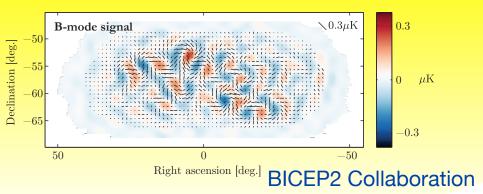

F-term Monodromy Inflation

Marchesano, GS, Uranga, arXiv:1404.3040

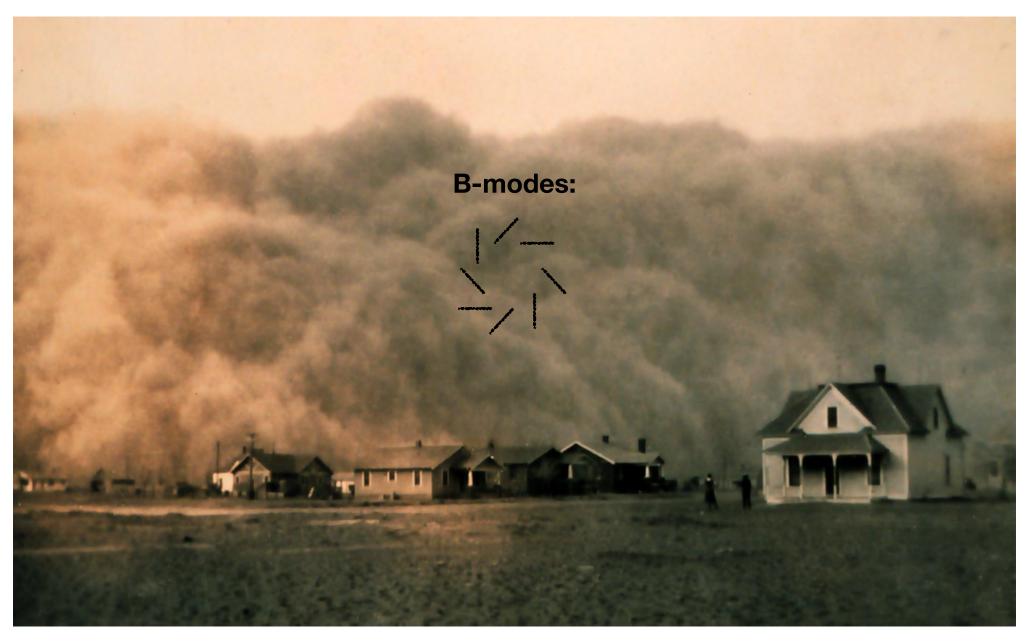
Gary Shiu

University of Wisconsin & HKUST

Monodromies are everywhere ...



Monodromies are everywhere ...



Is it Primordial?

Dust is not entirely settled ...

BICEP2 and Inflation

If the BICEP2 results are confirmed to be primordial, natural interpretations:

- ◆ Inflation took place
- ◆ The energy scale of inflation is the GUT scale

$$E_{\rm inf} \simeq 0.75 \times \left(\frac{r}{0.1}\right)^{1/4} \times 10^{-2} M_{\rm Pl}$$

◆ The inflaton field excursion was super-Planckian

$$\Delta \phi \gtrsim \left(rac{r}{0.01}
ight)^{1/2} M_{
m Pl}$$
 Lyth '96

Great news for string theory due to strong UV sensitivity!

- single field
- slow-roll
- Bunch-Davies initial conditions
- vacuum fluctuations

- single field
- slow-roll
- Bunch-Davies initial conditions

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

vacuum fluctuations

- single field
- slow-roll
- Bunch-Davies initial conditions
- vacuum fluctuations

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Particle production during inflation can be a source of GWs

$$\left[\partial_{\tau}^{2} + k^{2} - \frac{a''}{a}\right] (a \,\delta g_{ij}) = S_{ij}$$

- single field
- slow-roll
- Bunch-Davies initial conditions
- vacuum fluctuations

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Particle production during inflation can be a source of GWs

$$\left[\partial_{\tau}^{2} + k^{2} - \frac{a''}{a}\right] (a \,\delta g_{ij}) = S_{ij}$$

Cook and Sorbo

Senatore, Silverstein, Zaldarriaga

Barnaby, Moxon, Namba, Peloso, GS, Zhou Mukohyama, Namba, Peloso, GS

- single field
- slow-roll
- Bunch-Davies initial conditions
- vacuum fluctuations

Only known model of particle production shown to give detectable tensors w/o too large non-Gaussianity

Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Particle production during inflation can be a source of GWs

$$\left[\partial_{\tau}^{2} + k^{2} - \frac{a''}{a}\right] (a \,\delta g_{ij}) = S_{ij}$$

Cook and Sorbo

Senatore, Silverstein, Zaldarriaga

Barnaby, Moxon, Namba, Peloso, GS, Zhou

Mukohyama, Namba, Peloso, GS

- single field
- slow-roll
- Bunch-Davies initial conditions
- vacuum fluctuations

Only known model of particle production shown to give detectable tensors w/o too large non-Gaussianity

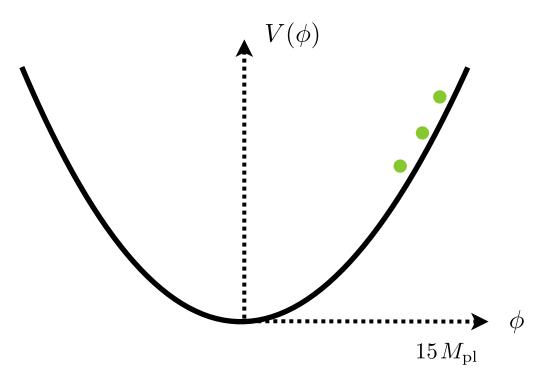
Ashoorioon, Dimopoulos, Sheikh-Jabbari, GS Collins, Holman, Vardanyan Aravind, Lorshbough, Paban

Particle production during inflation can be a source of GWs

$$\left[\partial_{\tau}^{2} + k^{2} - \frac{a''}{a}\right] (a \,\delta g_{ij}) = S_{ij}$$

