi ≥ λi+1,
i 6= 3, cannot lead to instability. But in which sense is
the ordering constraint λ3 ≥ λ4 distinguished from all
the other ones? The answer to this question follows im-
mediately from the structure of the corresponding gPC
(20). The pair (3, 4) is the only pair of successive in-
tegers with the property that the corresponding coeffi-
cients κ(j) (recall Eq. (18)) in the gPC (20) are descend-
ing, 0 = κ(3) > κ(4) = −1. For all the other four pairs
(i, i + 1), i 6= 3, we have κ(i) ≤ κ(i+1). This insight sug-
gests an extension of Selection Rule (28) for all N and
all d :

Conjecture 1 (Extension of Selection Rule (28)). Con-
sider an N -fermion state |ΨN 〉 with NO {|i〉}di=1 and

NON ~λ with one degeneracy, λi = λi+1, and saturat-
ing a gPC D(·) ≥ 0. Using the self-consistent expansion
(7), |ΨN 〉 =

∑
i ci |i 〉 we have (recall Eq. (24))

• if κ(i) ≤ κ(i+1):

D̂ΨN
|i 〉 6= 0 ⇒ ci = 0 (48)

• if κ(i) > κ(i+1):

D̂ΨN
|i 〉 6= 0

∧ D̂ΨN
π̂i,i+1|i 〉 6= 0

}
⇒ ci = 0 , (49)

Here, π̂i,i+1 is the operator which swaps the NO |i〉 and
|i+ 1〉 which may appear in a Slater determinant |i 〉.

In the next subsection we provide further numerical
evidence for the validity of this conjecture.

B. Larger settings

We investigate whether the results found in Sec. V A

for the Borland-Dennis setting ∧3[H(6)
1 ] also hold in

larger settings. Since the estimation techniques we used
to prove Theorem 3 and Theorem 4 cannot easily be gen-
eralized to larger settings we resort to numerical meth-
ods. This in particular also reflects the fact explained at
the beginning of Sec. V A that larger settings are less rel-
evant for physical applications due to the unmanageable
and too specific structure of their polytopes.

By sampling quantum states in ∧3[H(7)
1 ] and ∧3[H(8)

1 ]
we can explore the possible stability of Selection Rule
(28) for the next larger settings.

FIG. 6: For each of the four gPC (50) of the setting ∧3[H(7)
1 ]

the stability of Selection Rule (28) is explored. For randomly

sampled states exhibiting quasipinning of strength D
(3,7)
j (~λ) ≤

0.01 we study the ratio χ(j) of the weight 1 − ‖P
D

(3,7)
j

Ψ3‖2L2

outside the subspace corresponding to pinning and D
(3,7)
j (~λ).

The behavior of the indicators χ(j) show that Selection Rule
(28) is stable unless some specific ordering constraints λi −
λi+1 ≥ 0 (see also (52)) are approximately saturated.

1. Three fermions and seven dimensions

For the setting ∧3[H(7)
1 ] the gPC for the NON ~λ ≡

(λ1, . . . , λ7) are given by [6, 8]

D
(3,7)
1 (~λ) = 2− (λ1 + λ2 + λ5 + λ6) ≥ 0

D
(3,7)
2 (~λ) = 2− (λ1 + λ3 + λ4 + λ6) ≥ 0

D
(3,7)
3 (~λ) = 2− (λ2 + λ3 + λ4 + λ5) ≥ 0

D
(3,7)
4 (~λ) = 2− (λ1 + λ2 + λ4 + λ7) ≥ 0 . (50)

We randomly sampled 2×109 states |Ψ3〉 ∈ ∧3[H(7)
1 ] and

study their structure whenever their NON are quasip-
inned by one of the four gPC (18). By choosing

D
(3,7)
j (~λ) ≤ 0.01 as criterion for quasipinning we found

about 2× 106 quasipinned states. For these |Ψ3〉 we cal-
culate the corresponding weights ‖P

D
(3,7)
j

Ψ3‖2L2 lying in

the P
D

(3,7)
j

-subspaces (recall Def. 1). We also calculate

the corresponding indicator of stability for Selection Rule
(28),

χ(j) ≡
1− ‖P

D
(3,7)
j

Ψ3‖2L2

D
(3,7)
j (~λ)

. (51)

