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this talk is based on ...

This talk is based on T-duality revisited [arXiv:1310.4194],  
and on some work in progress [arXiv:1407.xxxx].
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◾ Have non-commutative or non-associative features.

◾ Are part of the string-theory landscape.

◾ Provide uplifts for gauged supergravities.

◾ Can help with moduli stabilization & cosmology.

◾ …

Non-geometric backgrounds :: why?
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What is a non-geometric background?

introduction :: main example



What is a non-geometric background?

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

introduction :: main example

… apply T-duality to a three-torus:

T-fold

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

non-associativeflux background "twisted torus"

Shelton, Taylor, Wecht - 2005
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Consider string theory compactified on a three-torus with H-flux:

◾ The geometry is determined by

◾ The H-flux reads H
xyz

= N .

introduction :: h-flux background

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

ds

2 = dx

2 + dy

2 + dz

2
,

Byz = N x ,

x ⇠ x+ 1 , y ⇠ y + 1 , z ⇠ z + 1 .
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ds

2 = dx

2 + dy

2 + (dz +Nxdy)2 ,

B = 0 ,

(x, z) ⇠ (x+ 1, z �N y) , y ⇠ y + 1 , z ⇠ z + 1 .

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

introduction :: f-flux background

Scherk, Schwarz - 1979

Dasgupta, Rajesh, Sethi - 1999


Kachru, Schulz, Tripathy, Trivedi - 2002

◾ The geometric flux reads
e

x = dx , e

y = dy , e

z = dz +N xdy ,

!

z

xy

= N/2 ,

[e
x

, e

y

] = �N e

z

.

◾ The geometry is determined by

After a T-duality in the z-direction, one arrives at a twisted torus:



ds

2 = dx

2 + dy

2 + (dz +Nxdy)2 ,

B = 0 ,

(x, z) ⇠ (x+ 1, z �N y) , y ⇠ y + 1 , z ⇠ z + 1 .

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

introduction :: f-flux background

Scherk, Schwarz - 1979
Dasgupta, Rajesh, Sethi - 1999

Kachru, Schulz, Tripathy, Trivedi - 2002

◾ The geometric flux reads
e

x = dx , e

y = dy , e

z = dz +N xdy ,

!

z

xy

= N/2 ,

[e
x

, e

y

] = �N e

z

.

◾ The geometry is determined by

After a T-duality in the z-direction, one arrives at a twisted torus:

x

(G,B)(x)(G,B)(x+ 1)
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Q
y

xz = �N .

introduction :: q-flux background

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

Hellermann, McGreevy, Williams - 2002

Dabholkar, Hull - 2002


Hull - 2004

ds

2 = dy

2 +
1

1 + (N y)2
(dx2 + dz

2) ,

B
xz

=
N y

1 + (N y)2
,

x ⇠ x+ 1 , z ⇠ z + 1 .

After a second T-duality in the x-direction, one arrives at a T-fold:

◾ The geometry is determined by

◾ The non-geometric flux reads

This space is locally geometry, but globally non-geometric.
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After formally applying a third T-duality, one obtains an R-flux background:

introduction :: r-flux background

Habc
Tc �����! fab

c Tb �����! Qa
bc Ta �����! Rabc

◾ This background gives rise to a non-associative structure.

Bouwknegt, Hannabuss, Mathai - 2004

Shelton, Taylor, Wecht - 2005


Ellwood, Hashimoto - 2006

Blumenhagen, EP & Lüst - 2010 

◾ The geometry is not even locally defined.

◾ The non-geometric R-flux is obtained by raising the index of the Q-flux

Q
y

xz �! Rxyz = N .



introduction :: more examples

But :: …



introduction :: more examples

◾ The torus is the mainly (and only) studied background.

◾ Other — and better — examples are needed!

➞ Consider the three-sphere.

what about other examples?But ::



introduction :: goal

◾ Construct new non-geometric backgrounds.Goal ::

Plan :: ◾ Revisit (collective) T-duality. 
◾ Review the three-torus. 
◾ Consider the three-sphere.
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4. three-sphere 

5. discussion
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t-duality :: sigma-model action

To study T-duality for the three-sphere, a non-abelian version might be needed.



t-duality :: sigma-model action

Consider the sigma-model action for the NS-NS sector of the closed string

S = � 1

4⇡↵0

Z

@⌃

h
Gij dX

i ^ ?dXj + ↵0R� ? 1
i
� i

2⇡↵0

Z

⌃

1
3! Hijk dX

i ^ dXj ^ dXk .

