Towards new non-geometric backgrounds

Erik Plauschinn
University of Padova
Ringberg - 30.07.2014

This talk is based on T-duality revisited [arXiv:1310.4194], and on some work in progress [arXiv:1407.xxxx].

Non-geometric backgrounds

Non-geometric backgrounds :: why?

Non-geometric backgrounds :: why?

- Have non-commutative or non-associative features.
- Are part of the string-theory landscape.
- Provide uplifts for gauged supergravities.
- Can help with moduli stabilization \& cosmology.

introduction :: main example

What is a non-geometric background?

introduction :: main example

What is a non-geometric background? ... apply T-duality to a three-torus:

flux background
"twisted torus"
T-fold
non-associative

introduction :: main example

$$
H_{a b c} \longleftrightarrow T_{c} \longleftrightarrow f_{a b}^{c} \longleftrightarrow T_{b} \longleftrightarrow Q_{a}^{b c} \longleftrightarrow T_{a} \longleftrightarrow R^{a b c}
$$

Consider string theory compactified on a three-torus with H -flux:

- The geometry is determined by $d s^{2}=d x^{2}+d y^{2}+d z^{2}$,

$$
\begin{aligned}
& B_{y z}=N x, \\
& x \sim x+1, \quad y \sim y+1, \quad z \sim z+1 .
\end{aligned}
$$

- The H-flux reads

$$
H_{x y z}=N .
$$

Consider string theory compactified on a three-torus with H -flux:

- The geometry is determined by $d s^{2}=d x^{2}+d y^{2}+d z^{2}$,

$$
B_{y z}=N x
$$

$$
x \sim x+1, \quad y \sim y+1, \quad z \sim z+1 .
$$

Consider string theory compactified on a three-torus with H -flux:

- The geometry is determined by $d s^{2}=d x^{2}+d y^{2}+d z^{2}$,

$$
\begin{aligned}
& B_{y z}=N x, \\
& x \sim x+1, \quad y \sim y+1, \quad z \sim z+1 .
\end{aligned}
$$

- The H-flux reads

$$
H_{x y z}=N .
$$

introduction :: f-flux background

After a T-duality in the z-direction, one arrives at a twisted torus:

- The geometry is determined by

$$
\begin{aligned}
& d s^{2}=d x^{2}+d y^{2}+(d z+N x d y)^{2}, \\
& B=0, \\
& (x, z) \sim(x+1, z-N y), \quad y \sim y+1, \quad z \sim z+1 .
\end{aligned}
$$

- The geometric flux reads

$$
\begin{aligned}
& e^{x}=d x, \quad e^{y}=d y, \quad e^{z}=d z+N x d y \\
& \omega^{z}{ }_{x y}=N / 2 \\
& {\left[e_{x}, e_{y}\right]=-N e_{z}}
\end{aligned}
$$

After a T-duality in the z-direction, one arrives at a twisted torus:

- The geometry is determined by $\quad d s^{2}=d x^{2}+d y^{2}+(d z+N x d y)^{2}$,

$$
B=0,
$$

$$
(x, z) \sim(x+1, z-N y), \quad y \sim y+1, \quad z \sim z+1
$$

introduction :: f-flux background

After a T-duality in the z-direction, one arrives at a twisted torus:

- The geometry is determined by

$$
\begin{aligned}
& d s^{2}=d x^{2}+d y^{2}+(d z+N x d y)^{2}, \\
& B=0, \\
& (x, z) \sim(x+1, z-N y), \quad y \sim y+1, \quad z \sim z+1 .
\end{aligned}
$$

- The geometric flux reads

$$
\begin{aligned}
& e^{x}=d x, \quad e^{y}=d y, \quad e^{z}=d z+N x d y \\
& \omega^{z}{ }_{x y}=N / 2 \\
& {\left[e_{x}, e_{y}\right]=-N e_{z}}
\end{aligned}
$$

introduction :: q-flux background

After a second T-duality in the x-direction, one arrives at a T-fold:

- The geometry is determined by $\quad d s^{2}=d y^{2}+\frac{1}{1+(N y)^{2}}\left(d x^{2}+d z^{2}\right)$,

$$
\begin{aligned}
& B_{x z}=\frac{N y}{1+(N y)^{2}}, \\
& x \sim x+1, \quad z \sim z+1 .
\end{aligned}
$$

- The non-geometric flux reads $\quad Q_{y}{ }^{x z}=-N$.

This space is locally geometry, but globally non-geometric.

After a second T-duality in the x-direction, one arrives at a T-fold:

- The geometry is determined by $d s^{2}=d y^{2}+\frac{1}{1+(N y)^{2}}\left(d x^{2}+d z^{2}\right)$,
$B_{x z}=\frac{N y}{1+(N y)^{2}}$,

$$
x \sim x+1, \quad z \sim z+1
$$

introduction :: q-flux background

After a second T-duality in the x-direction, one arrives at a T-fold:

- The geometry is determined by $\quad d s^{2}=d y^{2}+\frac{1}{1+(N y)^{2}}\left(d x^{2}+d z^{2}\right)$,

$$
\begin{aligned}
& B_{x z}=\frac{N y}{1+(N y)^{2}}, \\
& x \sim x+1, \quad z \sim z+1 .
\end{aligned}
$$

- The non-geometric flux reads $\quad Q_{y}{ }^{x z}=-N$.