The selection rule is stable in the vicinity of the poly-
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FIG. 7: Same figure as Fig. 6. However, the smaller range
for the indicators χ(i) allows to conclude a lower bound (red

straight line) on the indicators χ(j) quantifying that finite

D
(3,7)
j (~λ) (i.e. quasipinning) implies a finite weight of the cor-

responding quantum state |Ψ3〉 outside the pinning subspace
described by P

D
(3,7)
j

(recall Def. 1).

tope boundary where χj ≤ O(1). In Fig. 6 the indicators

χ(j) are shown for all four gPC (50) as a function of the
following eigenvalue distances ∆λ(j)

∆λ(1) ≡ λ4 − λ5, ∆λ(2) ≡ min(λ2 − λ3, λ5 − λ6)

∆λ(3) ≡ λ1 − λ2, ∆λ(4) ≡ min(λ3 − λ4, λ6 − λ7) .(52)

That we consider exactly those differences of NON
is suggested by Conjecture 1 and the concrete form of

the coefficients κ
(i)
j in Eq.(50). In Fig. 6 we clearly see

that the indicators χ(j) are bounded by O(1) as long as
∆λ(j) 6≈ 0. Again, as already seen for the Borland-Dennis
setting, Selection Rule (28) is stable as long as none of
the ordering constraints is approximately saturated. In
Fig. 7 the sampled results are presented again, but for a
smaller range which shows that the lower bound on the
stability of Selection Rule (28) provided by Theorem 2

and Ex. 3 is tight for the setting ∧3[H(7)
1 ].

The divergence of the indicators χ(j) is demonstrated
in Fig. 8. There, we find strong numerical evidence that
the possible divergence of χ(j) at ∆λ(j) = 0 is bounded
by 1

∆λ(j) . All these numerical insights imply the following
bounds on stability of Selection Rule (28) (recall Def. 1,
Theorem 2 and Eq. (52))

D
(3,7)
j (~λ)

2
≤ 1− ‖P

D
(3,7)
j

Ψ3‖2L2 ≤
D

(3,7)
j (~λ)

∆λ(j)
, (53)

where j = 1, 2, 3, 4.

Finally, we verify the validity of Conjecture 1. For

FIG. 8: The divergence at ∆λ(i) = 0 of the stability indicators
χ(i) shown in Fig. 6 is investigated for the sampled states.
Since χ(i)∆λ(i) is bounded from above by O(1) this divergence

is hyperbolic in ∆λ(i).

FIG. 9: Stability of the statement made by Conjecture 1 for the

case κ(i) > κ(i+1) is numerically found for the setting ∧3[H(7)
1 ]

by exemplarily studying the first (left) and third (right) gPC
in Eq. (50). Wj is the weight of all Slater determinants which

should be suppressed whenever Dj(~λ) is small. ∆λ(j) is given
by Eq. (52).

the case κ(i) > κ(i+1) we consider exemplary the gPC

D
(3,7)
1 (·) ≥ 0 with ordering constraint ∆λ(1) ≡ λ4 −

λ5 ≥ 0 and gPC D
(3,7)
3 (·) ≥ 0 with ordering constraint

∆λ(3) ≡ λ1 − λ2 ≥ 0 (recall Eq. (50)). Validity of Con-
jecture 1 implies that for ∆λ(j) ≈ 0 the Slater determi-
nants neither lying in the P

D
(3,7)
j

- nor in the P
πi,i+1D

(3,7)
j

-

subspace (where i = 4 for j = 1 and i = 1 for j = 3)

have weights which are bounded by D
(3,7)
j (~λ). Let us

denote the sum of the squares of these weights lying in
none of these two subspaces by W1 and W3 correspond-

ing to the gPC D
(3,7)
1 (·) ≥ 0 and D

(3,7)
3 (·) ≥ 0, respec-

tively. In the corresponding analysis, to minimize inac-

curacies due to the finiteness of D
(3,7)
j (~λ) we lowered the

threshold for quasipinning from originally D
(3,7)
j ≤ 0.01
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to D
(3,7)
j ≤ 0.005. Moreover, to deal only with the case