Cook and Sorbo

Senatore, Silverstein, Zaldarriaga

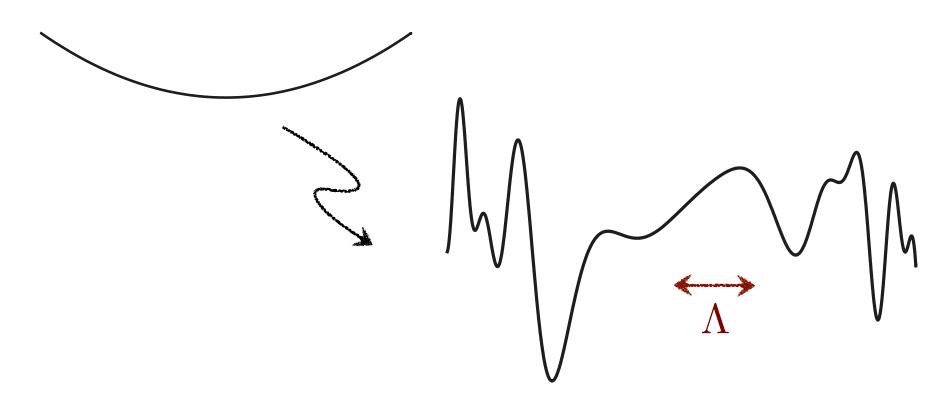

Barnaby, Moxon, Namba, Peloso, GS, Zhou

Mukohyama, Namba, Peloso, GS

- Due to an axionic a F∧ F coupling, tensor spectrum is chiral and non-Gaussian.
- * **Model building constraints:** $f/M_P \geq 10^{-4}$ quite natural in string theory

- A poster child inflation model (also seems favored) is $V = m^2 \phi^2$:
 - Loop corrections involving inflaton and gravitons are small due to approximate shift symmetry

$$\phi \mapsto \phi + \text{const.}$$



Coupling to UV degrees of freedom in quantum gravity a priori breaks this shift symmetry and lead to corrections that spoil inflation, because of the large field excursions

$$\mathcal{L}_{\text{eff}}[\phi] = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \sum_{i=1}^{\infty} c_i \, \phi^{2i} \Lambda^{4-2i}$$

Chaotic Inflation

$$\mathcal{L}_{\text{eff}}[\phi] = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 + \sum_{i=1}^{\infty} c_i \, \phi^{2i} \Lambda^{4-2i}$$

Natural Inflation Freese, Frieman, Olinto '90

String models where the inflaton is an axion in principle can

avoid this problem

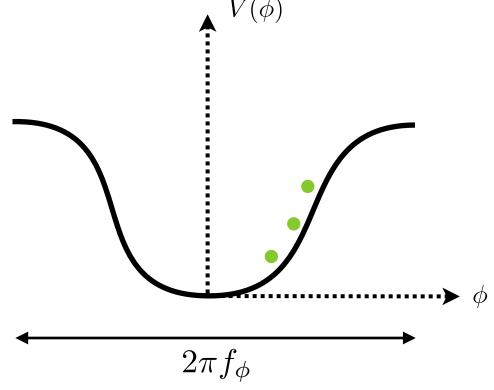
♦ Shift symmetry broken by non-perturbative effects+UV completion, but periodicity is exact

In string theory axions generically come from p-forms, so above the KK scale the shift symmetry becomes a gauge symmetry

 $2\pi f_{\phi}$

$$\phi = \int_{\pi_p} C_p \qquad F_{p+1} = dC_p$$
$$C_p \to C_p + d\Lambda_{p-1}$$

Dimopoulos et al. '05

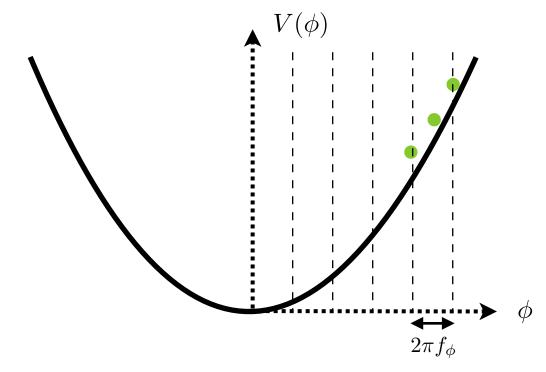

Natural Inflation Freese, Frieman, Olinto '90

String models where the inflaton is an axion in principle can

avoid this problem

♦ Shift symmetry broken by non-perturbative effects+UV completion, but periodicity is exact

- In string theory axions generically come from p-forms, so above the KK scale the shift symmetry becomes a gauge symmetry
- However, these axions have sub-Planckian decay constants

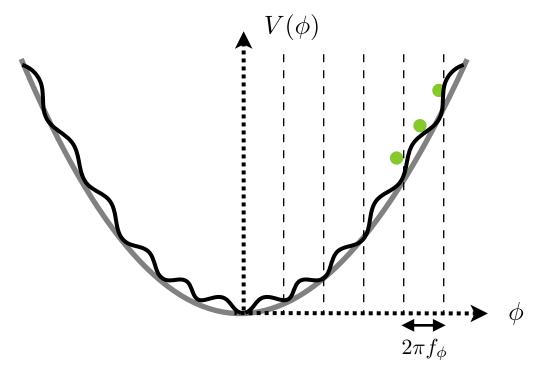

$$\phi = \int_{\pi_p} C_p \qquad F_{p+1} = dC_p$$
$$C_p \to C_p + d\Lambda_{p-1}$$

Banks et al. '03

Surcek & Witten '06

Siverstein & Westphal '08

Idea: Combine chaotic inflation and natural inflation



The axion periodicity is lifted, allowing for super-Planckian displacements. The UV corrections to the potential should still be constrained by the underlying symmetry.

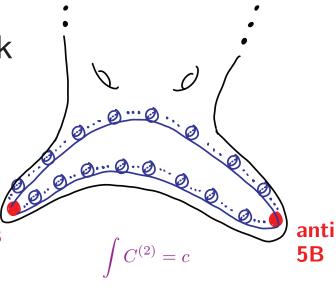
Siverstein & Westphal '08

Idea:

Combine chaotic inflation and natural inflation

The axion periodicity is lifted, allowing for super-Planckian displacements. The UV corrections to the potential should still be constrained by the underlying symmetry

Siverstein & Westphal '08


Idea:

Combine chaotic inflation and natural inflation

Early developments: see McAllister's talk

♦ McAllister, Silverstein, Westphal → String scenarios

★ Kaloper, Lawrence, Sorbo → 4d framework

taken from McAllister, Silverstein, Westphal '08

Siverstein & Westphal '08

Idea:

Combine chaotic inflation and natural inflation

Early developments: see McAllister's talk

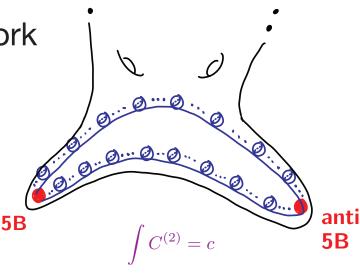
◆ McAllister, Silverstein, Westphal → String scenarios
exceedingly complicated, uncontrollable ingredients, backreaction, ...

