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In this talk

dilaton:

Goldstone boson of spontaneously broken conformal symmetry

Our goal:
find a low-enery effective action for the dilaton along the lines of

spontaneously broken (anomalous) chiral symmetry

à la Wess, Zumino and Witten



Recall the following features of chiral anomalies (d = 2n):

Couple theory to external gauge fields (gauging the global symmetries)
and integrate out the quarks.

Gauge non-invariance of the resulting (non-local) effective action signals
the anomaly.

Because of the possibility of spontaneous symmetry breaking, we need to
distiguish two phases:

the unbroken and the broken phase



I unbroken phase:

anmalous part of the effective action is the local Chern-Simons
action in d + 1 dimensions with the property (Md = ∂Dd+1)

δλSCS = δλ

∫
Dd+1

ωd+1 =

∫
Md

tr(λA)

A[A] is the anomaly and A are external gauge fields (sources) to
which the (anomalous) currents are coupled.

ωd+1 is the CS-form with the property dωd+1 = F (d+1)/2



I spontaneously broken case:

G
〈qq̄〉6=0−−−−→ H e.g. SU(3)× SU(3)→ SU(3)diag

with dim(G/H) Goldstone bosons (pions)

Effective action: d - dim local term︸ ︷︷ ︸
gauge invariant

+ (d + 1) - dim WZW term︸ ︷︷ ︸
reproduces anomaly(σ model action)

π

δλSWZW[A, π] =

∫
Md

tr(λA) independent of π

↑
δλA=[A,λ]+dλ

δλπ=λ



In this talk:

study analogous issues for trace (conformal, Weyl) anomalies

i.e. construct the effective actions, in particular for the broken
phase.

Here the symmetry breaking pattern is

SO(d , 2)→ SO(d − 1, 1)× Td

and there is one physical Goldstone boson, the dilaton (see below)



Aside on trace anomalies of CFTs:

I Couple CFT to an external metric g (source for Tij): S [φ]→ S [φ, g ]

I def. effective action eW [g ] =
∫
Dφ e−S[φ,g ]

I global symmetries of S [φ] ⇒ local symmetries of W [g ]

• Poincaré invariance ⇒ diffeo invariance of W [g ]

• conformal invariance ⇒ Weyl invariance gij → e2σgij

modulo the trace anomaly

δσW [g ] =

∫ √
g σA

where (for d = 4)

A = 〈T i
i 〉 = a E4 − c C 2

∫
M4

√
gE4 ∼ χ
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Conformal invariance can be spontaneously broken by

〈O∆〉 6= 0 if ∆ 6= d

⇒ two phases



Unbroken Phase

I the role of the CS action played by the dual gravitational bulk
action S [G ] in d + 1

I particular subgroup of d + 1 dim diffeos plays the role of gauge
transformations and produces the anomalies at the bundary

This provides a different and more general view, along the lines
explored here, of the holographic anomaly calculation of
Henningson-Skenderis.



more specifically:

• use ‘bulk’ diffeos to bring G to Fefferman-Graham (FG) gauge

Gµνdx
µdxν =

dρ2

4ρ2
+

1

ρ
gij(x , ρ)dx idx j

with g(x , ρ) = g(x) + ρ g (1)(x) + . . . near boundary at ρ = 0
(FG expansion)

• For gij = δij .... AdS metric

• metrics of this form are solutions of gravitational ‘bulk’ actions
which admit AdS solutions

• higher order terms g (1), g (2),. . . are covariant functionals of the
boundary metric g (0) ≡ g , largely fixed by symmetries (cf. below)



• gauge fixing not complete; residual diffeos ξµ (PBH 1) such that

LξGρρ = LξGρi = 0

ξρ = σ(x)ρ , ξi ≡ −ai [σ, ρ] = −1

2

∫ ρ

dρ′g ij(x , ρ′)∂iσ(x)

⇒ δξgij(x , ρ) = ...

• action on boundary metric g as Weyl transformations
gij → e2σgij

• they largely fix g (1), g (2), etc.