This space is locally geometry, but globally non-geometric.

introduction :: r-flux background

After formally applying a third T-duality, one obtains an R-flux background:

- The geometry is not even locally defined.
- The non-geometric R-flux is obtained by raising the index of the Q-flux

$$
Q_{y}{ }^{x z} \longrightarrow R^{x y z}=N .
$$

- This background gives rise to a non-associative structure.

But :: ...

introduction :: more examples

But :: what about other examples?

- The torus is the mainly (and only) studied background.
- Other - and better - examples are needed!
\rightarrow Consider the three-sphere.

Goal ::

- Construct new non-geometric backgrounds.

Plan :: - Revisit (collective) T-duality.

- Review the three-torus.
- Consider the three-sphere.

outline

1. introduction
2. collective t-duality
3. three-torus
4. three-sphere
5. discussion

outline

1. introduction
2. collective t-duality
3. three-torus
4. three-sphere
5. discussion

To study T-duality for the three-sphere, a non-abelian version might be needed.

To study T-duality for the three-sphere, a non-abelian version might be needed.

Consider the sigma-model action for the NS-NS sector of the closed string

$$
\mathcal{S}=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[G_{i j} d X^{i} \wedge \star d X^{j}+\alpha^{\prime} R \phi \star 1\right]-\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} .
$$

This action is invariant under global transformations $\delta_{\epsilon} X^{i}=\epsilon^{\alpha} k_{\alpha}^{i}(X)$ if

$$
\mathcal{L}_{k_{\alpha}} G=0, \quad \iota_{k_{\alpha}} H=d v_{\alpha}, \quad \mathcal{L}_{k_{\alpha}} \phi=0 .
$$

In general, the isometry algebra is non-abelian $\left[k_{\alpha}, k_{\beta}\right]_{\mathrm{L}}=f_{\alpha \beta}{ }^{\gamma} k_{\gamma}$.

Following Buscher's procedure, the gauged sigma-model action is found as

$$
\begin{aligned}
\widehat{\mathcal{S}}= & -\frac{1}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma} \frac{1}{2} G_{i j}\left(d X^{i}+k_{\alpha}^{i} A^{\alpha}\right) \wedge \star\left(d X^{j}+k_{\beta}^{j} A^{\beta}\right) \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[\left(v_{\alpha}+d \chi_{\alpha}\right) \wedge A^{\alpha}+\frac{1}{2}\left(\iota_{k_{[\underline{\underline{\alpha}}}} v_{\underline{\beta}]}+f_{\alpha \beta^{\gamma}} \chi_{\gamma}\right) A^{\alpha} \wedge A^{\beta}\right] .
\end{aligned}
$$

Following Buscher's procedure, the gauged sigma-model action is found as

$$
\begin{aligned}
\widehat{\mathcal{S}}= & -\frac{1}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma} \frac{1}{2} G_{i j}\left(d X^{i}+k_{\alpha}^{i} A^{\alpha}\right) \wedge \star\left(d X^{j}+k_{\beta}^{j} A^{\beta}\right) \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[\left(v_{\alpha}+d \chi_{\alpha}\right) \wedge A^{\alpha}+\frac{1}{2}\left(\iota_{k_{[\alpha}} v_{\underline{\beta}]}+f_{\alpha \beta}{ }^{\gamma} \chi_{\gamma}\right) A^{\alpha} \wedge A^{\beta}\right] .
\end{aligned}
$$

The local symmetry transformations take the form

$$
\begin{array}{ll}
\hat{\delta}_{\epsilon} X^{i}=\epsilon^{\alpha} k_{\alpha}^{i}, & \hat{\delta}_{\epsilon} A^{\alpha}=-d \epsilon^{\alpha}-\epsilon^{\beta} A^{\gamma} f_{\beta \gamma}{ }^{\alpha} \\
\hat{\delta}_{\epsilon} \chi_{\alpha}=-\iota_{k_{(\bar{\alpha}}} v_{\bar{\beta})} \epsilon^{\beta}-f_{\alpha \beta}{ }^{\gamma} \epsilon^{\beta} \chi_{\gamma} .
\end{array}
$$

Following Buscher's procedure, the gauged sigma-model action is found as

$$
\begin{aligned}
\widehat{\mathcal{S}}= & -\frac{1}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma} \frac{1}{2} G_{i j}\left(d X^{i}+k_{\alpha}^{i} A^{\alpha}\right) \wedge \star\left(d X^{j}+k_{\beta}^{j} A^{\beta}\right) \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[\left(v_{\alpha}+d \chi_{\alpha}\right) \wedge A^{\alpha}+\frac{1}{2}\left(\iota_{k_{[\underline{\underline{\alpha}}}} v_{\underline{\beta}]}+f_{\alpha \beta^{\gamma}} \chi_{\gamma}\right) A^{\alpha} \wedge A^{\beta}\right] .
\end{aligned}
$$

