Comments on Dilaton Actions

Stefan Theisen

Albert-Einstein-Insitut Golm

Schloss Ringberg July 31, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Disclaimers/Apologies

- This is not a talk on string phenomenology
- This is not a talk on string theory
- The dilaton of this talk is not the string theory dilaton
- ▶ but it is inspired by holography in D = d+1 (here often d=4)

(日) (문) (문) (문) (문)

Disclaimers/Apologies

- This is not a talk on string phenomenology
- This is not a talk on string theory
- The dilaton of this talk is not the string theory dilaton
- ▶ but it is inspired by holography in D = d+1 (here often d=4)

based on work with A. Schwimmer

(日) (四) (문) (문) (문)

In this talk

dilaton:

Goldstone boson of spontaneously broken conformal symmetry

Our goal: find a low-enery effective action for the dilaton along the lines of

spontaneously broken (anomalous) chiral symmetry

(中) (종) (종) (종) (종) (종)

à la Wess, Zumino and Witten

Recall the following features of chiral anomalies (d = 2n):

Couple theory to external gauge fields (gauging the global symmetries) and integrate out the quarks.

Gauge non-invariance of the resulting (non-local) effective action signals the anomaly.

Because of the possibility of spontaneous symmetry breaking, we need to distiguish two phases:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

the unbroken and the broken phase

unbroken phase:

anialous part of the effective action is the local Chern-Simons action in d + 1 dimensions with the property $(\mathcal{M}_d = \partial \mathcal{D}_{d+1})$

 $\mathcal{A}[A]$ is the anomaly and A are external gauge fields (sources) to which the (anomalous) currents are coupled.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 ω_{d+1} is the CS-form with the property $d\omega_{d+1} = F^{(d+1)/2}$

spontaneously broken case:

$$G \xrightarrow{\langle q\bar{q} \rangle \neq 0} H$$
 e.g. $SU(3) \times SU(3) \rightarrow SU(3)_{\text{diag}}$

with $\dim(G/H)$ Goldstone bosons (pions)

æ

In this talk:

study analogous issues for trace (conformal, Weyl) anomalies

i.e. construct the effective actions, in particular for the broken phase.

Here the symmetry breaking pattern is

$$SO(d,2)
ightarrow SO(d-1,1) imes T_d$$

and there is one physical Goldstone boson, the dilaton (see below)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Aside on trace anomalies of CFTs:

- ▶ Couple CFT to an external metric g (source for T_{ij}): $S[\phi] \rightarrow S[\phi, g]$
- def. effective action $e^{W[g]} = \int \mathcal{D}\phi \, e^{-\mathcal{S}[\phi,g]}$
- global symmetries of $S[\phi] \Rightarrow$ local symmetries of W[g]
 - Poincaré invariance ⇒ diffeo invariance of W[g]
 - conformal invariance \Rightarrow Weyl invariance $g_{ij} \rightarrow e^{2\sigma}g_{ij}$

modulo the trace anomaly

$$\delta_{\sigma} W[g] = \int \sqrt{g} \, \sigma \mathcal{A}$$

where (for d = 4)

$$\mathcal{A} = \langle T_i^i \rangle = a E_4 - c C^2 \qquad \int_{\mathcal{M}_4} \sqrt{g} E_4 \sim \chi$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Aside on trace anomalies of CFTs:

- ▶ Couple CFT to an external metric g (source for T_{ij}): $S[\phi] \rightarrow S[\phi, g]$
- def. effective action $e^{W[g]} = \int \mathcal{D}\phi \, e^{-\mathcal{S}[\phi,g]}$
- global symmetries of $S[\phi] \Rightarrow$ local symmetries of W[g]
 - Poincaré invariance \Rightarrow diffeo invariance of W[g]
 - conformal invariance \Rightarrow Weyl invariance $g_{ij} \rightarrow e^{2\sigma}g_{ij}$

modulo the trace anomaly

$$\delta_{\sigma} W[g] = \int \sqrt{g} \, \sigma \mathcal{A}$$

where (for d = 4)

$$\mathcal{A} = \langle T_i^i \rangle = a E_4 - c C^2 \qquad \int_{\mathcal{M}_4} \sqrt{g} E_4 \sim \chi$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Conformal invariance can be spontaneously broken by

$$\langle \mathcal{O}_{\Delta}
angle
eq 0 \quad \text{if} \quad \Delta
eq d$$

 \Rightarrow two phases

Unbroken Phase

- ► the role of the CS action played by the dual gravitational bulk action S[G] in d + 1
- ▶ particular subgroup of d + 1 dim diffeos plays the role of gauge transformations and produces the anomalies at the bundary

This provides a different and more general view, along the lines explored here, of the holographic anomaly calculation of Henningson-Skenderis.

more specifically:

• use 'bulk' diffeos to bring G to Fefferman-Graham (FG) gauge

$$G_{\mu
u}dx^{\mu}dx^{
u}=rac{d
ho^2}{4
ho^2}+rac{1}{
ho}\,g_{ij}(x,
ho)dx^idx^j$$

with $g(x, \rho) = g(x) + \rho g^{(1)}(x) + \dots$ near boundary at $\rho = 0$ (FG expansion)

- For $g_{ij} = \delta_{ij}$ AdS metric
- metrics of this form are solutions of gravitational 'bulk' actions which admit AdS solutions
- higher order terms $g^{(1)}, g^{(2)}, \ldots$ are covariant functionals of the boundary metric $g^{(0)} \equiv g$, largely fixed by symmetries (cf. below)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• gauge fixing not complete; residual diffeos ξ^{μ} (PBH ¹) such that

$$\mathcal{L}_{\xi}G_{\rho\rho} = \mathcal{L}_{\xi}G_{\rho i} = 0$$

$$\xi^{\rho} = \sigma(x)\rho, \qquad \xi^{i} \equiv -a^{i}[\sigma,\rho] = -\frac{1}{2}\int^{\rho}d\rho'g^{ij}(x,\rho')\partial_{i}\sigma(x)$$

$$\Rightarrow \quad \delta_{\xi}g_{ij}(x,\rho) = \dots$$

- action on boundary metric g as Weyl transformations $g_{ij}
 ightarrow e^{2\sigma}g_{ij}$
- they largely fix $g^{(1)}, g^{(2)}$, etc.
- bulk action $S[G] = \int L(G)$ is invariant up to a bundary term

$$\delta_{\xi}S[G] = \int_{\mathcal{M}_5} \xi^{\mu} \partial_{\mu}L(G) = \int_{\mathcal{M}_4} \sqrt{\det g} \, \sigma \, \mathcal{A}(g)$$

In fact, for the *a*-anomaly the simplest action with $L = \sqrt{G}$ suffices (in any even dimension)

¹Penrose-Brown-Henneaux

Broken Phase

Differences compared to the chiral symmetry case

Conformal symmetry breaking

conformal group $\simeq SO(4,2) \xrightarrow{\langle \mathcal{O} \rangle \neq 0}$ Poincaré group

5 broken generators but only one Goldstone boson — dilaton

- breaking of dilations and special conformal transfs. if $T_i^i \neq 0$
- gauging of *SO*(4, 2) currents is replaced by diffeo and Weyl invariance
- Goldstone's theorem # Goldstone bosons = dim(G/H) does not hold for space-time symmetries
- more concretely, for space-time symmetries

$$\delta \langle \mathcal{O}
angle = \sum_{ ext{broken} \ ext{generators}} c_{lpha}(x) Q_{lpha} \langle \mathcal{O}
angle = 0 \qquad c_{lpha}(x): ext{ Goldstone fields}$$

may have nontrivial solutions.