• bulk action S [G ] =
∫
L(G ) is invariant up to a bundary term

δξS [G ] =

∫
M5

ξµ∂µL(G ) =

∫
M4

√
det g σA(g)

In fact, for the a-anomaly the simplest action with L =
√
G suffices

(in any even dimension)

1Penrose-Brown-Henneaux



Broken Phase

Differences compared to the chiral symmetry case

I Conformal symmetry breaking

conformal group ' SO(4, 2)
〈O〉6=0−−−−→ Poincaré group

5 broken generators but only one Goldstone boson — dilaton

• breaking of dilations and special conformal transfs. if T i
i 6= 0

• gauging of SO(4, 2) currents is replaced by diffeo and Weyl
invariance

• Goldstone’s theorem # Goldstone bosons = dim(G/H) does
not hold for space-time symmetries

• more concretely, for space-time symmetries

δ〈O〉 =
∑

broken
generators

cα(x)Qα〈O〉 = 0 cα(x) : Goldstone fields

may have nontrivial solutions.



• locally a special conformal transformation cannot be
distinguished from a dilation ... both rescale the metric

• four of the five Goldstone bosons can be gauged away
(inverse Higgs effect)

I The WZW action for the dilaton is local in d = 2n and does not
seem to have any higher dimensional origin. In fact by integrating
the anomaly one finds

SWZW =

∫
d4x
√
gL(g , τ)

which satisfies

δσSWZW =

∫
d4x
√
g σA(g)

↑
δgij=2σgij

δτ=σ

Aim of the talk is to uncover its higher dimensional origin



But first ...

the invariant term

I Start with coset

SO(d + 1, 1)/[SO(d)× Rd ] ' AdSd+1

I coset of GBs can be parametrized by d + 1 fields Xµ(x).

I want to construct analogue of a ‘gauged sigma model’
⇒ allow for more general metric Gµν(Xλ) on which Weyl
transformations act.

We impose the following requirements:

• Gµν = Fµν [g ] .... functional of d-dim metric
• should admit action of a group isomorphic to Weyl

transformations s.t.

δσG = F [e2σgij ]− F [gij ]

• gij = δij ⇒ G = AdS metric



I the FG metrics from above satisfy these requirements.

I the transformations δσ are the residual diffeos (PBH)

Insisting on reparametrization invariance we propose the following
(minimal) sigma-model action

S =

∫
ddx

√
det hij hij(x) = Gµν(X ) ∂iX

µ(x) ∂jX
ν(x)

Reduction to dilaton action is achieved by the gauge choice

Xµ(x) =
(
Φ(x),X i (x)

)
with X i (x) = x i

(four out of five GB’s are gauged away (inverse Higgs effect))



for which the action becomes

Sg.f. =

∫
ddx

√
det gij(x ,Φ(x))

Φd/2(x)

√
1 +

g ij(x ,Φ(x))∂iΦ(x) ∂jΦ(x)

4 Φ(x)

For gij = δij and d = 4 this is the action for the displacement of a D3
brane which breaks gauge and conformal symmetry on the N=4 SYM
Coulomb branch.

How does Φ transform under Weyl transformations and what is its
relation to then dilaton?
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Action S is invariant under

• PBH transformations: relate two different backgrund metrics Gµν ;
make explicit the variation under change of boundary metric gij :

Φ→
(
1+2σ(X )

)
Φ , X i → X i−ai (X j ,Φ)

(
X i = X i (x), Φ = Φ(x)

)
with ai (X ,Φ(x)) =

1

2

∫ Φ(x)

0

dρ′g ij(X , ρ′) ∂iσ(X )

• reparametrizations of the x i

x i → x i − ξi (x)

The invariance of the gauge fixed action Sg.f [g ,Φ] is that combination
which leaves X i (x) = x i invariant. It translates to

• δgij(x) = 2σ(x) gij(x)

• δΦ(x) = 2σ(x) Φ(x) + ai (x ,Φ(x)) ∂iΦ(x) ai as before



Define dilaton τ such that under Weyl transformations

τ → τ + σ

Relation between Φ and τ can be found from the known FG expansions
of g(x , ρ) and ai (x , ρ):

Φ = e2τ +
1

2
e4τ (∇τ)2 + e6τ

(
. . . (∇τ)4 . . .R(∇τ)2 . . .

)
+ . . .

Inserting into Sg.f gives the invariant action (for d=4)

Sinv =

∫
d4x

√
ĝ

(
1 +

1

12
R̂ +

1

64
(Ê4 − γ Ĉ ) + . . .

)
where ĝ is the Weyl invariant combination

ĝij = e−2τgij

From the symmetries of Sg.f is was a priori clear that the action had to

be a functional of ĝ .