of one quasisaturated ordering constraint (as required by
Conjecture 1) we need to exclude all sampled results with
an additional quasisaturation of another ordering con-
straint. Actually, it was sufficient to just restrict the
analysis of j = 1 to λ5 − λ6 ≥ 0.05 and the analysis of
j = 3 to λ2 − λ3 ≥ 0.05. The corresponding results are

shown in Fig. 9. Since the ratios
Wj

D
(3,7)
j

, j = 1, 3 are both

bounded by O(1) universal in ∆λ(j) Conjecture 1 is valid
for the case κ(i) > κ(i+1). That Conjecture 1 is also valid
for the case κ(i) ≤ κ(i+1) has already been seen in Fig. 6
since there only quasisaturation of an ordering constraint
λk ≥ λk+1 with κ(k) > κ(k+1) could have caused violation
of Selection Rule (28) which makes the same predictions
as Conjecture 1 for κ(i) ≤ κ(i+1).

2. Three fermions and eight dimensions

For the setting ∧3[H(8)
1 ] there are 31 gPC for the NON

~λ ≡ (λ1, . . . , λ8) presented in [8]. Four of them are iden-

tical to the four gPC (50) of the setting ∧3[H(7)
1 ]. A fifth

one, which will play a role for the numerical analysis takes
the form

D
(3,8)
5 (~λ) = 1− (λ1 + λ8) ≥ 0 . (54)

We randomly sampled 12.8 × 109 states |Ψ3〉 ∈ ∧3[H(8)
1 ]

and studied their structure whenever their NON are
quasipinned by one of the corresponding 31 gPC [8]. Al-
though we chose here a much larger threshold for the

definition of quasipinning, D
(3,8)
j (~λ) ≤ 0.05, we find only

about 25800 quasipinned states. For these |Ψ3〉 we calcu-
late again the corresponding weights ‖P

D
(3,8)
j

Ψ3‖2L2 lying

in the P
D

(3,8)
j

-subspace (recall Def. 1) and the correspond-

ing indicators χ(j)(51) for stability of Selection Rule (28).

The results are shown in Fig. 10 for D
(3,8)
j , j = 1, ..., 5

where the differences ∆λ(j) for j = 1, 2, 3, 4 are given by
Eq. (52) and ∆λ(5) ≡ λ7 − λ8. The indicators χ(j) are
again bounded from above by O(1) as long as ∆λ(j) 6≈ 0.
Hence, Selection Rule (28) is stable as long as no ordering

constraint λi ≥ λi+1 with κ
(i)
j > κ

(i+1)
j is approximately

saturated. Moreover, it turns out that the possible di-
vergence of χ(j) at ∆λ(j) = 0 is hyperbolic again.

From the sampled results for gPC (54) and the fact
that we also relaxed the threshold for quasipinning to

D(~λ) ≤ 0.05 it can be seen that for the present set-

ting ∧3[H(8)
1 ] randomly sampled states are typically not

quasipinned. In particular there was even no single
quasipinned state for most of the other 26 gPC. Con-
sequently it seems that quantitative bounds for the sta-
bility Selection Rule (28) and validity of Conjecture 1
can not be found for larger settings using the present
numerical approach.

Notice also that this remark on randomly sampled
quantum states does not imply at all that ground states
of few-fermion systems with larger 1-particle Hilbert
spaces do never exhibit quasipinning. As already ex-
plained below Remark 2 ground states are quite unique
since they are the minimizer of the energy expectation
value and therefore could have quasipinned NON.

FIG. 10: For five gPC of the setting ∧3[H(8)
1 ] the stability of Selection Rule (28) is explored. For randomly sampled states

exhibiting quasipinning of strength D
(3,8)
j (~λ) ≤ 0.05 we study the ratio χ(j) of the weight 1−‖P

D
(3,8)
j

Ψ3‖2L2 outside the subspace

corresponding to pinning and D
(3,8)
j (~λ). The behavior of the indicators χ(j) shows that Selection Rule (28) is stable unless some

specific ordering constraints λi − λi+1 ≥ 0 (see also (52)) are approximately saturated.

