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Disclaimers/Apologies

This is not a talk on string phenomenology
This is not a talk on string theory
The dilaton of this talk is not the string theory dilaton

but it is inspired by holography in D =d+1 (here often d=4)
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Disclaimers/Apologies

This is not a talk on string phenomenology
This is not a talk on string theory
The dilaton of this talk is not the string theory dilaton

but it is inspired by holography in D =d+1 (here often d=4)

based on work with A. Schwimmer



In this talk

dilaton:

Goldstone boson of spontaneously broken conformal symmetry

Our goal:
find a low-enery effective action for the dilaton along the lines of

spontaneously broken (anomalous) chiral symmetry

a la Wess, Zumino and Witten



Recall the following features of chiral anomalies (d = 2n):

Couple theory to external gauge fields (gauging the global symmetries)
and integrate out the quarks.

Gauge non-invariance of the resulting (non-local) effective action signals
the anomaly.

Because of the possibility of spontaneous symmetry breaking, we need to
distiguish two phases:

the unbroken and the broken phase



» unbroken phase:

anmalous part of the effective action is the local Chern-Simons
action in d + 1 dimensions with the property (Mg = 0Dy41)

dxScs :5)\/ Wd+1 :/ tr(A.A)
Dy+1 Mgy

A[A] is the anomaly and A are external gauge fields (sources) to
which the (anomalous) currents are coupled.

wq1 is the CS-form with the property dwyi1 = Fld+1)/2



» spontaneously broken case:

G M H e.g. SU(3) x SU(3) — SU(3)diag

with dim(G/H) Goldstone bosons (pions)

Effective action:  d-dim local term + (d + 1)-dim WZW term

(0 model aCtion) gauge invariant reproduces anomaly
POV di
A\SwzwlA, 1] = / tr(AA) independent of 7
M
T
SAA=[AN]+dA

6)\771)\



In this talk:
study analogous issues for trace (conformal, Weyl) anomalies

i.e. construct the effective actions, in particular for the broken
phase.

Here the symmetry breaking pattern is

S0(d,2) — SO(d — 1,1) x Ty

and there is one physical Goldstone boson, the dilaton (see below)



Aside on trace anomalies of CFTs:

> Couple CFT to an external metric g (source for Tj): S[¢] — S[o, g]
> def. effective action eWlel = [Dgp =519l

> global symmetries of S[¢] = local symmetries of W|g]

e Poincaré invariance = diffeo invariance of W|g]

e conformal invariance = Weyl invariance g; — €°7gj;

modulo the trace anomaly

5. Wlel = [ VEoa

where (for d = 4)

A=(T)Y=aE,— cC? S, VEEs ~ x
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Conformal invariance can be spontaneously broken by
(Opa) #0 if A#d

= two phases



Unbroken Phase

» the role of the CS action played by the dual gravitational bulk
action S[G] ind +1

» particular subgroup of d + 1 dim diffeos plays the role of gauge
transformations and produces the anomalies at the bundary

This provides a different and more general view, along the lines
explored here, of the holographic anomaly calculation of
Henningson-Skenderis.



more specifically:

e use 'bulk’ diffeos to bring G to Fefferman-Graham (FG) gauge

dp?

G'u,y dxtdx? = 4p2

1 o
+ — gij(x, p)dx'dx’!
P

with g(x,p) = g(x) + pg®(x) + ... near boundary at p = 0
(FG expansion)

e For gj = 0jj .... AdS metric

e metrics of this form are solutions of gravitational ‘bulk’ actions
which admit AdS solutions

e higher order terms g1, g(®, . are covariant functionals of the
boundary metric g = g, Iargely fixed by symmetries (cf. below)



e gauge fixing not complete; residual diffeos ¢ (PBH 1) such that

LeGpp = LeGpi =0

. . 1 [P )
@ =olp,  &=-dlosl =5 [ dieix o)
= Oegii(x, p) = -

e action on boundary metric g as Weyl transformations
gj — €7gj

o they largely fix gV, g etc.

e bulk action S[G] = [ L(G) is invariant up to a bundary term
5¢S[G] :/ €9, L(G) :/ Jdetg o A(g)
Ms M,

In fact, for the a-anomaly the simplest action with L = /G suffices
(in any even dimension)