★ Kaloper, Lawrence, Sorbo → 4d framework

 $\int C^{(2)} = c$

Siverstein & Westphal '08

Idea:


Combine chaotic inflation and natural inflation

Early developments: see McAllister's talk

◆ McAllister, Silverstein, Westphal → String scenarios
exceedingly complicated, uncontrollable ingredients, backreaction, ...

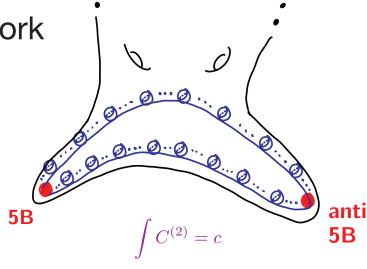
★ Kaloper, Lawrence, Sorbo → 4d framework

UV completion?

Siverstein & Westphal '08

Idea:

Combine chaotic inflation and natural inflation


Early developments: see McAllister's talk

◆ McAllister, Silverstein, Westphal → String scenarios
exceedingly complicated, uncontrollable ingredients, backreaction, ...

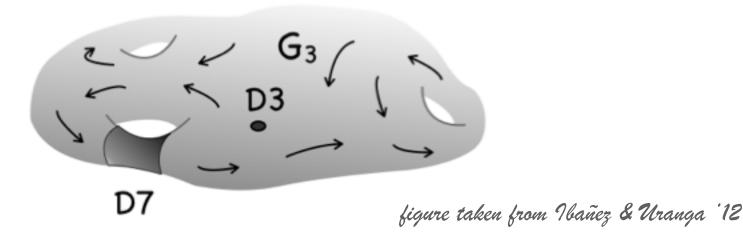
★ Kaloper, Lawrence, Sorbo → 4d framework

UV completion?

See also Palti, Weigand; Blumenhagen, Plauschinn; Hebecker, Kraus, Witowski; Ibañez, Valenzuela; Hassler, Lüst, Massai; McAllister, Silverstein, Westphal, Wrase;

taken from McAllister, Silverstein, Westphal '08

F-term Axion Monodromy Inflation

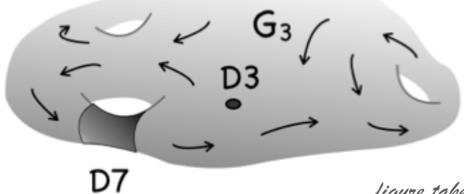

Obs:

Axion Monodromy

Giving a mass to an axion

◆ Done in string theory within the moduli stabilization program: adding ingredients like background fluxes generate superpotentials in the effective 4d theory

F-term Axion Monodromy Inflation


Axion Monodromy ~

Giving a mass to an axion

 Done in string theory within the moduli stabilization program: adding ingredients like background fluxes generate superpotentials in the effective 4d theory

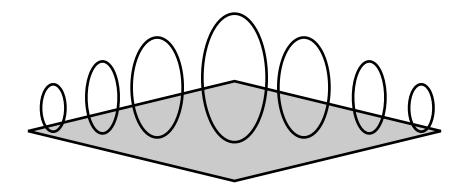
Use same techniques to generate an inflation potential

F-term Axion Monodromy Inflation

Axion Monodromy ~

◆ Done in string theory within the moduli stabilization program: adding ingredients like background fluxes generate superpotentials in the effective 4d theory

Idea: Use same techniques to generate an inflation potential


- Simpler models, all sectors understood at weak coupling
- Spontaneous SUSY breaking, no need for brane-anti-brane
- Clear endpoint of inflation, allows to address reheating

Toy Example: Massive Wilson line

Simple example of axion: (4+d)-dimensional gauge field integrated over a circle in a compact space Π_d

$$\phi = \int_{S^1} A_1$$
 or $A_1 = \phi(x) \eta_1(y)$

- \spadesuit massless if $\Delta \eta_1 = 0 \Rightarrow S^1$ is a non-trivial circle in Π_d exact periodicity and (pert.) shift symmetry
- ightharpoonup φ massive if $\Delta \eta_1 = -\mu^2 \ \eta_1 \Rightarrow kS^1$ homologically trivial in Π_d (non-trivial fibration)

Toy Example: Massive Wilson line

Simple example of axion: (4+d)-dimensional gauge field integrated over a circle in a compact space Π_d

$$\phi = \int_{S^1} A_1$$
 or $A_1 = \phi(x) \eta_1(y)$

- \spadesuit massless if $\Delta \eta_1 = 0 \Rightarrow S^1$ is a non-trivial circle in Π_d exact periodicity and (pert.) shift symmetry
- ightharpoonup φ massive if $\Delta \eta_1 = -\mu^2 \ \eta_1 \Rightarrow kS^1$ homologically trivial in Π_d (non-trivial fibration)

$$F_2 = dA_1 = \phi \, d\eta_1 \sim \mu \phi \, \omega_2 \quad \Rightarrow \text{ shifts in } \phi \text{ increase energy}$$
 via the induced flux F₂

⇒ periodicity is broken and shift symmetry approximate

MWL and twisted tori

- Simple way to construct massive Wilson lines: consider compact extra dimensions Π_d with circles fibered over a base, like the twisted tori that appear in flux compactifications
- There are circles that are not contractible but do not correspond to any harmonic 1-form. Instead, they correspond to torsional elements in homology and cohomology groups

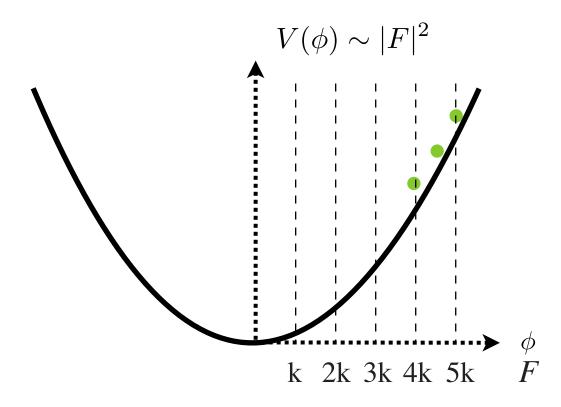
Tor
$$H_1(\Pi_d, \mathbb{Z}) = \text{Tor } H^2(\Pi_d, \mathbb{Z}) = \mathbb{Z}_k$$

MWL and twisted tori

- Simple way to construct massive Wilson lines: consider compact extra dimensions Π_d with circles fibered over a base, like the twisted tori that appear in flux compactifications
- There are circles that are not contractible but do not correspond to any harmonic 1-form. Instead, they correspond to torsional elements in homology and cohomology groups

Tor
$$H_1(\Pi_d, \mathbb{Z}) = \text{Tor } H^2(\Pi_d, \mathbb{Z}) = \mathbb{Z}_k$$

one torsional


1-cycle

1-cycles

* Simplest example: twisted 3-torus \mathbb{T}^3

$$H_1(\tilde{\mathbb{T}}^3,\mathbb{Z}) = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_k$$

$$d\eta_1 = k dx^2 \wedge dx^3 \longrightarrow F = \phi \, k \, dx^2 \wedge dx^3$$
 two normal one tors 1-cycles 1-cyc

MWL and monodromy

Question:

How does monodromy and approximate shift symmetry help prevent wild UV corrections?