VI. SUMMARY AND CONCLUSION

The antisymmetry of N -fermion quantum states un-
der particle exchange does not only imply Pauli’s fa-
mous exclusion principle but leads to even stronger re-
strictions of fermionic occupation numbers. These so-
called generalized Pauli constraints (gPC) form a poly-

tope of possible natural occupation numbers (NON), the
eigenvalues of the 1-particle reduced density operator.
The gPC may be relevant for concrete physical applica-
tions whenever the NON of a given quantum state are
pinned to the polytope’s boundary. In such a case the
physical system is limited in the sense that the (vector
of) NON cannot evolve in any arbitrary direction under



13

some given time evolution. Another important aspect
was mentioned by Klyachko [10] at least for the case
of non-degenerate NON: Pinning of NON implies that
the corresponding N -fermion quantum state |ΨN 〉 has a
very specific and significantly simpler structure. By ex-
panding |ΨN 〉 w.r.t. Slater determinants built up from its
own natural orbitals only a few very specific Slater de-
terminants are allowed to contribute. This selection rule
of Slater determinants generalizes the well-known result

that NON ~λ = (1, . . . , 1, 0, . . .) can only arise from a sin-
gle Slater determinant |ΨN 〉 = |1, 2, . . . , N〉.

Although pinning would have remarkable physical con-
sequences we argue that its occurrence for concrete sys-
tems is very unlikely due to its unrealistic rigorous struc-
tural implications for the corresponding |ΨN 〉 (see Re-
mark 2). Recently, analytic evidence was found [11] that
NON of fermionic ground states may lie close but not
exactly on the polytope boundary (i.e. they are quasip-
inned).

Therefore, the major motivation of the present work
was to investigate how far quasipinning, in analogy to
pinning, determines the structure of the corresponding
N -fermion state, i.e. to study the stability of Selection
Rule (28). We have used analytical and numerical meth-
ods.

To quantify stability of Selection Rule (28) we have de-
termined lower and upper bounds for various weights of
Slater determinants contributing to an N -fermion quan-
tum state |ΨN 〉. The projection ‖PDΨN‖L2 of |ΨN 〉 onto

the zero-subspace of the operator D̂ΨN
corresponding to

a gPC D(~λ) plays a particular role. For arbitrary N and
d we have proven that (1−‖PDΨN‖2L2) is bounded from

below by D(~λ)

‖D̂ΨN
‖op

(Theorem 2). This means that the

weight of all Slater determinants contributing to |ΨN 〉
and violating Selection Rule (28) is at least of order D(~λ),

the distance of ~λ to the corresponding facet of the poly-
tope.

To gain further insight we explored the most rele-
vant nontrivial setting, the Borland-Dennis setting of 3
fermions and a 6-dimensional 1-particle Hilbert space.
Analytically, we confirmed in form of Theorem 3 and
Theorem 4 the stability of Selection Rule (28) unless the
ordering constraint λ3 ≥ λ4 is not approximately satu-
rated. For this we verified that the indicator of stability,

χ ≡ (1− ‖PDΨ3‖2L2)/D(~λ), is indeed also bounded from
above by O(1). By sampling the 3-fermion Hilbert space
randomly by means of a Monte Carlo method we revealed
the tightest possible bounds on the stability which led to
an improvement of the bounds in Theorem 4.

The potential violation of Selection Rule (28) is given
by a hyperbolic divergence, 1/(λ3 − λ4), of the indicator
χ. This divergence stated in Theorem 4 and confirmed
analytically requires in general also a modification of Se-
lection Rule (28) for the case of an additional saturation
of an ordering constraint λi ≥ λi+1. It depends strongly
on the hierarchy of the coefficients κ(i) and κ(i+1) of the

corresponding gPC (cf. Eq.(18)). Based on analytical
and numerical findings a modified selection rule has been
conjectured (Conjecture 1) for all settings. The random
sampling of the N -fermion Hilbert space of the higher
settings N = 3, d = 7 and N = 3, d = 8 have confirmed
(i) the stability of Selection Rule (28) in case of well-
separated NON, (ii) validity of Conjecture 1 and (iii) the
divergency of the weight (1−‖PDΨN‖2L2) as 1/(λi−λi+1).

Due to the particle-hole duality (see e.g. [14]) these re-
sults also hold for the settings with N = 4, d = 7 and
N = 5, d = 8. The first non-trivial setting with more

than 3 fermions is given by ∧4[H(8)
1 ]. However, the rel-

ative number of quasipinned states for this case is dras-
tically less than for the setting with N = 3 and d = 8.
Despite this restriction to smaller settings we are con-
vinced that our results (i)-(iii) hold for arbitrary settings

∧N [H(d)
1 ], as well. Note also that the discussion of degen-

erate NON is important since (e.g. orbital) symmetries
can lead to degeneracy.