1
Penrose-Brown-Henneaux



Broken Phase

Differences compared to the chiral symmetry case

» Conformal symmetry breaking

o . )
conformal group ~ SO(4,2) ﬂ Poincaré group

5 broken generators but only one Goldstone boson — dilaton

e breaking of dilations and special conformal transfs. if T/ # 0

e gauging of SO(4,2) currents is replaced by diffeo and Weyl
invariance

e Goldstone's theorem # Goldstone bosons = dim(G/H) does
not hold for space-time symmetries

e more concretely, for space-time symmetries

50) = Z Ca(x)Qu(O) =0 ca(x) : Goldstone fields

broken
generators

may have nontrivial solutions.



e locally a special conformal transformation cannot be
distinguished from a dilation ... both rescale the metric

e four of the five Goldstone bosons can be gauged away
(inverse Higgs effect)

» The WZW action for the dilaton is local in d = 2n and does not
seem to have any higher dimensional origin. In fact by integrating
the anomaly one finds

SWZW:/d4X\/EL(gaT)

which satisfies

0o Swzw = /d“x\/EaA(g)
T

5g,j:20g,'j

dt=0

Aim of the talk is to uncover its higher dimensional origin



But first ...

the invariant term

» Start with coset

SO(d +1,1)/[SO(d) x Ry] =~ AdSgs1

> coset of GBs can be parametrized by d + 1 fields X*#(x).

» want to construct analogue of a ‘gauged sigma model’
= allow for more general metric G, (X*) on which Weyl
transformations act.

We impose the following requirements:

e G, = Fu[g] ... functional of d-dim metric
e should admit action of a group isomorphic to Weyl
transformations s.t.

6,G = F[e*" gj] — Flgj]

e gi=0; = G = AdS metric



» the FG metrics from above satisfy these requirements.
> the transformations d, are the residual diffeos (PBH)

Insisting on reparametrization invariance we propose the following
(minimal) sigma-model action

S= / d?x/det h;; hij(x) = G (X) 9:X*(x) 9;X" (x)
Reduction to dilaton action is achieved by the gauge choice
XH(x) = (dD(x),Xi(x)) with  X'(x) = x'

(four out of five GB's are gauged away (inverse Higgs effect))



for which the action becomes

5._/dd\/detgux¢ \/ 875, 20N 0()
g.f. — (

®d/2 )

For gjj = 6;; and d = 4 this is the action for the displacement of a D3
brane which breaks gauge and conformal symmetry on the N=4 SYM
Coulomb branch.




for which the action becomes

c /dd Jdetg;(x, <D \/ gii (x, d(x )acb( x) 9;(x)
g.f. =

®9/2(x 40(x)

For gjj = 6;; and d = 4 this is the action for the displacement of a D3
brane which breaks gauge and conformal symmetry on the N=4 SYM
Coulomb branch.

How does @ transform under Weyl transformations and what is its
relation to then dilaton?



Action S is invariant under

e PBH transformations: relate two different backgrund metrics G,,,;
make explicit the variation under change of boundary metric gj;:

®— (1+20(X))P, X' = X'=a'(X, o) (X' =X/(x), d=d(x))

| o)
with 2 (X, b(x)) = / dp'gd(X, ) 9o(X)
0

2
e reparametrizations of the x/
x' = x = €(x)
The invariance of the gauge fixed action S, ¢[g, ®] is that combination
which leaves X'(x) = x' invariant. It translates to

e 9gj(x) = 20(x) g;(x)
o JP(x) = 20(x) D(x) + a'(x, ®(x)) 9;P(x) a' as before



Define dilaton 7 such that under Weyl transformations
T—=T+0

Relation between ® and 7 can be found from the known FG expansions
of g(x, p) and a'(x, p):

(D:e27+%64T(V’1’)2Jre6T(...(VT)4...R(V7‘)2...) +...

Inserting into S, ¢ gives the invariant action (for d=4)

lm/d‘*x\f<1+ R+64(E47~C) >

where g is the Weyl invariant combination

P —27

gj=e "gj

From the symmetries of S, ¢ is was a priori clear that the action had to
be a functional of g.