Torsion and gauge invariance

- Twisted tori torsional invariants are not just a fancy way of detecting non-harmonic forms, but are related to a hidden gauge invariance of these axion-monodromy models
- \clubsuit Let us again consider a 7d gauge theory on $\mathsf{M}^{1,3}$ x $\tilde{\mathbb{T}}^3$
 - ◆ Instead of A₁ we consider its magnetic dual V₄

$$V_4 = C_3 \wedge \eta_1 + b_2 \wedge \sigma_2 \xrightarrow{d\eta_1 = k \sigma_2} dV_4 = dC_3 \wedge \eta_1 + (db_2 - kC_3) \wedge \sigma_2$$

Torsion and gauge invariance

- Twisted tori torsional invariants are not just a fancy way of detecting non-harmonic forms, but are related to a hidden gauge invariance of these axion-monodromy models
- \clubsuit Let us again consider a 7d gauge theory on $\mathsf{M}^{1,3}$ x $\tilde{\mathbb{T}}^3$
 - ◆ Instead of A₁ we consider its magnetic dual V₄

$$V_4 = C_3 \wedge \eta_1 + b_2 \wedge \sigma_2 \xrightarrow{d\eta_1 = k \sigma_2} dV_4 = dC_3 \wedge \eta_1 + (db_2 - kC_3) \wedge \sigma_2$$

◆ From dimensional reduction of the kinetic term:

$$\int d^7x \, |dV_4|^2 \longrightarrow \int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

- Gauge invariance $C_3 \to C_3 + d\Lambda_2$ $b_2 \to b_2 + k\Lambda_2$
- Generalization of the Stückelberg Lagrangian

Effective 4d theory

The effective 4d Lagrangian

$$\int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

describes a massive axion, has been applied to Kallosh et al. '95 QCD axion ⇒ generalized to arbitrary V(φ) Duali, Jackiw, Pi '05 Duali, Folkerts, Franca '13

Reproduces the axion-four-form Lagrangian proposed by Kaloper and Sorbo as 4d model of axion-monodromy inflation with mild UV corrections

$$\int d^4x\,|F_4|^2+|d\phi|^2+\phi F_4 \qquad F_4=dC_3 \\ d\phi=*_4db_2 \qquad \qquad \textbf{Xaloper & Sorbo '08}$$

It is related to an F-term generated mass term

Effective 4d theory

Effective 4d Lagrangian

$$\int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2 \qquad F_4 = dC_3$$

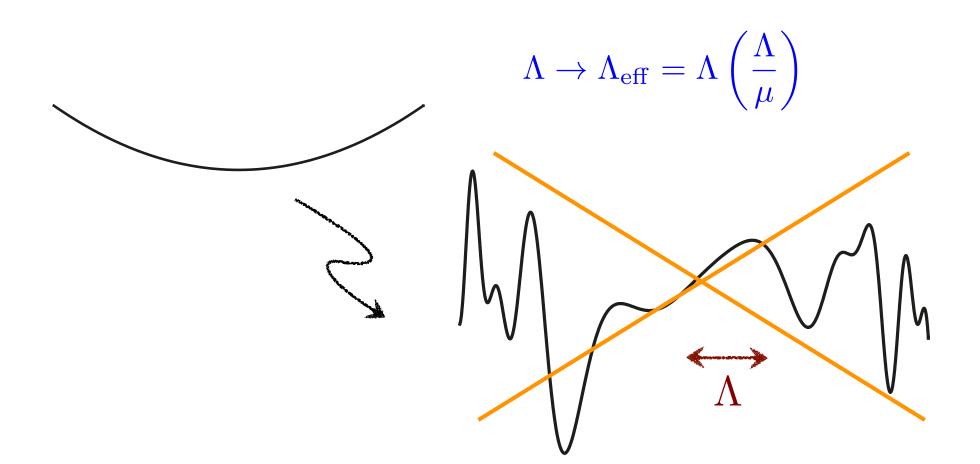
$$d\phi = *_4 db_2$$

Gauge symmetry ⇒ UV corrections only depend on F₄

$$\mathcal{L}_{\text{eff}}[\phi] = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} \mu^2 \phi^2 + \Lambda^4 \sum_{i=1}^{\infty} c_i \frac{\phi^{2i}}{\Lambda^{2i}}$$

$$\sum_{n} c_n \frac{F^{2n}}{\Lambda^{4n}} \longrightarrow \mu^2 \phi^2 \sum_{n} c_n \left(\frac{\mu^2 \phi^2}{\Lambda^4}\right)^n$$

- \Rightarrow suppressed corrections up to the scale where V(ϕ) $\sim \Lambda^4$
- \Rightarrow effective scale for corrections $\Lambda \rightarrow \Lambda_{eff} = \Lambda^2/\mu$

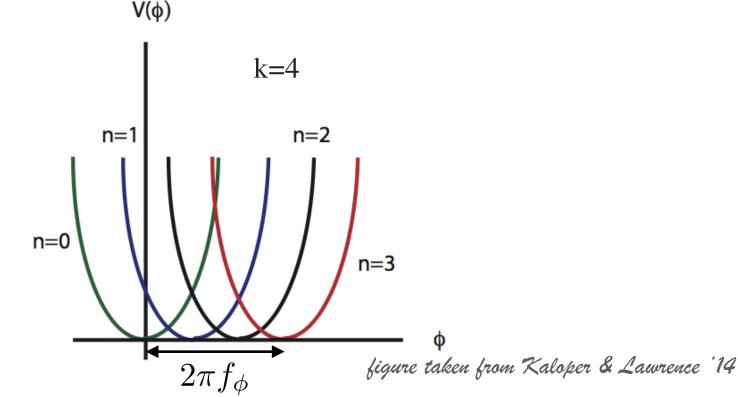

Effective 4d theory

Effective 4d Lagrangian

$$\int d^4x \, |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

$$F_4 = dC_3$$
$$d\phi = *_4 db_2$$

♣ Gauge symmetry ⇒ UV corrections only depend on F₄



Discrete symmetries and domain walls

The integer k in the Lagrangian

$$\int d^4x \, |F_4|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

corresponds to a discrete symmetry of the theory broken spontaneously once a choice of four-form flux is made. This amounts to choose a branch of the scalar potential