The concrete bounds on the stability of Selection Rule
(28) are essential for applications of the new concept of
gPC and quasipinning for concrete fermionic quantum
systems. With our results at hand the task of explor-
ing the position of given NON inside of the polytope
is not just academic anymore. It allows to draw con-
crete conclusions on the structure of the corresponding
N -fermion quantum state |ΨN 〉 based on the strength of
the quasipinning and the concrete position of the NON
in the vicinity of the polytope boundary. In that sense
our work provides the basis for a generalized Hartree-
Fock method, a variational wave function ansatz using
the simplified structure of |ΨN 〉 corresponding to pin-
ning.

Due to more involved structure of the polytopes and

gPC for larger settings ∧N [H(d)
1 ] their relevance for phys-

ical applications is not obvious. However, the restrictions
to the smallest few non-trivial mathematical settings,

let’s say ∧3[H(6)
1 ] and ∧3[H(7)

1 ], does not mean to restrict
to three fermion systems with just a 6- or 7-dimensional
1-particle Hilbert space. E.g. for ground states of few
fermion systems (e.g. electrons in atoms) the conflict be-
tween energy minimization and Pauli principle is often so
dominant that a small dimensional active space emerges:
Some electrons are frozen in lower lying energy shells and
all shells with higher energies are never occupied. In-
deed, e.g. for a harmonic system [21] of N -fermions with
the infinite-dimensional 1-particle Hilbert space L2(R3)
N − 3 fermions are frozen and the active space is iso-

morphic to ∧3[H(6)
1 ]. The pinning analysis in this ac-

tive space has shown that the N -fermion ground state is
strongly quasipinned. Similar results were found by Kly-
achko [10] for a Beryllium state where he truncated the

pinning analysis to the active space ∧3[H(7)
1 ].

To conclude, by analytical and numerical means we
have shown that Selection Rule (28) is stable for the case
of quasipinning as long as the NON are not quasidegen-
erate. To deal with the case of (quasi)degenerate NON
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we conjectured a modified selection rule for pinning. Its
uniform stability for the case of quasipinning has been
supported analytically and numerically for the settings
N = 3 and 6 ≤ d ≤ 8. Since pinning and quasipinning
strongly reduces the structure of the N -fermion quantum
states our work may also provide the basis for a gener-
alized Hartree-Fock method, i.e. for a variational ansatz
using the simplified structure for |ΨN 〉 corresponding to
pinning.
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Appendix A: Proof of Theorem 2

Proof. We use the spectral decomposition, D̂ΨN
=∑

∆ ∆P∆, where we sum over all eigenvalues ∆ of D̂ΨN

and denote the projection operator onto the ∆-eigenspace
by P∆. By using the projection operator P (+) onto the
positive spectrum of D̂ΨN

we find

D(~λ) = 〈ΨN |D̂ΨN
|ΨN 〉

=
∑
∆

∆ ‖P∆ΨN‖2L2

≤
∑
0<∆

∆ ‖P∆ΨN‖2L2

≤ ‖D̂ΨN
‖op ‖P (+)ΨN‖2L2

≤ ‖D̂ΨN
‖op (1− ‖PDΨN‖2L2) . (A1)

Appendix B: Proof of Theorem 3

Proof. Consider |Ψ3〉 ∈ ∧3[H(6)
1 ] expanded according to

Eq. (37). The gPC (20) takes the form

D(3,6)(~λ) = −|β|2 + |γ|2 + |δ|2 + 2|ξ|2 + |ζ|2 ≥ 0, (B1)

and thus we find

|β|2 = −D(3,6)(~λ) + |γ|2 + |δ|2 + 2|ξ|2 + |ζ|2 . (B2)

Notice again the strength of the geometric picture.
By recalling the normal vector (−1, 1, 1) for the (red)
plane/facet FD(3,6) in Fig. 2, Eq. (B1) follows immedi-
ately geometrically. Moreover, in Fig. 2 we geometrically
observe that ∆λ ≡ λ3 − λ4 ≥ 0 becomes