- locally a special conformal transformation cannot be distinguished from a dilation ... both rescale the metric
- four of the five Goldstone bosons can be gauged away (inverse Higgs effect)
- The WZW action for the dilaton is local in d = 2n and does not seem to have any higher dimensional origin. In fact by integrating the anomaly one finds

$$S_{
m WZW} = \int d^4 x \sqrt{g} \mathcal{L}(g, au)$$

which satisfies

$$\delta_{\sigma}S_{\mathrm{WZW}} = \int d^{4}x \sqrt{g} \ \sigma \mathcal{A}(g)$$
 \uparrow
 $\delta_{g_{ij}=2\sigma g_{ij}}$
 $\delta_{ au=\sigma}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Aim of the talk is to uncover its higher dimensional origin

But first ...

the invariant term

Start with coset

$$SO(d+1,1)/[SO(d) imes \mathbb{R}_d] \simeq AdS_{d+1}$$

- coset of GBs can be parametrized by d + 1 fields $X^{\mu}(x)$.
- want to construct analogue of a 'gauged sigma model' \Rightarrow allow for more general metric $G_{\mu\nu}(X^{\lambda})$ on which Weyl transformations act.

We impose the following requirements:

- $G_{\mu\nu} = F_{\mu\nu}[g]$ functional of *d*-dim metric
- should admit action of a group isomorphic to Weyl transformations s.t.

$$\delta_{\sigma}G = F[e^{2\sigma}g_{ij}] - F[g_{ij}]$$

•
$$g_{ij} = \delta_{ij} \Rightarrow G = AdS$$
 metric

- ▶ the FG metrics from above satisfy these requirements.
- the transformations δ_{σ} are the residual diffeos (PBH)

Insisting on reparametrization invariance we propose the following (minimal) sigma-model action

$$S = \int d^d x \sqrt{\det h_{ij}}$$
 $h_{ij}(x) = G_{\mu\nu}(X) \partial_i X^{\mu}(x) \partial_j X^{\nu}(x)$

Reduction to dilaton action is achieved by the gauge choice

$$X^{\mu}(x) = (\Phi(x), X^{i}(x))$$
 with $X^{i}(x) = x^{i}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

(four out of five GB's are gauged away (inverse Higgs effect))

for which the action becomes

$$S_{\rm g.f.} = \int d^d x \frac{\sqrt{\det g_{ij}(x,\Phi(x))}}{\Phi^{d/2}(x)} \sqrt{1 + \frac{g^{ij}(x,\Phi(x))\partial_i\Phi(x)}{4\Phi(x)}}$$

For $g_{ij} = \delta_{ij}$ and d = 4 this is the action for the displacement of a D3 brane which breaks gauge and conformal symmetry on the N=4 SYM Coulomb branch.

for which the action becomes

$$S_{\rm g.f.} = \int d^d x \frac{\sqrt{\det g_{ij}(x,\Phi(x))}}{\Phi^{d/2}(x)} \sqrt{1 + \frac{g^{ij}(x,\Phi(x))\partial_i\Phi(x)\partial_j\Phi(x)}{4\Phi(x)}}$$

For $g_{ij} = \delta_{ij}$ and d = 4 this is the action for the displacement of a D3 brane which breaks gauge and conformal symmetry on the N=4 SYM Coulomb branch.

How does Φ transform under Weyl transformations and what is its relation to then dilaton?

Action S is invariant under

 PBH transformations: relate two different backgrund metrics G_{μν}; make explicit the variation under change of boundary metric g_{ij}:

$$\Phi
ightarrow ig(1+2\,\sigma(X)ig)\Phi\,, \quad X^i
ightarrow X^i-a^i(X^j,\Phi) \qquad ig(X^i=X^i(x),\,\Phi=\Phi(x)ig)$$

with
$$a^i(X,\Phi(x)) = \frac{1}{2} \int_0^{\Phi(x)} d\rho' g^{ij}(X,\rho') \partial_i \sigma(X)$$

reparametrizations of the xⁱ

$$x^i
ightarrow x^i - \xi^i(x)$$

The invariance of the gauge fixed action $S_{g.f}[g, \Phi]$ is that combination which leaves $X^i(x) = x^i$ invariant. It translates to