Discrete symmetries and domain walls

The integer k in the Lagrangian

$$\int d^4x \, |F_4|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

corresponds to a discrete symmetry of the theory broken spontaneously once a choice of four-form flux is made. This amounts to choose a branch of the scalar potential

- ♣ Branch jumps are made via nucleation of domain walls that couple to C₃, and this puts a maximum to the inflaton range
- Domain walls analysed in string constructions:

- They correspond to discrete symmetries of the superpotential/ landscape of vacua, and appear whenever axions are stabilised
- k domain walls decay in a cosmic string implementing φ → φ+1

Massive Wilson lines in string theory

- ightharpoonup Simple example of MWL in string theory: D6-brane on $m M^{1,3}\,x\,\tilde{\mathbb{T}}^3$
- An inflaton vev induces a non-trivial flux F₂ proportional to φ but now this flux enters the DBI action

$$\sqrt{\det(G + 2\pi\alpha' F_2)} = d\operatorname{vol}_{M^{1,3}} (|F_2|^2 + \operatorname{corrections})$$

Massive Wilson lines in string theory

- ightharpoonup Simple example of MWL in string theory: D6-brane on $m M^{1,3}\,x\,\tilde{\mathbb{T}}^3$
- An inflaton vev induces a non-trivial flux F₂ proportional to φ but now this flux enters the DBI action

$$\sqrt{\det(G + 2\pi\alpha' F_2)} = d\operatorname{vol}_{M^{1,3}} (|F_2|^2 + \operatorname{corrections})$$

For small values of φ we recover chaotic inflation, but for large values the corrections are important and we have a potential of the form

$$V = \sqrt{L^4 + \langle \phi \rangle^2} - L^2$$

Similar to the D4-brane model of Silverstein and Westphal except for the inflation endpoint

Massive Wilson lines in string theory

- \clubsuit Simple example of MWL in string theory: D6-brane on $\mathsf{M}^{1,3}\,\mathsf{x}\,\widetilde{\mathbb{T}}^3$
- An inflaton vev induces a non-trivial flux F₂ proportional to φ but now this flux enters the DBI action

$$\sqrt{\det(G + 2\pi\alpha' F_2)} = d\operatorname{vol}_{M^{1,3}} (|F_2|^2 + \operatorname{corrections})$$

For small values of φ we recover chaotic inflation, but for large values the corrections are important and we have a potential of the form

$$V = \sqrt{L^4 + \langle \phi \rangle^2} \left(-L^2 \right)$$

Similar to the D4-brane model of Silverstein and Westphal except for the inflation endpoint

Massive Wilson lines and flattening

The DBI modification

$$\langle \phi \rangle^2 \to \sqrt{L^4 + \langle \phi \rangle^2} - L^2$$

can be interpreted as corrections due to UV completion

♣ E.g., integrating out moduli such that H < m_{mod} < M_{GUT} will correct the potential, although not destabilise it

Kaloper, Lawrence, Sorbo '11

- In the DBI case the potential is flattened: argued general effect due to couplings to heavy fields

 Dong, Horn, Silverstein, Westphal '10
- Large vev flattening also observed in examples of confining gauge theories whose gravity dual is known [Witten'98]

Dubovsky, Lawrence, Roberts '11

* α' corrections are important for inflation even w/ a symmetry

Garcia-Etxebarria, Hayashi, Savelli, GS '12, Junghans, GS '14 and next 2 talks.

We can integrate a bulk p-form potential C_p over a p-cycle to get an axion

$$F_{p+1} = dC_p, \quad C_p \to C_p + d\Lambda_{p-1} \qquad c = \int_{\pi_p} C_p$$

If the p-cycle is torsional we will get the same effective action

$$\int d^{10}x |F_{9-p}|^2 \longrightarrow \int d^4x |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

We can integrate a bulk p-form potential C_p over a p-cycle to get an axion

$$F_{p+1} = dC_p, \quad C_p \to C_p + d\Lambda_{p-1} \qquad c = \int_{\pi_p} C_p$$

If the p-cycle is torsional we will get the same effective action

$$\int d^{10}x |F_{9-p}|^2 \longrightarrow \int d^4x |dC_3|^2 + \frac{\mu^2}{k^2} |db_2 - kC_3|^2$$

The topological groups that detect this possibility are

$$\operatorname{Tor} H_p(\mathbf{X}_6, \mathbb{Z}) = \operatorname{Tor} H^{p+1}(\mathbf{X}_6, \mathbb{Z}) = \operatorname{Tor} H^{6-p}(\mathbf{X}_6, \mathbb{Z}) = \operatorname{Tor} H_{5-p}(\mathbf{X}_6, \mathbb{Z})$$

one should make sure that the corresponding axion mass is well below the compactification scale (e.g., using warping)

- Axions also obtain a mass with background fluxes
- **Simplest example:** $\phi = C_0$ in the presence of NSNS flux H₃

$$W = \int_{\mathbf{X}_6} (F_3 - \tau H_3) \wedge \Omega \qquad \tau = C_0 + i/g_s$$

We also recover the axion-four-form potential

$$\int_{M^{1,3}\times\mathbf{X}_6} C_0 H_3 \wedge F_7 = \int_{M^{1,3}} C_0 F_4 \qquad F_4 = \int_{PD[H_3]} F_7$$

- Axions also obtain a mass with background fluxes
- **Simplest example:** $\phi = C_0$ in the presence of NSNS flux H₃

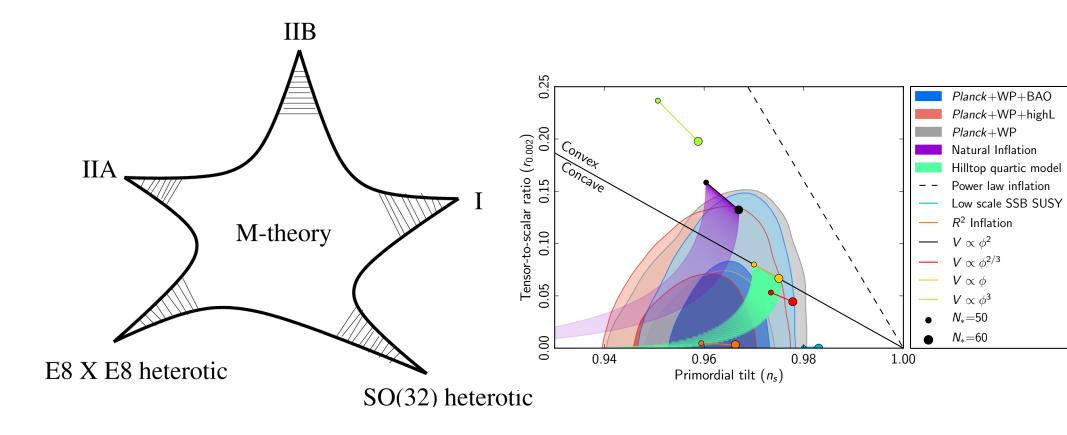
$$W = \int_{\mathbf{X}_6} (F_3 - \tau H_3) \wedge \Omega \qquad \tau = C_0 + i/g_s$$