This action is invariant under global transformations                            if�✏X
i = ✏↵ki↵(X)

Lk↵G = 0 , ◆k↵H = dv↵ , Lk↵� = 0 .

In general, the isometry algebra is non-abelian                               .[k↵, k� ]L = f↵�
� k�

de la Ossa, Quevedo - 1992

Giveon, Rocek - 1993


Sfetsos - 1994

Alvarez, Alvarez-Gaume, [Barbon,] Lozano - 1993 & 1994

To study T-duality for the three-sphere, a non-abelian version might be needed.

Hull, Spence - 1989 & 1991



t-duality :: gauged action

Following Buscher’s procedure, the gauged sigma-model action is found as

bS =� 1

2⇡↵0

Z

@⌃

1
2 Gij(dX

i + ki↵A
↵) ^ ?(dXj + kj�A

�)

� i

2⇡↵0

Z

⌃

1
3! Hijk dX

i ^ dXj ^ dXk

� i

2⇡↵0

Z

@⌃

h
(v↵ + d�↵) ^A↵ + 1

2

�
◆k[↵

v�] + f↵�
���

�
A↵ ^A�

i
.

Hull, Spence - 1989 & 1991

Alvarez, Alvarez-Gaume, Barbon, Lozano - 1994



t-duality :: gauged action

�̂✏X
i = ✏↵ki↵ , �̂✏A

↵ = �d✏↵ � ✏�A�f��
↵ ,

�̂✏�↵ = �◆k(↵
v�)✏

� � f↵�
�✏��� .

The local symmetry transformations take the form
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t-duality :: gauged action

This gauging is subject to the following constraints

Lk[↵
v�] = f↵�

�v� , ◆k[↵
f��]

�v� =
1

3
◆k↵◆k� ◆k�H .

Following Buscher’s procedure, the gauged sigma-model action is found as
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t-duality :: recovering the original model

The original model is recovered via the equations of motion for      �↵

0 = dA↵ � 1
2 f��

↵A� ^A� .

DXi = dXi + ki↵A
↵The gauge action can then be rewritten in terms of                                  as

bS =� 1

4⇡↵0

Z

@⌃

h
GijDXi ^ ?DXj + ↵0R� ? 1

i

� i

2⇡↵0

Z

⌃

1
3! HijkDXi ^DXj ^DXk .

Ignoring technical details, one replaces                     and obtains the ungauged action.DXi ! dY i



t-duality :: obtaining the dual model I

The dual model is obtained via the equations of motion for      A↵

A↵ = �
⇣⇥

G �DG�1D
⇤�1

⌘↵�⇣
1+ i ?DG�1

⌘ �

�

�
k + i ? ⇠

�
�
,

where
G↵� = ki↵Gijk

j
� , ⇠↵ = d�↵ + v↵ ,

D↵� = ◆k[↵
v�] + f↵���� , k↵ = ki↵GijdXj .

The action of the dual sigma-model is found by integrating-out       and readsA↵

Ǧ = G+

✓
k

⇠

◆T✓ �M�1 �M�1DG�1

+M�1DG�1 +M�1

◆
^ ?

✓
k

⇠

◆
,

Ȟ = H + 1
2 d

"✓
k

⇠

◆T ✓
+M�1DG�1 +M�1

�M�1 �M�1DG�1

◆
^
✓
k

⇠

◆#
.

Š = � 1

4⇡↵0

Z

@⌃

h
Ǧ+ ↵0R� ? 1

i
� i

2⇡↵0

Z

⌃
Ȟ ,

where, with                             invertible,M = G �DG�1D



t-duality :: obtaining the dual model II

Consider an enlarged target-space parametrized by coordinates       and      .Xi �↵

The dual metric and field strength are obtained via a change of coordinates

T I
A =

✓
k 0
D 1

◆
, ǦAB = (T T Ǧ T )AB =

✓
0 0
0 G↵�

◆
,

ȞiBC = 0 .

ȞABC = ȞIJK T I
AT J

B T K
C ,

The enlarged metric     and field strength     have null-eigenvectors (and isometries)Ǧ Ȟ

ň↵ = k↵ +D↵� @⇠� .
◆ň↵Ǧ = 0 ,

◆ň↵Ȟ = 0 ,



t-duality :: summary

The T-duality transformation rules are obtained via Buscher’s procedure of
1. gauging isometries in the sigma-model action, 

2. integrating-out the gauge field, 

3. performing a change of coordinates.