- $\delta g_{ij}(x) = 2\sigma(x) g_{ij}(x)$
- $\delta \Phi(x) = 2\sigma(x) \Phi(x) + a^i(x, \Phi(x)) \partial_i \Phi(x)$ a^i as before

Define dilaton au such that under Weyl transformations

$$\tau \rightarrow \tau + \sigma$$

Relation between Φ and τ can be found from the known FG expansions of $g(x, \rho)$ and $a^i(x, \rho)$:

$$\Phi = e^{2\tau} + \frac{1}{2}e^{4\tau}(\nabla\tau)^2 + e^{6\tau}(\dots(\nabla\tau)^4\dots R(\nabla\tau)^2\dots) + \dots$$

Inserting into $S_{g.f}$ gives the invariant action (for d=4)

$$S_{
m inv} = \int d^4 x \sqrt{\hat{g}} \left(1 + \frac{1}{12} \hat{R} + \frac{1}{64} (\hat{E}_4 - \gamma \hat{C}) + \dots \right)$$

where \hat{g} is the Weyl invariant combination

$$\hat{g}_{ij}=e^{-2 au}g_{ij}$$

From the symmetries of $S_{g.f}$ is was a priori clear that the action had to be a functional of \hat{g} .

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Aside:

We can easily specialize this discussion to a flat boundary metric (i.e. AdS bulk metric). In this case the above analysis shows that the D-brane probe action in AdS has the symmetry

$$x^{\prime i} = x^{i} - \frac{1}{2}\epsilon^{i} x^{2} + x^{i} (\epsilon \cdot x) - \frac{1}{2}\epsilon^{i} \Phi(x)$$

$$\Phi^{\prime}(x^{\prime}) = \Phi(x) + 2\epsilon \cdot x \Phi(x)$$
(1)

(cf. Maldacena 1997)

The WZW term

Requirements

- should reproduce the anomaly
- should be an action on a d + 1 dim. manifold with boundary
- as the invariant term discussed above, should reduce to a functional of the dilaton and the boundary metric

Define

$$f_{\alpha\beta} = G_{\mu\nu}(X)\partial_{\alpha}X^{\mu}\partial_{\beta}X^{\nu} \qquad (\alpha,\beta,\mu,\nu=1,\dots,d+1)$$

where

• $G_{\mu\nu}$ bulk metric in FG gauge

•
$$X^{\mu} = X^{\mu}(x^{i}, \rho)$$

• boundary of manifold at $\rho = 0$

Then

$$S_{
m WZW} = \int d^d x \, d
ho \sqrt{\det f_{lphaeta}}$$

Comment

Since the embedding has the same dimension as the space, all relevant information is in the boundary conditions of the embedding fields X^{μ} We split them into

$$X^{\mu}(x,\rho) = (X^{i}(x,\rho), \Phi(x,\rho))$$

Symmetries of S_{WZW} :

- Field transformations relating backgrounds defined by different g_{ij}. They have the same form as before (PBH) as they are at fixed x.
- reparametrizations in d + 1 dimensions

As before, choose special set of coordinates

$$X^i(x,\rho)=x^i$$

to obtain

$$S_{\rm WZW} = \frac{1}{2} \int d^d x \, d\rho \, \partial_\rho \Phi \frac{\sqrt{\det g_{ij}(x, \Phi(x, \rho))}}{\Phi(x, \rho)^{1+d/2}}$$

(日) (四) (문) (문) (문)

Note that this action

$$S_{\rm WZW} = \frac{1}{2} \int d^d x \, d\rho \, \partial_\rho \Phi \frac{\sqrt{\det g_{ij}(x, \Phi(x, \rho))}}{\Phi(x, \rho)^{1+d/2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

through a change of variables $\rho \to \Phi(x, \rho)$ for fixed x, depends on $\Phi(x, \rho)$ only though its boundary value $\Phi(x, \rho = 0)$.