Aside:

We can easily specialize this discussion to a flat boundary metric (i.e.
AdS bulk metric). In this case the above analysis shows that the D-brane
probe action in AdS has the symmetry

x ′i = x i − 1

2
εi x2 + x i (ε · x)− 1

2
εi Φ(x)

Φ′(x ′) = Φ(x) + 2 ε · x Φ(x) (1)

(cf. Maldacena 1997)



The WZW term

Requirements

I should reproduce the anomaly

I should be an action on a d + 1 dim. manifold with boundary

I as the invariant term discussed above, should reduce to a functional
of the dilaton and the boundary metric

Define

fαβ = Gµν(X )∂αX
µ ∂βX

ν
(α,β,µ,ν=1,...d+1)

where

• Gµν bulk metric in FG gauge

• Xµ = Xµ(x i , ρ)

• boundary of manifold at ρ = 0

Then

SWZW =

∫
ddx dρ

√
det fαβ



Comment

Since the embedding has the same dimension as the space, all relevant
information is in the boundary conditions of the embedding fields Xµ

We split them into

Xµ(x , ρ) = (X i (x , ρ),Φ(x , ρ))

Symmetries of SWZW:

• Field transformations relating backgrounds defined by different gij .
They have the same form as before (PBH) as they are at fixed x .

• reparametrizations in d + 1 dimensions

As before, choose special set of coordinates

X i (x , ρ) = x i

to obtain

SWZW =
1

2

∫
ddx dρ ∂ρΦ

√
det gij(x ,Φ(x , ρ))

Φ(x , ρ)1+d/2



Note that this action

SWZW =
1

2

∫
ddx dρ ∂ρΦ

√
det gij(x ,Φ(x , ρ))

Φ(x , ρ)1+d/2

through a change of variables ρ→ Φ(x , ρ) for fixed x , depends on

Φ(x , ρ) only though its boundary value Φ(x , ρ = 0).



Symmetry of this gauge fixed action (cf. above)

δgij(x) = 2σ(x) gij(x) , δΦ(x , ρ) = 2σΦ(x , ρ)+ai (x ,Φ(x , ρ)) ∂iΦ(x , ρ)

at boundary ρ = 0, Φ(x , ρ = 0) has same transformation property as
Φ(x) of the discussion of Sinv.

⇒ same field redefinition relating Φ(x , 0) to dilaton τ(x) as before

From that transformation follows that in flat space τ = 0
∧
= Φ(x , 0) = 1.

Using the change of variables ρ→ Φ(x , ρ) we finally define the WZW
action as

SWZW =
1

2

∫ Φ(x,0)

1

dΦ ddx

√
det gij(x ,Φ)

Φ1+d/2



Final point: to show that SWZW reproduces the trace anomalies and the
anomalous dilaton action

I Under simultaneous variation of Φ and gij the action is invariant if
we also transformed the lower limit δ(Φ = 1) = 2σ(x). However we
keep the lower limit fixed and thus

δSWZW = −1

2

∫
ddx 2σ(x)

√
det gij(x ,Φ = 1)

a functional purely of the boundary metric gij .

The anomaly in d = 2n is the term with 2n derivatives ∂2ng .



I Using the relation between Φ(x , 0) and τ in SWSW one finds the
dilaton action (in d=4)

SWZW =

∫
d4x

{
− 1

4

(√
ĝ −√g

)
+

1

24

(√
ĝ R̂ −√gR

)
+

1

64

(
τ E4 + 4

(
R ij − 1

2
R g ij

)
∇iτ ∇jτ − 4(∇τ)2�τ + 2(∇τ)4

)
+ γ τC 2

}



Final comment:

• the normalization of SWZW is fixed by the a-anomaly coefficient

• Both Sinv and SWZW contain the dilaton potential
∫
d4x
√

det ĝ

These two contributions must cancel.

This fixes the relative coefficients and in particular fixes the normalization
of Sinv.

One finds in this way the same relative coefficient as for the D3-brane
probe on AdS5 where it is required by SUSY (no force condition) while
SUSY played no role in our analysis.



Summary and comments

• In the construction of the sigma-model actions we used their diffeo
invariance. This allowed to gauge away some of the ‘would be
Goldstone bosons’, leaving only the dilaton.

This might be a general feature whenever a space-time symmetry is
spontaneously broken.

• We extensively used ‘gauging’(= coupling to a general ‘boundary’
metric) of the sigma-model to study its symmetries. This gauging
was a natural deformation of the AdSd+1 metric on the Goldstone
boson space. This lead to a natural appearance of the holographic
set-up.

• This gauging might not be the most natural one. In analogy to the
chiral case a coupling of the sigma-model to SO(d + 1, 1) gauge
fields might be more natural. But this requires an understanding of
the relation (if any) between the Weyl anomaly and the descent
equations of the conformal group.