Following Buscher's procedure, the gauged sigma-model action is found as

$$
\begin{aligned}
\widehat{\mathcal{S}}= & -\frac{1}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma} \frac{1}{2} G_{i j}\left(d X^{i}+k_{\alpha}^{i} A^{\alpha}\right) \wedge \star\left(d X^{j}+k_{\beta}^{j} A^{\beta}\right) \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} d X^{i} \wedge d X^{j} \wedge d X^{k} \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[\left(v_{\alpha}+d \chi_{\alpha}\right) \wedge A^{\alpha}+\frac{1}{2}\left(\iota_{k_{[\alpha}} v_{\beta]}+f_{\alpha \beta}{ }^{\gamma} \chi_{\gamma}\right) A^{\alpha} \wedge A^{\beta}\right] .
\end{aligned}
$$

This gauging is subject to the following constraints

$$
\mathcal{L}_{k_{[\underline{\alpha}}} v_{\underline{\beta}]}=f_{\alpha \beta}{ }^{\gamma} v_{\gamma}, \quad \quad \iota_{k_{[\underline{\alpha}}} f_{\underline{\beta \gamma]}]} v_{\delta}=\frac{1}{3} \iota_{k_{\alpha}} \iota_{k_{\beta}} \iota_{k_{\gamma}} H .
$$

The original model is recovered via the equations of motion for χ_{α}

$$
0=d A^{\alpha}-\frac{1}{2} f_{\beta \gamma}{ }^{\alpha} A^{\beta} \wedge A^{\gamma} .
$$

The gauge action can then be rewritten in terms of $D X^{i}=d X^{i}+k_{\alpha}^{i} A^{\alpha}$ as

$$
\begin{aligned}
\widehat{\mathcal{S}}= & -\frac{1}{4 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[G_{i j} D X^{i} \wedge \star D X^{j}+\alpha^{\prime} R \phi \star 1\right] \\
& -\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \frac{1}{3!} H_{i j k} D X^{i} \wedge D X^{j} \wedge D X^{k} .
\end{aligned}
$$

Ignoring technical details, one replaces $D X^{i} \rightarrow d Y^{i}$ and obtains the ungauged action.

The dual model is obtained via the equations of motion for A^{α}

$$
A^{\alpha}=-\left(\left[\mathcal{G}-\mathcal{D} \mathcal{G}^{-1} \mathcal{D}\right]^{-1}\right)^{\alpha \beta}\left(\mathbb{1}+i \star \mathcal{D} \mathcal{G}^{-1}\right)_{\beta}^{\gamma}(k+i \star \xi)_{\gamma},
$$

where

$$
\begin{array}{ll}
\mathcal{G}_{\alpha \beta}=k_{\alpha}^{i} G_{i j} k_{\beta}^{j}, & \xi_{\alpha}=d \chi_{\alpha}+v_{\alpha}, \\
\mathcal{D}_{\alpha \beta}=\iota_{k_{[\underline{\alpha}}} v_{\underline{\beta}]}+f_{\alpha \beta}{ }^{\gamma} \chi_{\gamma}, & k_{\alpha}=k_{\alpha}^{i} G_{i j} d X^{j} .
\end{array}
$$

The action of the dual sigma-model is found by integrating-out A^{α} and reads

$$
\check{\mathcal{S}}=-\frac{1}{4 \pi \alpha^{\prime}} \int_{\partial \Sigma}\left[\check{G}+\alpha^{\prime} R \phi \star 1\right]-\frac{i}{2 \pi \alpha^{\prime}} \int_{\Sigma} \check{H},
$$

where, with $\mathcal{M}=\mathcal{G}-\mathcal{D} \mathcal{G}^{-1} \mathcal{D}$ invertible,

$$
\begin{aligned}
& \check{G}=G+\binom{k}{\xi}^{T}\left(\begin{array}{cc}
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} \\
+\mathcal{M}^{-1} \mathcal{D G}^{-1} & +\mathcal{M}^{-1}
\end{array}\right) \wedge \star\binom{k}{\xi}, \\
& \check{H}=H+\frac{1}{2} d\left[\binom{k}{\xi}^{T}\left(\begin{array}{ll}
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1} \\
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1}
\end{array}\right) \wedge\binom{k}{\xi}\right] .
\end{aligned}
$$

Consider an enlarged target-space parametrized by coordinates X^{i} and χ_{α}.

The enlarged metric \check{G} and field strength \check{H} have null-eigenvectors (and isometries)

$$
\begin{aligned}
& \iota_{\check{n}_{\alpha}} \check{G}=0, \\
& \iota_{\check{n}_{\alpha}} \check{H}=0,
\end{aligned}
$$

The dual metric and field strength are obtained via a change of coordinates

$$
\begin{array}{ll}
\mathcal{T}^{I}{ }_{A}=\left(\begin{array}{cc}
k & 0 \\
\mathcal{D} & \mathbb{1}
\end{array}\right), \quad & \check{\mathrm{G}}_{A B}=\left(\mathcal{T}^{T} \check{G} \mathcal{T}\right)_{A B}=\left(\begin{array}{cc}
0 & 0 \\
0 & \mathrm{G}_{\alpha \beta}
\end{array}\right), \\
& \check{\mathrm{H}}_{A B C}=\check{H}_{I J K} \mathcal{T}^{I}{ }_{A} \mathcal{T}^{J}{ }_{B} \mathcal{T}^{K}{ }_{C} \\
& \check{\mathrm{H}}_{i B C}=0 .
\end{array}
$$

The T-duality transformation rules are obtained via Buscher's procedure of

1. gauging isometries in the sigma-model action,
2. integrating-out the gauge field,
3. performing a change of coordinates.