We also recover the axion-four-form potential

$$\int_{M^{1,3}\times\mathbf{X}_6} C_0 H_3 \wedge F_7 = \int_{M^{1,3}} C_0 F_4 \qquad F_4 = \int_{PD[H_3]} F_7$$

- * M-theory version: Beasley, Witten '02
- A rich set of superpotentials obtained with type IIA fluxes

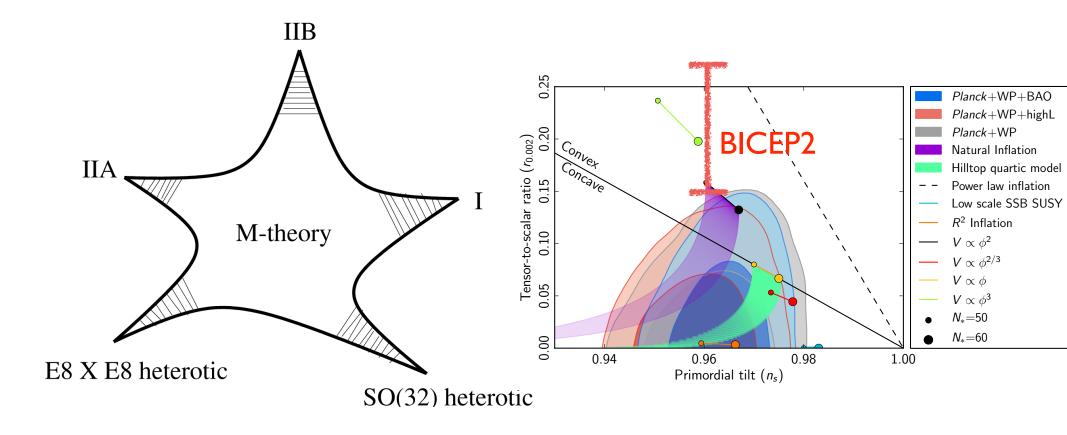
$$\int_{\mathbf{X}_6} e^{J_c} \wedge (F_0 + F_2 + F_4) \qquad J_c = J + iB$$
 potentials higher than quadratic


Massive axions detected by torsion groups in K-theory

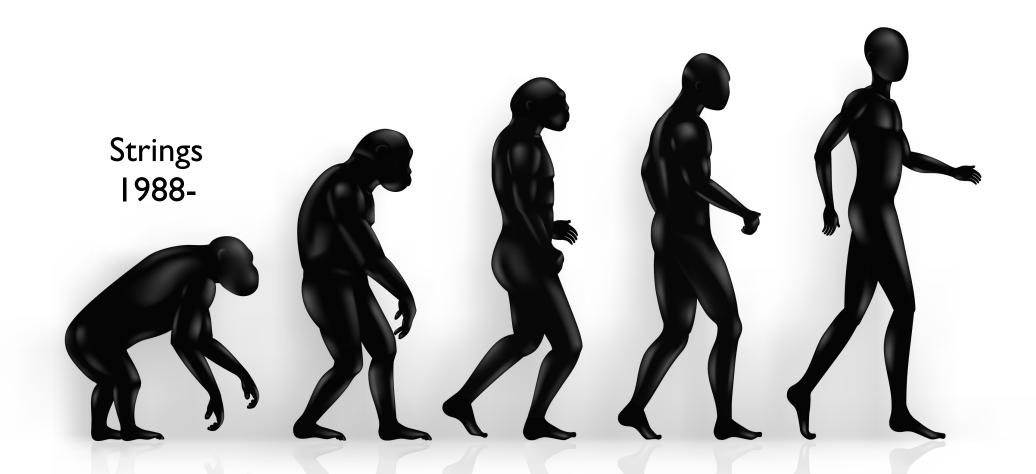
Conclusions

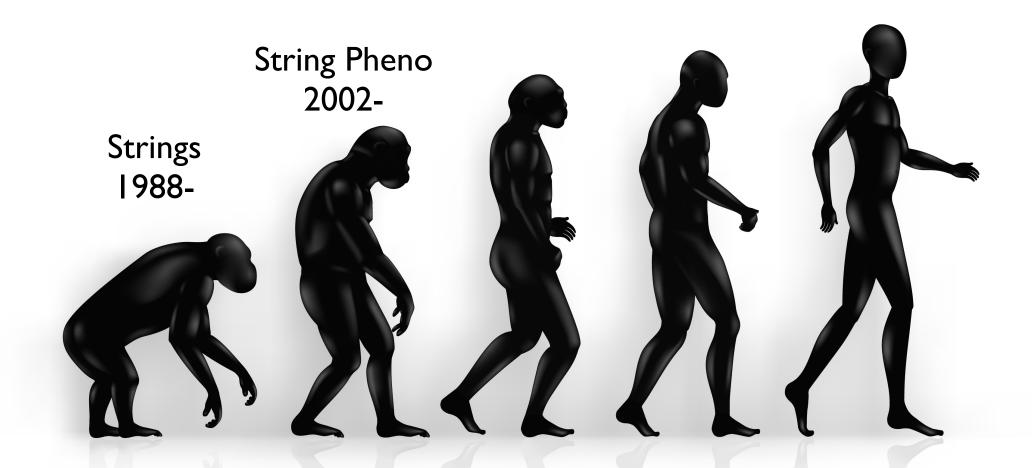
- Axion monodromy is an elegant idea that combines chaotic and natural inflation, aiming to prevent disastrous UV corrections to the inflaton potential.
- We have discussed its concrete implementation in a new framework, dubbed F-term axion monodromy inflation compatible with spontaneous supersymmetry breaking.
- In a simple set of models the inflaton is a massive Wilson line. They show the mild UV corrections for large inflaton vev.
- Effective action reproduces the axion-four-form action proposed by Kaloper and Sorbo. Discrete symmetries classified by K-theory torsion groups.
- α' corrections to EFT [See D. Junghans, GS, 1407.0019 & next 2 talks] are important for inflation & moduli stabilization.