Lk[↵
v�] = f↵�

�v� , ◆k[↵
f��]

�v� =
1

3
◆k↵◆k� ◆k�H .

The possible gaugings are restricted by (recall that                    )◆k↵H = dv↵

The change of coordinates is performed using null-eigenvectors ň↵

ǦIJ ňJ
↵ = 0 , ȞIJK ňK

↵ = 0 .
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torus :: setting

k1 =

0

@
1
0
0

1

A , k2 =

0

@
0
1
0

1

A , k3 =

0

@
0
0
1

1

A .

The Killing vectors (in the basis                   ) are abelian and can be chosen as{@1, @2, @3}

v1 = h↵1 X2dX3 �h↵2 X3dX2 , ↵1 + ↵2 = 1 ,

v2 = h�1 X3dX1 �h�2 X1dX3 , �1 + �2 = 1 ,

v3 = h�1 X1dX2 �h�2 X2dX1 , �1 + �2 = 1 .

The one-forms      (defined via                    ), up to exact terms take the formv↵ ◆k↵H = dv↵

Consider a three-torus with H-flux specified as follows

ds2 = R2
1

�
dX1

�2
+R2

2

�
dX2

�2
+R2

3

�
dX3

�2
,

H = h dX1 ^ dX2 ^ dX3 , h 2 `�1
s Z .

Xi ' Xi + `s ,



torus :: one t-duality I

Consider one T-duality along             . The corresponding one-form readsk1 = @1

v = h↵X2dX3 � h(1� ↵)X3dX2 , ↵ 2 R .

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

The metric and field strength are then computed as …

M = G = R2
1 .

G = R2
1 , ⇠ = d�+ v ,

D = 0 , k = R2
1 dX

1 ,



Consider one T-duality along             . The corresponding one-form readsk1 = @1

v = h↵X2dX3 � h(1� ↵)X3dX2 , ↵ 2 R .

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

The metric and field strength are then computed as …

M = G = R2
1 .

G = R2
1 , ⇠ = d�+ v ,

D = 0 , k = R2
1 dX

1 ,

torus :: one t-duality I



Consider one T-duality along             . The corresponding one-form readsk1 = @1

v = h↵X2dX3 � h(1� ↵)X3dX2 , ↵ 2 R .

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

The metric and field strength are then computed as …

M = G = R2
1 .

G = R2
1 , ⇠ = d�+ v ,

D = 0 , k = R2
1 dX

1 ,

torus :: one t-duality I



Consider one T-duality along             . The corresponding one-form readsk1 = @1

v = h↵X2dX3 � h(1� ↵)X3dX2 , ↵ 2 R .

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

The metric and field strength are then computed as …

M = G = R2
1 .

G = R2
1 , ⇠ = d�+ v ,

D = 0 , k = R2
1 dX

1 ,

torus :: one t-duality I
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v = h↵X2dX3 � h(1� ↵)X3dX2 , ↵ 2 R .
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The geometry of the dual background is determined from the quantities

The metric and field strength are then computed as …
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torus :: one t-duality I
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torus :: one t-duality I

Consider one T-duality along             . The corresponding one-form readsk1 = @1

v = h↵X2dX3 � h(1� ↵)X3dX2 , ↵ 2 R .

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

The metric and field strength are then computed as

M = G = R2
1 .

G = R2
1 , ⇠ = d�+ v ,

D = 0 , k = R2
1 dX

1 ,

Ǧ =
1

R2
1

⇠ ^ ?⇠ +R2
2 dX

2 ^ ?dX2 +R2
3 dX

3 ^ ?dX3 ,

Ȟ = 0 .



As expected, the dual background is a twisted torus (with           )↵ = 1

torus :: one t-duality II

Ȟ = 0 .

ďs
2
=

1

R2
1

�
d�+ hX2dX3

�2
+R2

2

�
dX2

�2
+R2

3

�
dX3

�2
,



torus :: two t-dualities I

Consider two collective T-dualities along               and              .k1 = @1 k2 = @2

v1 = h↵X2dX3 � h(1� ↵)X3dX2 ,

v2 = h(1 + ↵)X3dX1 + h↵X1dX3 .

The constraints on gauging the sigma-model imply (for            )↵ 2 R

G↵� =

✓
R2

1 0
0 R2

2

◆
, ⇠↵ =

✓
d�1 + v1
d�2 + v2

◆
,

D↵� =

✓
0 +hX3

�hX3 0

◆
, k↵ =

✓
R2

1 dX
1

R2
2 dX

2

◆
.