The possible gaugings are restricted by (recall that $\iota_{k_{\alpha}} H=d v_{\alpha}$)

$$
\mathcal{L}_{k_{[\underline{\alpha}}} v_{\underline{\beta}]}=f_{\alpha \beta}^{\gamma} v_{\gamma}, \quad \quad \iota_{[\underline{[\underline{\alpha}}} f_{\underline{\beta \gamma]}]}{ }^{\delta} v_{\delta}=\frac{1}{3} \iota_{k_{\alpha}} \iota_{k_{\beta}} \iota_{k_{\gamma}} H .
$$

The change of coordinates is performed using null-eigenvectors \check{n}_{α}

$$
\check{G}_{I J} \check{n}_{\alpha}^{J}=0, \quad \check{H}_{I J K} \check{n}_{\alpha}^{K}=0 .
$$

outline

1. introduction
2. collective t-duality
3. three-torus
4. three-sphere
5. discussion

torus :: setting

Consider a three-torus with H -flux specified as follows

$$
\begin{array}{lr}
d s^{2}=R_{1}^{2}\left(d X^{1}\right)^{2}+R_{2}^{2}\left(d X^{2}\right)^{2}+R_{3}^{2}\left(d X^{3}\right)^{2}, & X^{i} \simeq X^{i}+\ell_{\mathrm{s}} \\
H=h d X^{1} \wedge d X^{2} \wedge d X^{3}, & h \in \ell_{\mathrm{s}}^{-1} \mathbb{Z}
\end{array}
$$

The Killing vectors (in the basis $\left.\left\{\partial_{1}, \partial_{2}, \partial_{3}\right\}\right)$ are abelian and can be chosen as

$$
k_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad k_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad k_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

The one-forms v_{α} (defined via $\iota_{k_{\alpha}} H=d v_{\alpha}$), up to exact terms take the form

$$
\begin{array}{ll}
v_{1}=h \alpha_{1} X^{2} d X^{3}-h \alpha_{2} X^{3} d X^{2}, & \alpha_{1}+\alpha_{2}=1, \\
v_{2}=h \beta_{1} X^{3} d X^{1}-h \beta_{2} X^{1} d X^{3}, & \beta_{1}+\beta_{2}=1 \\
v_{3}=h \gamma_{1} X^{1} d X^{2}-h \gamma_{2} X^{2} d X^{1}, & \gamma_{1}+\gamma_{2}=1 .
\end{array}
$$

Consider one T-duality along $k_{1}=\partial_{1}$. The corresponding one-form reads

$$
v=h \alpha X^{2} d X^{3}-h(1-\alpha) X^{3} d X^{2}, \quad \alpha \in \mathbb{R}
$$

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

$$
\begin{array}{ll}
\mathcal{G}=R_{1}^{2}, & \xi=d \chi+v, \\
\mathcal{D}=0, & k=R_{1}^{2} d X^{1},
\end{array} \quad \longrightarrow \quad \mathcal{M}=\mathcal{G}=R_{1}^{2}
$$

The metric and field strength are then computed as ...

Consider one T-duality along $k_{1}=\partial_{1}$. The corresponding one-form reads

$$
v=h \alpha X^{2} d X^{3}-h(1-\alpha) X^{3} d X^{2}, \quad \alpha \in \mathbb{R}
$$

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

$$
\begin{array}{ll}
\mathcal{G}=R_{1}^{2}, & \xi=d \chi+v, \\
\mathcal{D}=0, & k=R_{1}^{2} d X^{1},
\end{array} \quad \longrightarrow \quad \mathcal{M}=\mathcal{G}=R_{1}^{2}
$$

The metric and field strength are then computed as ...

Consider one T-dualitv along $k_{1}=\partial_{1}$. The corresoonding one-form reads
The cons

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The correspondina one-form reads

$$
\check{G}=G+\binom{k}{\xi}^{T}\left(\begin{array}{cc}
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} \\
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1}
\end{array}\right) \wedge \star\binom{k}{\xi}
$$

$$
\xi=d \chi+v
$$

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The correspondina one-form reads

$$
\begin{aligned}
\check{G} & =G+\binom{k}{\xi}^{T}\left(\begin{array}{cc}
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} \\
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1}
\end{array}\right) \wedge \star\binom{k}{\xi} \\
& =G+\binom{R_{1}^{2} d X^{1}}{\xi}^{T}\left(\begin{array}{cc}
-\frac{1}{R_{1}^{2}} & 0 \\
0 & +\frac{1}{R_{1}^{2}}
\end{array}\right) \wedge \star\binom{R_{1}^{2} d X^{1}}{\xi}
\end{aligned}
$$

$$
\xi=d \chi+v
$$

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The correspondina one-form reads