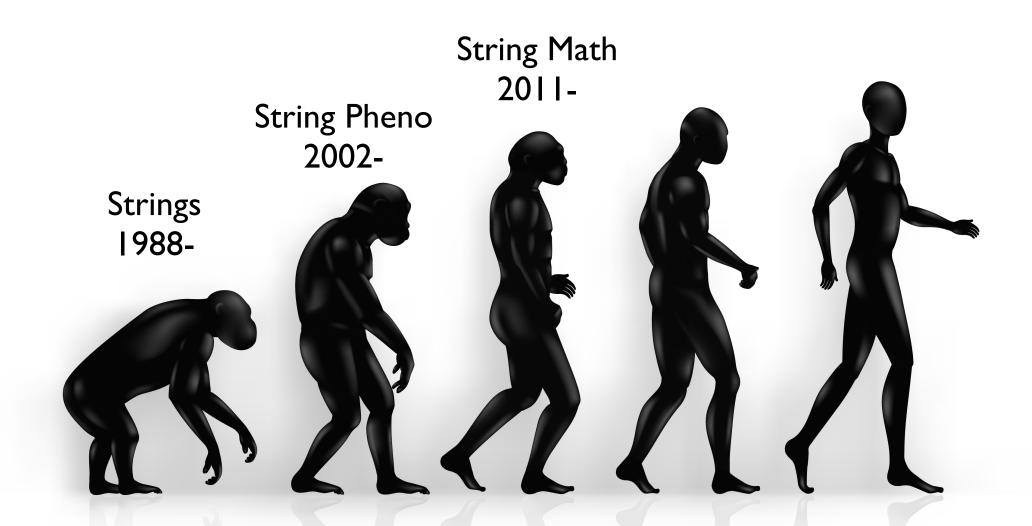
Conclusions


A broad class of large field inflationary scenarios that can be implemented in any limit of string theory w/ rich pheno:

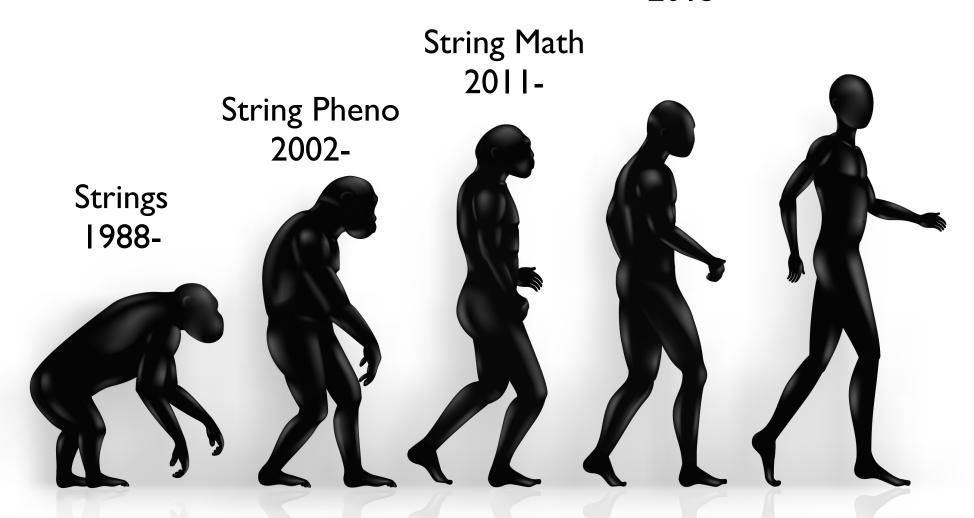
Moduli stabilization needs to be addressed in detailed models [See Hebecker's talk and references therein]


Conclusions


A broad class of large field inflationary scenarios that can be implemented in any limit of string theory w/ rich pheno:



Moduli stabilization needs to be addressed in detailed models [See Hebecker's talk and references therein]

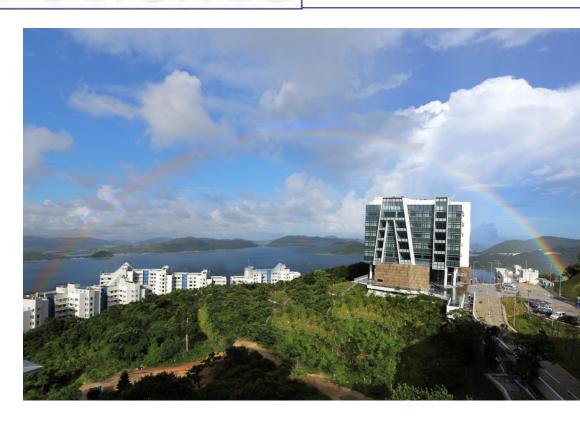


String Cosmo 2015-

G Gordon Research Conferences

String Theory & Cosmology

New Ideas Meet New Experimental Data


May 31 - June 5, 2015
The Hong Kong University of Science and Technology
Hong Kong, China

Chair:

Gary Shiu

Vice Chair:

Ulf Danielsson

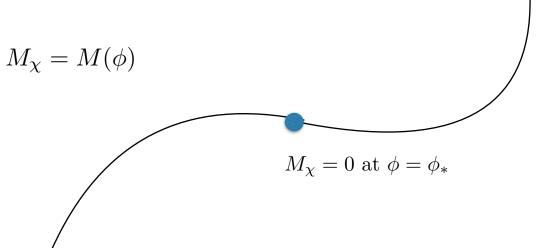
Application Deadline

Applications for this meeting must be submitted by **May 3, 2015**. Please apply early, as some meetings become oversubscribed (full) before this deadline. If the meeting is oversubscribed, it will be stated here. *Note*: Applications for oversubscribed meetings will only be considered by the Conference Chair if more seats become available due to cancellations.

Check out the website: http://www.grc.org/programs.aspx?id=16938

Hong Kong Institute for Advanced Study

Danke!


Particle Production

Usual assumption:

$$\left[\partial_{\tau}^{2} + k^{2} - \frac{a''}{a}\right] (a \,\delta g_{ij}) = S_{ij} , \quad S_{ij} = 0$$

Particle production can provide a source of Sij

Simplest model: an additional scalar field χ

[Chung, Kolb, Riotto and Tkachev]; [Cook, Sorbo]; [Senatore, Silverstein and Zaldarriaga]; [N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou]

- \circ χ particles quickly become non-relativistic, quadrupole moment (source of GWs) is suppressed.
- Source highly non-Gaussian scalar perturbations not suppressed by the small quadrupole moment.