Symmetry of this gauge fixed action (cf. above)

 $\delta g_{ij}(x) = 2 \sigma(x) g_{ij}(x), \qquad \delta \Phi(x, \rho) = 2\sigma \Phi(x, \rho) + a^{i}(x, \Phi(x, \rho)) \partial_{i} \Phi(x, \rho)$

at boundary $\rho = 0$, $\Phi(x, \rho = 0)$ has same transformation property as $\Phi(x)$ of the discussion of S_{inv} .

 \Rightarrow same field redefinition relating $\Phi(x,0)$ to dilaton $\tau(x)$ as before

From that transformation follows that in flat space $\tau = 0 \stackrel{\wedge}{=} \Phi(x, 0) = 1$.

Using the change of variables $\rho \rightarrow \Phi(x, \rho)$ we finally define the WZW action as

$$S_{\rm WZW} = \frac{1}{2} \int_1^{\Phi(x,0)} d\Phi \, d^d x \frac{\sqrt{\det g_{ij}(x,\Phi)}}{\Phi^{1+d/2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Final point: to show that $S_{\rm WZW}$ reproduces the trace anomalies and the anomalous dilaton action

• Under simultaneous variation of Φ and g_{ij} the action is invariant if we also transformed the lower limit $\delta(\Phi = 1) = 2\sigma(x)$. However we keep the lower limit fixed and thus

$$\delta S_{\rm WZW} = -\frac{1}{2} \int d^d x \, 2\sigma(x) \sqrt{\det g_{ij}(x, \Phi = 1)}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

a functional purely of the boundary metric g_{ij} .

The anomaly in d = 2n is the term with 2n derivatives $\partial^{2n}g$.

► Using the relation between Φ(x, 0) and τ in S_{WSW} one finds the dilaton action (in d=4)

$$S_{\text{WZW}} = \int d^4x \left\{ -\frac{1}{4} \left(\sqrt{\hat{g}} - \sqrt{g} \right) + \frac{1}{24} \left(\sqrt{\hat{g}} \hat{R} - \sqrt{g} R \right) \right. \\ \left. + \frac{1}{64} \left(\tau E_4 + 4 \left(R^{ij} - \frac{1}{2} R g^{ij} \right) \nabla_i \tau \nabla_j \tau - 4 (\nabla \tau)^2 \Box \tau + 2 (\nabla \tau)^4 \right) \right. \\ \left. + \gamma \tau C^2 \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Final comment:

- the normalization of S_{WZW} is fixed by the *a*-anomaly coefficient
- Both $S_{\rm inv}$ and $S_{\rm WZW}$ contain the dilaton potential $\int d^4x \, \sqrt{\det \hat{g}}$

These two contributions must cancel.

This fixes the relative coefficients and in particular fixes the normalization of $S_{\rm inv}.$

One finds in this way the same relative coefficient as for the D3-brane probe on AdS_5 where it is required by SUSY (no force condition) while SUSY played no role in our analysis.

Summary and comments

• In the construction of the sigma-model actions we used their diffeo invariance. This allowed to gauge away some of the 'would be Goldstone bosons', leaving only the dilaton.

This might be a general feature whenever a space-time symmetry is spontaneously broken.

- We extensively used 'gauging'(= coupling to a general 'boundary' metric) of the sigma-model to study its symmetries. This gauging was a natural deformation of the AdS_{d+1} metric on the Goldstone boson space. This lead to a natural appearance of the holographic set-up.
- This gauging might not be the most natural one. In analogy to the chiral case a coupling of the sigma-model to SO(d + 1, 1) gauge fields might be more natural. But this requires an understanding of the relation (if any) between the Weyl anomaly and the descent equations of the conformal group.