The cons

$$
\begin{aligned}
\check{G} & =G+\binom{k}{\xi}^{T}\left(\begin{array}{cc}
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} \\
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1}
\end{array}\right) \wedge \star\binom{k}{\xi} \\
& =G+\binom{R_{1}^{2} d X^{1}}{\xi}^{T}\left(\begin{array}{cc}
-\frac{1}{R_{1}^{2}} & 0 \\
0 & +\frac{1}{R_{1}^{2}}
\end{array}\right) \wedge \star\binom{R_{1}^{2} d X^{1}}{\xi} \\
& =G-R_{1}^{2} d X^{1} \wedge \star d X^{1}+\frac{1}{R_{1}^{2}} \xi \wedge \star \xi
\end{aligned}
$$

$$
\xi=d \chi+v
$$

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The corresondina one-form reads

$$
\begin{aligned}
\check{G} & =G+\binom{k}{\xi}^{T}\left(\begin{array}{cc}
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} \\
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1}
\end{array}\right) \wedge \star\binom{k}{\xi} \\
& =G+\binom{R_{1}^{2} d X^{1}}{\xi}^{T}\left(\begin{array}{cc}
-\frac{1}{R_{1}^{2}} & 0 \\
0 & +\frac{1}{R_{1}^{2}}
\end{array}\right) \wedge \star\binom{R_{1}^{2} d X^{1}}{\xi} \\
& =G-R_{1}^{2} d X^{1} \wedge \star d X^{1}+\frac{1}{R_{1}^{2}} \xi \wedge \star \xi \\
& =\frac{1}{R_{1}^{2}} \xi \wedge \star \xi+R_{2}^{2} d X^{2} \wedge \star d X^{2}+R_{3}^{2} d X^{3} \wedge \star d X^{3}
\end{aligned}
$$

$$
\xi=d \chi+v
$$

Consider one T-dualitv along $k_{1}=\partial_{1}$. The corresoonding one-form reads
The cons

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The correspondina one-form reads

$$
\check{H}=H+\frac{1}{2} d\left[\binom{k}{\xi}^{T}\left(\begin{array}{cc}
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1} \\
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1}
\end{array}\right) \wedge\binom{k}{\xi}\right]
$$

Consider one T-dualitv along $k_{1}=2_{1}$. The corresponding one-form reads

$$
\begin{aligned}
\check{H} & =H+\frac{1}{2} d\left[\binom{k}{\xi}^{T}\left(\begin{array}{cc}
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1} \\
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1}
\end{array}\right) \wedge\binom{k}{\xi}\right] \\
& =H+\frac{1}{2} d\left[\binom{R_{1}^{2} d X^{1}}{\xi}^{T}\left(\begin{array}{cc}
0 & +\frac{1}{R_{1}^{2}} \\
-\frac{1}{R_{1}^{2}} & 0
\end{array}\right) \wedge\binom{R_{1}^{2} d X^{1}}{\xi}\right]
\end{aligned}
$$

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The correspondina one-form reads

$$
\begin{aligned}
\check{H} & =H+\frac{1}{2} d\left[\binom{k}{\xi}^{T}\left(\begin{array}{cc}
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1} \\
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1}
\end{array}\right) \wedge\binom{k}{\xi}\right] \\
& =H+\frac{1}{2} d\left[\binom{R_{1}^{2} d X^{1}}{\xi}^{T}\left(\begin{array}{cc}
0 & +\frac{1}{R_{1}^{2}} \\
-\frac{1}{R_{1}^{2}} & 0
\end{array}\right) \wedge\binom{R_{1}^{2} d X^{1}}{\xi}\right] \\
& =H+d\left[d X^{1} \wedge \xi\right]
\end{aligned}
$$

Consider one T-dualitv alona $k_{1}=\partial_{1}$. The correspondina one-form reads

$$
\begin{aligned}
\check{H} & =H+\frac{1}{2} d\left[\binom{k}{\xi}^{T}\left(\begin{array}{cc}
+\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1} & +\mathcal{M}^{-1} \\
-\mathcal{M}^{-1} & -\mathcal{M}^{-1} \mathcal{D} \mathcal{G}^{-1}
\end{array}\right) \wedge\binom{k}{\xi}\right] \\
& =H+\frac{1}{2} d\left[\binom{R_{1}^{2} d X^{1}}{\xi}^{T}\left(\begin{array}{cc}
0 & +\frac{1}{R_{1}^{2}} \\
-\frac{1}{R_{1}^{2}} & 0
\end{array}\right) \wedge\binom{R_{1}^{2} d X^{1}}{\xi}\right] \\
& =H+d\left[d X^{1} \wedge \xi\right] \\
& =0 \\
& d \xi=d(d \chi+v)=h d X^{2} \wedge d X^{3}
\end{aligned}
$$

Consider one T-duality along $k_{1}=\partial_{1}$. The corresponding one-form reads

$$
v=h \alpha X^{2} d X^{3}-h(1-\alpha) X^{3} d X^{2}, \quad \alpha \in \mathbb{R}
$$

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

$$
\begin{array}{ll}
\mathcal{G}=R_{1}^{2}, & \xi=d \chi+v, \\
\mathcal{D}=0, & k=R_{1}^{2} d X^{1},
\end{array} \quad \longrightarrow \quad \mathcal{M}=\mathcal{G}=R_{1}^{2}
$$

The metric and field strength are then computed as ...