∆λ = |α|2+|γ|2+|δ|2+|ξ|2−|β|2−|µ|2−|ν|2−|ζ|2 , (B3)

which yields

|α|2 = ∆λ−D(3,6)(~λ) + |µ|2 + |ν|2 + |ξ|2 + 2|ζ|2 . (B4)

The diagonality of ρ1 w.r.t. the NO |k〉 in particular
means that 〈3|ρ1|4〉 = 0, which leads to

− αβ∗ = γν∗ + δµ∗ + ξζ∗ . (B5)

The idea is now to make use of the fact that for quasip-

inning, D(3,6)(~λ) ≈ 0, the α and β point in Fig. 2
carry the main weight according to Eqs. (B2), (B4). In-
deed, geometrically quasipinning means that ~v is close
to the (red) plane and therefore in particular on the
same side of the (green) plane as the α-point (or maxi-

mally D(3,6)(~λ)-far away on the other side). This means
mathematically that |β|2 ≈ |γ|2 + |δ|2 + 2|ξ|2 + |ζ|2 and
|α|2 & |µ|2 + |ν|2 + |ξ|2 + 2|ζ|2, which together with the
normalization implies |α|2 + |β|2 & 1

2 . From that view-
point Eq. (B5) can imply a quite restrictive condition.
By defining ~v ≡ (ν, µ, ζ) and ~w ≡ (γ, δ, ξ) and using the
Cauchy-Schwartz inequality we find for Eq. (B5)

|α|2|β|2 = |〈~v, ~w〉|2 ≤ |~v|2|~w|2 . (B6)

This together with Eqs. (B2) and (B4) yields

(
|~v|2 + |ξ|2 + |ζ|2 + ∆λ−D(3,6)(~λ)

)(
|~w|2 + |ξ|2 + |ζ|2 −D(3,6)(~λ)

)
≤ |~v|2|~w|2 . (B7)
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This leads to

0 ≥
(
|ξ|2 + |ζ|2 −D(3,6)(~λ)

) (
|~v|2 + |~w|2

)
+
(
|ξ|2 + |ζ|2 −D(3,6)(~λ

)2

+ ∆λ
(
|~w|2 + |ξ|2 + |ζ|2 −D(3,6)(~λ)

)
.(B8)

In particular, since
(
|~w|2 + |ξ|2 + |ζ|2 −D(3,6)(~λ)

)
=

|β|2,∆λ ≥ 0 this requires

|ξ|2 + |ζ|2 ≤ D(3,6)(~λ) . (B9)

Appendix C: Proof of Theorem 4

Proof. The proof will be based on the estimates we have
already found in the proof of Theorem 3. Due to Eq. (B2)
we first estimate the term |γ|2 + |δ|2. Recasting Eq. (B8)
yields

∆λ |~w|2 ≤
(
D(3,6)(~λ)− |ξ|2 − |ζ|2

)(
|~v|2 + |~w|2 −D(3,6)(~λ) + |ξ|2 + |ζ|2

)
+ ∆λ

(
D(3,6)(~λ)− |ξ|2 − |ζ|2

)
(C1)

Then, we estimate (recall that |~w|2 = |γ|2 + |δ|2 + |ξ|2)

∆λ (|γ|2 + |δ|2) ≤ D(3,6)(~λ)
(
|~v|2 + |~w|2 −D(3,6)(~λ) + |ξ|2 + |ζ|2

)
+ ∆λD(3,6)(~λ) . (C2)

Moreover, by using Eqs. (B1), (B3) and ~v ≡ (ν, µ, ζ),
~w ≡ (γ, δ, ξ) we find

|~v|2 + |~w|2 −D(3,6)(~λ) + |ξ|2 + |ζ|2 = |β|2 + |µ|2 + |ν|2 + |ζ|2

= λ4 ≤
1

2
. (C3)

Finally, with Eqs. (B2), (C2), Theorem 3 and ∆λ ≡ λ3−
λ4 this leads to

|β|2 + |γ|2 + |δ|2 ≤ 2(|γ|2 + |δ|2)−D(3,6)(~λ) + 2|ξ|2 + |ζ|2

≤ 2(|γ|2 + |δ|2) +D(3,6)(~λ)

≤ D(3,6)(~λ)

λ3 − λ4
+ 3D(3,6)(~λ) . (C4)
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