Particle Production - Axion Model

A workable model: [N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou]

$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \underbrace{\frac{1}{2} (\partial \varphi)^2 - V(\varphi)}_{\text{inflaton sector}} - \underbrace{\frac{1}{2} (\partial \psi)^2 - U(\psi) - \frac{1}{4} F^2 - \frac{\psi}{4f} F \tilde{F}}_{\text{hidden sector}} \right]$$

- Continuous production of relativistic vector quanta.
- Only known model of particle production during inflation that
 - 1. produces significant amount of GWs,
 - 2. avoids strong non-Gaussianity of scalar perturbations.
- Interesting signatures:
 - 1. Parity violation in GWs
 - 2. Non-Gaussian tensor fluctuations
 - 3. Can accommodate blue tilt in tensor spectrum

. . .

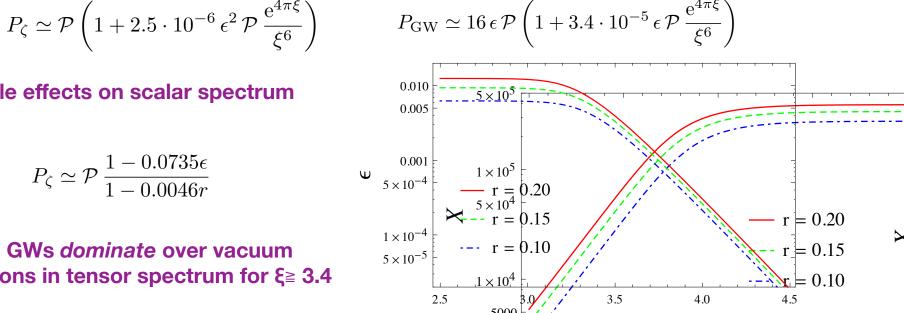
Gauge Field Production—r = 0.20

• Time dependence of axion sources gauge fields $rac{10^{-4}}{5 \times 10^{-5}}$ --- r = 0.10

$$\left[\partial_{\tau}^{2} + k^{2} \pm \frac{2k\xi}{\tau}\right] A_{\pm}(\tau, k) \simeq 0 \,, \quad \xi \equiv \frac{\bar{\psi}^{2.5}}{2Hf} \,, \qquad \qquad \xi$$

One helicity mode is copiously produced:

$$A_+ \simeq \left(\frac{-\tau}{8\xi k}\right)^{1/4} e^{\pi\xi - 2\sqrt{-2\xi k\tau}}, \quad \partial_\tau A_+ \simeq \sqrt{\frac{2\xi k}{-\tau}} A_+.$$

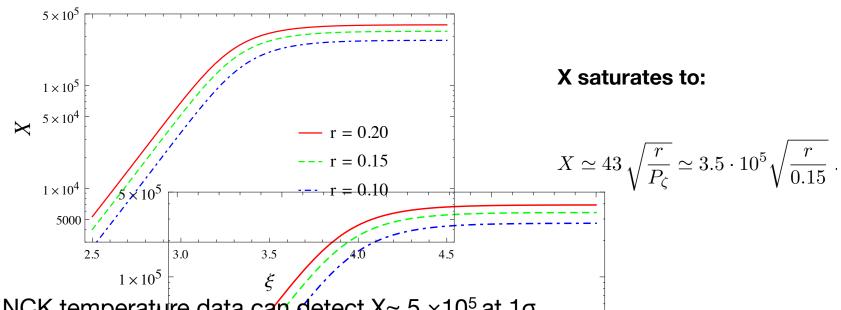

Effects on scalar and tensor spectrum:

$$P_{\zeta} \simeq \mathcal{P} \left(1 + 2.5 \cdot 10^{-6} \, \epsilon^2 \, \mathcal{P} \, \frac{\mathrm{e}^{4\pi\xi}}{\xi^6} \right)$$

Negligible effects on scalar spectrum

$$P_{\zeta} \simeq \mathcal{P} \, \frac{1 - 0.0735\epsilon}{1 - 0.0046r}$$

Sourced GWs dominate over vacuum fluctuations in tensor spectrum for ξ≥ 3.4


Tensor Non-Gaussianity

 Sourced tensor modes can leave sizable non-Gaussianity of nearly equilateral shape on CMB temperature anisotropies & polarization.

[Cook, Sorbo]

Decisive parameter:

$$X \equiv \epsilon \, \frac{\mathrm{e}^{2\pi\xi}}{\xi^3}$$

PLANCK temperature data can detect X≈ 5 ×10⁵ at 1σ.

Inclusion of E-mode polarization data can improve the 1σ limit to

 $X \approx 3.8^{04} \times 10^{5} \text{ (PLANCK)} \text{ and } 2.9 \times 10^{5} \text{ (PRISM)}$

Inclusion of B-mode polarization data can probe the full range of this model.

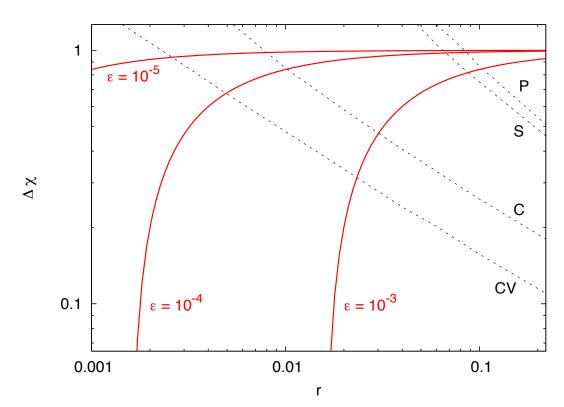
2.5

3.0

3.5

4.0

[Shiraishi, Ricciardone and Saga]


Parity Violating Effects

Only one helicity of GWs is efficiently generated since

$$A_+ + A_+ \rightarrow h_R$$

Level of Chirality:

$$\Delta \chi \equiv \frac{P_{\rm GW}^R - P_{\rm GW}^L}{P_{\rm GW}^R + P_{\rm GW}^L} \simeq \frac{3.4 \cdot 10^{-5} \,\epsilon \, \mathcal{P} \, \frac{{\rm e}^{4\pi \xi}}{\xi^6}}{1 + 3.4 \cdot 10^{-5} \,\epsilon \, \mathcal{P} \, \frac{{\rm e}^{4\pi \xi}}{\xi^6}}$$

PLANCK, SPIDER, CMBPol and a (hypothetical) cosmic variance limited experiment

[N. Barnaby, J. Moxon, R. Namba, M. Peloso, G. Shiu and P. Zhou]

Forecasted constraints (or signals) come from I≤ 10 [Gluscevic, Kamionkowski]; do not expect constraints from BICEP2 (their jackknifed <TB> & <EB> signals appears consistent with zero).