Consider one T-duality along $k_{1}=\partial_{1}$. The corresponding one-form reads

$$
v=h \alpha X^{2} d X^{3}-h(1-\alpha) X^{3} d X^{2}, \quad \alpha \in \mathbb{R}
$$

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities

$$
\begin{array}{ll}
\mathcal{G}=R_{1}^{2}, & \xi=d \chi+v, \\
\mathcal{D}=0, & k=R_{1}^{2} d X^{1},
\end{array} \quad \longrightarrow \quad \mathcal{M}=\mathcal{G}=R_{1}^{2}
$$

The metric and field strength are then computed as

$$
\begin{aligned}
\check{G} & =\frac{1}{R_{1}^{2}} \xi \wedge \star \xi+R_{2}^{2} d X^{2} \wedge \star d X^{2}+R_{3}^{2} d X^{3} \wedge \star d X^{3} \\
\check{H} & =0
\end{aligned}
$$

As expected, the dual background is a twisted torus (with $\alpha=1$)

$$
\begin{aligned}
& \check{d s}^{2}=\frac{1}{R_{1}^{2}}\left(d \chi+h X^{2} d X^{3}\right)^{2}+R_{2}^{2}\left(d X^{2}\right)^{2}+R_{3}^{2}\left(d X^{3}\right)^{2} \\
& \check{H}=0 .
\end{aligned}
$$

Consider two collective T-dualities along $k_{1}=\partial_{1}$ and $k_{2}=\partial_{2}$.

The constraints on gauging the sigma-model imply (for $\alpha \in \mathbb{R}$)

$$
\begin{aligned}
& v_{1}=h \alpha X^{2} d X^{3}-h(1-\alpha) X^{3} d X^{2}, \\
& v_{2}=h(1+\alpha) X^{3} d X^{1}+h \alpha X^{1} d X^{3}
\end{aligned}
$$

The geometry of the dual background is determined from ($\alpha, \beta \in\{1,2\}$)

$$
\begin{array}{ll}
\mathcal{G}_{\alpha \beta}=\left(\begin{array}{cc}
R_{1}^{2} & 0 \\
0 & R_{2}^{2}
\end{array}\right), & \xi_{\alpha}=\binom{d \chi_{1}+v_{1}}{d \chi_{2}+v_{2}}, \\
\mathcal{D}_{\alpha \beta}=\left(\begin{array}{cc}
0 & +h X^{3} \\
-h X^{3} & 0
\end{array}\right), & k_{\alpha}=\binom{R_{1}^{2} d X^{1}}{R_{2}^{2} d X^{2}}
\end{array}
$$

The metric of the enlarged target space (in the basis $\left\{d X^{1}, d X^{2}, d X^{3}, \xi_{1}, \xi_{2}\right\}$) reads

$$
\begin{aligned}
& \check{G}_{I J}=\frac{1}{\rho}\left(\begin{array}{ccc|cc}
{\left[R_{1} h X^{3}\right]^{2}} & 0 & 0 & 0 & -R_{1}^{2} h X^{3} \\
0 & {\left[R_{2} h X^{3}\right]^{2}} & 0 & +R_{2}^{2} h X^{3} & 0 \\
0 & 0 & \rho R_{3}^{2} & 0 & 0 \\
\hline 0 & +R_{2}^{2} h X^{3} & 0 & R_{2}^{2} & 0 \\
-R_{1}^{2} h X^{3} & 0 & 0 & 0 & R_{1}^{2}
\end{array}\right), \\
& \rho=R_{1}^{2} R_{2}^{2}+\left[h X^{3}\right]^{2} .
\end{aligned}
$$

Performing then a change of basis one finds

$$
\mathcal{T}^{I}{ }_{A}=\left(\begin{array}{ccc|cc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\hline 0 & -h X^{3} & 0 & 1 & 0 \\
+h X^{3} & 0 & 0 & 0 & 1
\end{array}\right) \quad \longrightarrow \quad \check{\mathrm{G}}_{A B}=\left(\mathcal{T}^{T} \check{G} \mathcal{T}\right)_{A B}=\frac{1}{\rho}\left(\begin{array}{ccc|cc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \rho R_{3}^{2} & 0 & 0 \\
\hline 0 & 0 & 0 & R_{2}^{2} & 0 \\
0 & 0 & 0 & 0 & R_{1}^{2}
\end{array}\right)
$$

Performing a similar analysis for the field strength and adjusting the notation, one finds

$$
\begin{aligned}
& \check{\mathrm{ds}}^{2}=\frac{1}{R_{1}^{2} R_{2}^{2}+\left[h X^{3}\right]^{2}}\left[R_{1}^{2}\left(d \tilde{\chi}_{1}\right)^{2}+R_{2}^{2}\left(d \tilde{\chi}_{2}\right)^{2}\right]+R_{3}^{2}\left(d X^{3}\right)^{2}, \\
& \check{\mathrm{H}}=-h \frac{R_{1}^{2} R_{2}^{2}-\left[h X^{3}\right]^{2}}{\left[R_{1}^{2} R_{2}^{2}+\left[h X^{3}\right]^{2}\right]^{2}} d \tilde{\chi}_{1} \wedge d \tilde{\chi}_{2} \wedge d X^{3} .
\end{aligned}
$$

This is the familiar T-fold background.

Finally, consider three collective T-dualities along $k_{1}=\partial_{1}, k_{2}=\partial_{2}$ and $k_{3}=\partial_{3}$.