The geometry of the dual background is determined from (                    )↵,� 2 {1, 2}



torus :: two t-dualities II

The metric of the enlarged target space (in the basis                                    ) reads{dX1, dX2, dX3, ⇠1, ⇠2}

ǦIJ =
1

⇢

0

BBBBBB@

⇥
R1hX3

⇤2
0 0 0 �R2

1hX
3

0
⇥
R2hX3

⇤2
0 +R2

2hX
3 0

0 0 ⇢R2
3 0 0

0 +R2
2hX

3 0 R2
2 0

�R2
1hX

3 0 0 0 R2
1

1

CCCCCCA
,

⇢ = R2
1R

2
2 +

⇥
hX3

⇤2
.

Performing then a change of basis one finds

T I
A =

0

BBBBBB@

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 �hX3 0 1 0

+hX3 0 0 0 1

1

CCCCCCA
ǦAB = (T T Ǧ T )AB =

1

⇢

0

BBBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 ⇢R2
3 0 0

0 0 0 R2
2 0

0 0 0 0 R2
1

1

CCCCCCA
.



torus :: two t-dualities III

ďs
2
=

1

R2
1R

2
2 +

⇥
hX3

⇤2
h
R2

1

�
d�̃1

�2
+R2

2

�
d�̃2

�2i
+R2

3

�
dX3

�2
,

Ȟ = �h
R2

1R
2
2 �

⇥
hX3

⇤2
h
R2

1R
2
2 +

⇥
hX3

⇤2i2 d�̃1 ^ d�̃2 ^ dX3 .

Performing a similar analysis for the field strength and adjusting the notation, one finds

This is the familiar T-fold background.



torus :: three t-dualities

The constraints on gauging the sigma-model require the H-flux to be vanishing

◆k↵◆k� ◆k�H = 0 H = 0 .

Finally, consider three collective T-dualities along             ,               and              .k1 = @1 k2 = @2 k3 = @3

The dual model is characterized by

ďs
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1

�
d�1

�2
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R2
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�
d�2

�2
+

1
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3

�
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�2
,

Ȟ = 0 .
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◆k[↵
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�v�



torus :: three t-dualities

The constraints on gauging the sigma-model require the H-flux to be vanishing

◆k↵◆k� ◆k�H = 0 H = 0 .

Finally, consider three collective T-dualities along             ,               and              .k1 = @1 k2 = @2 k3 = @3
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Ȟ = 0 .



torus :: summary

The formalism for T-duality introduced above works as expected.

three-torus with 
H-flux

1 T-duality

2 T-dualities

3 T-dualities

twisted torus

T-fold

torus with R ⟶ 1/Rthree-torus with 
H=0



torus :: twisted torus

T-duality for the twisted torus with H-flux leads to twisted T-folds.Bonus ::

Ǧ =
1

1 +
⇥
R1
R2

f X3
⇤2

✓
R2

1 dX
1 ^ ?dX1 +

1

R2
2

⇠ ^ ?⇠

◆
+R2

3 dX
3 ^ ?dX3 ,

Ȟ = �f
R2

1

R2
2

1�
⇥
R1
R2

f X3
⇤2

⇣
1 +

⇥
R1
R2

f X3
⇤2⌘2 dX1 ^ ⇠ ^ dX3 ,

d⇠ = �h dX1 ^ dX3 .

This is a background with geometric and non-geometric flux.
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sphere :: setting

Consider a three-sphere with H-flux, specified by

⌘ = 0 . . .
⇡

2
.

⇣1,2 = 0 . . . 2⇡ ,

H =

h

2⇡2
sin ⌘ cos ⌘ d⇣1 ^ d⇣2 ^ d⌘ ,

ds2 = R2
h
sin

2 ⌘ (d⇣1)
2
+ cos

2 ⌘ (d⇣2)
2
+ (d⌘)2

i
,

This model is conformal if                  .h = 4⇡2R2

The isometry algebra is                                   , and the Killing vectors satisfyso(4) = su(2)⇥ su(2)

(with                          )↵,�, � 2 {1, 2, 3}

[K↵,K� ]L = ✏↵�
�K� ,

[K̃↵, K̃� ]L = ✏↵�
� K̃� ,

[K↵, K̃� ]L = 0 , |K↵|2 = |K̃↵|2 =
R2

4
.
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� sin(⇣1 � ⇣2) cot ⌘
� sin(⇣1 � ⇣2) tan ⌘
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sphere :: setting
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The isometry algebra is                                   , and the Killing vectors satisfyso(4) = su(2)⇥ su(2)