Aside:

We can easily specialize this discussion to a flat boundary metric (i.e.
AdS bulk metric). In this case the above analysis shows that the D-brane

probe action in AdS has the symmetry
. 1 . 1.
X' =x"— 56’ x4 x" (e x) — 56’ d(x)
d'(x') = P(x) +2¢€- xD(x)

(cf. Maldacena 1997)



The WZW term

Requirements
» should reproduce the anomaly
» should be an action on a d + 1 dim. manifold with boundary

» as the invariant term discussed above, should reduce to a functional
of the dilaton and the boundary metric

Define
faﬁ = GW/(X)(‘)O(XH aﬁXV (a,B,p,v=1,...d+1)

where

e G, bulk metric in FG gauge

o Xt = XH(x',p)

e boundary of manifold at p =0
Then

Swzw = / d?x dpy/det f. 5



Comment

Since the embedding has the same dimension as the space, all relevant
information is in the boundary conditions of the embedding fields X*#

We split them into
XH(x, p) = (X'(x, p), ®(x, p))

Symmetries of Syzw:

e Field transformations relating backgrounds defined by different gj;.
They have the same form as before (PBH) as they are at fixed x.

e reparametrizations in d + 1 dimensions

As before, choose special set of coordinates
X'(x,p) = x

to obtain

1 J V/det gii(x, ®(x, p))
SVVZVV /d Xd 0 (O] q)(x p)1+d/2



Note that this action

J/detg; (x, 9(x. 1))
®(x, p)i+d/2

1 .
Swzw = 5 /ddx dpd,®

through a change of variables p — ®(x, p) for fixed x, depends on

®(x, p) only though its boundary value ®(x, p = 0).



Symmetry of this gauge fixed action (cf. above)
(ng(X) =2 U(X) gl"(X) ) 5¢(X7 p) =20 ¢(Xa p)—|—2i(X, ¢'(X, p)) 8,-<D(x, p)

at boundary p = 0, ®(x, p = 0) has same transformation property as
®(x) of the discussion of Sipy.

= same field redefinition relating ®(x,0) to dilaton 7(x) as before

From that transformation follows that in flat space 7 =0 & d(x,0) = 1.

Using the change of variables p — ®(x, p) we finally define the WZW
action as

®(x,0) det g;i(x, d
Swzw = / do ddxw
1

1
2. Pirar?



Final point: to show that Sywzw reproduces the trace anomalies and the
anomalous dilaton action

» Under simultaneous variation of ® and gj; the action is invariant if
we also transformed the lower limit §(® = 1) = 25(x). However we
keep the lower limit fixed and thus

- 1 f
dSwzw = ~3 / d¥x20(x)y/det gjj(x,® = 1)

a functional purely of the boundary metric gj;.
The anomaly in d = 2n is the term with 2n derivatives 9°"g.



> Using the relation between ®(x,0) and 7 in Swsw one finds the
dilaton action (in d=4)

SWZVV:/leX{—%(\/E_\/E)_A'_%(\/ER)_\/ER)

+6l4<7 Es+4(RY - %Rg”)vﬁ Yy — 4(V7)?Or + 2(%)4)

+ “/TCQ}



Final comment:

e the normalization of Swyzw is fixed by the a-anomaly coefficient

e Both S,y and Swzw contain the dilaton potential [ d*x\/detg

These two contributions must cancel.

This fixes the relative coefficients and in particular fixes the normalization
of Sinv-

One finds in this way the same relative coefficient as for the D3-brane
probe on AdSs where it is required by SUSY (no force condition) while
SUSY played no role in our analysis.



Summary and comments

e In the construction of the sigma-model actions we used their diffeo
invariance. This allowed to gauge away some of the ‘would be
Goldstone bosons’, leaving only the dilaton.

This might be a general feature whenever a space-time symmetry is
spontaneously broken.

e We extensively used ‘gauging’(= coupling to a general ‘boundary’
metric) of the sigma-model to study its symmetries. This gauging
was a natural deformation of the AdSy,1 metric on the Goldstone
boson space. This lead to a natural appearance of the holographic
set-up.

e This gauging might not be the most natural one. In analogy to the
chiral case a coupling of the sigma-model to SO(d + 1,1) gauge
fields might be more natural. But this requires an understanding of
the relation (if any) between the Weyl anomaly and the descent
equations of the conformal group.