The constraints on gauging the sigma-model require the H-flux to be vanishing

$$
\iota_{k_{\alpha}} \iota_{k_{\beta}} \iota_{k_{\gamma}} H=0 \quad H=0 .
$$

The dual model is characterized by

$$
\begin{aligned}
\check{d s}^{2} & =\frac{1}{R_{1}^{2}}\left(d \chi_{1}\right)^{2}+\frac{1}{R_{2}^{2}}\left(d \chi_{2}\right)^{2}+\frac{1}{R_{3}^{2}}\left(d \chi_{3}\right)^{2} \\
\check{H} & =0
\end{aligned}
$$

The constraints on gauging the sigma-model require the H-flux to be vanishing

$$
\iota_{k_{\alpha}} \iota_{k_{\beta}} \iota_{k_{\gamma}} H=0 \quad \longrightarrow \quad H=0 .
$$

$$
\begin{aligned}
& \mathcal{L}_{k_{[\underline{\alpha}}} v_{\underline{\beta}]}=f_{\alpha \beta}^{\gamma} v_{\gamma} \\
& \iota_{k_{[\underline{\alpha}}} f_{\underline{\beta \gamma]}}{ }^{\delta} v_{\delta}=\frac{1}{3} \iota_{k_{\alpha}} \iota_{k_{\beta}} \iota_{k_{\gamma}} H
\end{aligned}
$$

Finally, consider three collective T-dualities along $k_{1}=\partial_{1}, k_{2}=\partial_{2}$ and $k_{3}=\partial_{3}$.

The constraints on gauging the sigma-model require the H-flux to be vanishing

$$
\iota_{k_{\alpha}} \iota_{k_{\beta}} \iota_{k_{\gamma}} H=0 \quad H=0 .
$$

The dual model is characterized by

$$
\begin{aligned}
\check{d s}^{2} & =\frac{1}{R_{1}^{2}}\left(d \chi_{1}\right)^{2}+\frac{1}{R_{2}^{2}}\left(d \chi_{2}\right)^{2}+\frac{1}{R_{3}^{2}}\left(d \chi_{3}\right)^{2} \\
\check{H} & =0
\end{aligned}
$$

torus :: summary

The formalism for T-duality introduced above works as expected.

three-torus with H-flux

$\xrightarrow{\text { 2 T-dualities }}$
$\xrightarrow{\text { 3 T-dualities }}$

T-fold
torus with $R \rightarrow 1 / R$

Bonus :: T-duality for the twisted torus with H-flux leads to twisted T-folds.

$$
\begin{aligned}
& \check{\mathrm{G}}=\frac{1}{1+\left[\frac{R_{1}}{R_{2}} f X^{3}\right]^{2}}\left(R_{1}^{2} d X^{1} \wedge \star d X^{1}+\frac{1}{R_{2}^{2}} \xi \wedge \star \xi\right)+R_{3}^{2} d X^{3} \wedge \star d X^{3}, \\
& \check{\mathrm{H}}=-f \frac{R_{1}^{2}}{R_{2}^{2}} \frac{1-\left[\frac{R_{1}}{R_{2}} f X^{3}\right]^{2}}{\left(1+\left[\frac{R_{1}}{R_{2}} f X^{3}\right]^{2}\right)^{2}} d X^{1} \wedge \xi \wedge d X^{3}, \quad d \xi=-h d X^{1} \wedge d X^{3} .
\end{aligned}
$$

This is a background with geometric and non-geometric flux.

outline

1. introduction
2. collective t-duality
3. three-torus
4. three-sphere
5. discussion

Consider a three-sphere with H -flux, specified by

$$
\begin{array}{lr}
d s^{2}=R^{2}\left[\sin ^{2} \eta\left(d \zeta_{1}\right)^{2}+\cos ^{2} \eta\left(d \zeta_{2}\right)^{2}+(d \eta)^{2}\right], & \zeta_{1,2}=0 \ldots 2 \pi \\
H=\frac{h}{2 \pi^{2}} \sin \eta \cos \eta d \zeta_{1} \wedge d \zeta_{2} \wedge d \eta, & \eta=0 \ldots \frac{\pi}{2}
\end{array}
$$

This model is conformal if $h=4 \pi^{2} R^{2}$.

The isometry algebra is $\mathfrak{s o}(4)=\mathfrak{s u}(2) \times \mathfrak{s u}(2)$, and the Killing vectors satisfy
(with $\alpha, \beta, \gamma \in\{1,2,3\}$)

$$
\begin{array}{ll}
{\left[\mathrm{K}_{\alpha}, \mathrm{K}_{\beta}\right]_{\mathrm{L}}=\epsilon_{\alpha \beta}{ }^{\gamma} \mathrm{K}_{\gamma},} & \\
{\left[\mathrm{K}_{\alpha}, \tilde{\mathrm{K}}_{\beta}\right]_{\mathrm{L}}=0,} & \left|\mathrm{~K}_{\alpha}\right|^{2}=\left|\tilde{\mathrm{K}}_{\alpha}\right|^{2}=\frac{R^{2}}{4} . \\
{\left[\tilde{\mathrm{K}}_{\alpha}, \tilde{\mathrm{K}}_{\beta}\right]_{\mathrm{L}}=\epsilon_{\alpha \beta} \tilde{\mathrm{K}}_{\gamma},} &
\end{array}
$$