(with                          )↵,�, � 2 {1, 2, 3}

[K↵,K� ]L = ✏↵�
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sphere :: one t-duality

Consider one T-duality along K1. In this case, all constraints are satisfied:

◾ constraints from gauging the sigma-model
◾ the matrix                           is invertibleG↵� = ki↵Gij k

j
�

X
X

The dual model is characterized by the metric and H-flux

Ǧ =
R2

4

h
(d⌘̃)2 + sin2(⌘̃)(d⇣̃)2

i
+

4

R2
⇠ ^ ?⇠ ,

Ȟ = sin ⌘̃ d⇣̃ ^ d⌘̃ ^ ⇠ ,

d⇠ = � h

16⇡2
sin ⌘̃ d⌘̃ ^ d⇣̃ .

This metric describes a circle fibered over a two-sphere.
Bouwknegt, Evslin, Mathai - 2003


incomplete in Alvarez, Alvarez-Gaume, Barbon, Lozano - 1993



sphere :: two t-dualities I

For two collective T-dualities, consider the commuting Killing vectors     and     .K1 K̃1

The dual model, via the above formalism, takes a form similar to the T-fold

ˇG = R2

(d⌘)2 +
1

R2

(d�̃
1

)

2

sin

2 ⌘ +

⇥
h

4⇡2R2

⇤
2

cos

2 ⌘
+

1

R2

(d�̃
2

)

2

cos

2 ⌘ +

�
h

4⇡2R2

�
2

cos

4 ⌘
sin

2 ⌘

,

ˇH = �8h⇡2

�
h2 � 16⇡4R4

�
sin ⌘ cos ⌘

⇥
16⇡2R4

sin

2 ⌘ + h2

cos

2 ⌘
⇤
2

d⌘ ^ d�̃
1

^ d�̃
2

.

◾ constraints from gauging the sigma-model
◾ the matrix                           is invertibleG↵� = ki↵Gij k

j
�

X
The constraints for this model are almost satisfied:

X detG = R4

16 sin2(2⌘)



sphere :: two t-dualities II

But, when starting from a conformal model with                  , the background becomesh = 4⇡2R2

G = R2 (d⌘)2 +
1

R2

h
(d�̃1)

2 + tan2 ⌘ (d�̃2)
2
i
,

H = 0 .

With dual dilaton                                      , this is again a conformal model.� = � log

�
R2

cos ⌘
�
+ �



sphere :: three t-dualities

Consider finally a non-abelian T-duality along     ,       and      .K1 K2 K3

◾ The constraints from gauging the sigma-model imply       H=0,
◾ and the matrix                           is invertibleG↵� = ki↵Gij k

j
� X

The dual model is obtained as (with           and                          )⇢ � 0 �1,2 = 0, . . . , 2⇡

Ǧ =
4

R2
d⇢ ^ ?d⇢+

R2

4

⇢2

⇢2 + R4

16

h
d�1 ^ ?d�1 + sin2(�1) d�2 ^ ?d�2

i
,

Ȟ =
⇢2

�
⇢2 + R4

16

�2


⇢2 + 3

R4

16

�
sin(�1) d⇢ ^ d�1 ^ d�2 .

partially in Alvarez, Alvarez-Gaume, Barbon, Lozano - 1993



sphere :: summary

In the formalism for T-duality introduced above, for a conformal model one finds: 

three-sphere with 
H-flux

1 T-duality

2 T-dualities

3 T-dualities

S1 fibered over S2

non-compact, geometric

three-sphere with 
H=0 S2 fibered over a ray
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discussion :: summary

For the three-torus with H-flux,
◾ known results have been reproduced, and
◾ a twisted T-fold has been obtained.

◾ Restrictions on allowed transformations arise.

A formalism for collective T-duality transformations was developed

➞ Reduction of the duality group?

For the three-sphere with H-flux,
◾ new geometric backgrounds have been obtained,
◾ but their global structure is not clear.



discussion :: outlook

For two collective T-duality transformations it was found ::

Thus, the origin of non-geometry remains unclear …

three-torus with 
H-flux 

(not conformal)

2 T-dualities

three-sphere with 
H-flux 

(conformal)

2 T-dualities

non-geometric
compact

non-compact
geometric