This mot | $\mathrm{K}_{1}=\frac{1}{2}\left(\begin{array}{c}+1 \\ -1 \\ 0\end{array}\right)$, | $\tilde{\mathrm{K}}_{1}=\frac{1}{2}\left(\begin{array}{c}+1 \\ +1 \\ 0\end{array}\right)$, |
| ---: | :--- |
| $\mathrm{K}_{2}=\frac{1}{2}\left(\begin{array}{c}-\sin \left(\zeta_{1}-\zeta_{2}\right) \cot \eta \\ -\sin \left(\zeta_{1}-\zeta_{2}\right) \tan \eta \\ \cos \left(\zeta_{1}-\zeta_{2}\right)\end{array}\right)$, | $\tilde{\mathrm{K}}_{2}=\frac{1}{2}\left(\begin{array}{c}+\sin \left(\zeta_{1}+\zeta_{2}\right) \cot \eta \\ -\sin \left(\zeta_{1}+\zeta_{2}\right) \tan \eta \\ -\cos \left(\zeta_{1}+\zeta_{2}\right)\end{array}\right)$, |
| $\mathrm{K}_{3}=\frac{1}{2}\left(\begin{array}{c}-\cos \left(\zeta_{1}-\zeta_{2}\right) \cot \eta \\ -\cos \left(\zeta_{1}-\zeta_{2}\right) \tan \eta \\ -\sin \left(\zeta_{1}-\zeta_{2}\right)\end{array}\right)$, | |\(\quad \tilde{\mathrm{K}}_{3}=\frac{1}{2}\left(\begin{array}{c}+\cos \left(\zeta_{1}+\zeta_{2}\right) \cot \eta

-\cos \left(\zeta_{1}+\zeta_{2}\right) \tan \eta

+\sin \left(\zeta_{1}+\zeta_{2}\right)\end{array}\right) .\).
$\left[\mathrm{K}_{\alpha}, \mathrm{K}_{\beta}\right]_{\mathrm{L}}=\epsilon_{\alpha \beta}{ }^{\gamma} \mathrm{K}_{\gamma}$,
$\left[\mathrm{K}_{\alpha}, \tilde{\mathrm{K}}_{\beta}\right]_{\mathrm{L}}=0$,

$$
\left|\mathrm{K}_{\alpha}\right|^{2}=\left|\tilde{\mathrm{K}}_{\alpha}\right|^{2}=\frac{R^{2}}{4} .
$$

$\left[\tilde{\mathrm{K}}_{\alpha}, \tilde{\mathrm{K}}_{\beta}\right]_{\mathrm{L}}=\epsilon_{\alpha \beta}{ }^{\gamma} \tilde{\mathrm{K}}_{\gamma}$,

Consider a three-sphere with H -flux, specified by

$$
\begin{array}{lr}
d s^{2}=R^{2}\left[\sin ^{2} \eta\left(d \zeta_{1}\right)^{2}+\cos ^{2} \eta\left(d \zeta_{2}\right)^{2}+(d \eta)^{2}\right], & \zeta_{1,2}=0 \ldots 2 \pi \\
H=\frac{h}{2 \pi^{2}} \sin \eta \cos \eta d \zeta_{1} \wedge d \zeta_{2} \wedge d \eta, & \eta=0 \ldots \frac{\pi}{2}
\end{array}
$$

This model is conformal if $h=4 \pi^{2} R^{2}$.

The isometry algebra is $\mathfrak{s o}(4)=\mathfrak{s u}(2) \times \mathfrak{s u}(2)$, and the Killing vectors satisfy
(with $\alpha, \beta, \gamma \in\{1,2,3\}$)

$$
\begin{array}{ll}
{\left[\mathrm{K}_{\alpha}, \mathrm{K}_{\beta}\right]_{\mathrm{L}}=\epsilon_{\alpha \beta}{ }^{\gamma} \mathrm{K}_{\gamma},} & \\
{\left[\mathrm{K}_{\alpha}, \tilde{\mathrm{K}}_{\beta}\right]_{\mathrm{L}}=0,} & \left|\mathrm{~K}_{\alpha}\right|^{2}=\left|\tilde{\mathrm{K}}_{\alpha}\right|^{2}=\frac{R^{2}}{4} . \\
{\left[\tilde{\mathrm{K}}_{\alpha}, \tilde{\mathrm{K}}_{\beta}\right]_{\mathrm{L}}=\epsilon_{\alpha \beta} \tilde{\mathrm{K}}_{\gamma},} &
\end{array}
$$

sphere :: one t-duality

Consider one T-duality along K_{1}. In this case, all constraints are satisfied:

- constraints from gauging the sigma-model
- the matrix $\mathcal{G}_{\alpha \beta}=k_{\alpha}^{i} G_{i j} k_{\beta}^{j}$ is invertible

The dual model is characterized by the metric and H-flux

$$
\begin{aligned}
\check{\mathrm{G}} & =\frac{R^{2}}{4}\left[(d \tilde{\eta})^{2}+\sin ^{2}(\tilde{\eta})(d \tilde{\zeta})^{2}\right]+\frac{4}{R^{2}} \xi \wedge \star \xi \\
\check{\mathrm{H}} & =\sin \tilde{\eta} d \tilde{\zeta} \wedge d \tilde{\eta} \wedge \xi
\end{aligned}
$$

$$
d \xi=-\frac{h}{16 \pi^{2}} \sin \tilde{\eta} d \tilde{\eta} \wedge d \tilde{\zeta}
$$

This metric describes a circle fibered over a two-sphere.

sphere :: two t-dualities I

For two collective T-dualities, consider the commuting Killing vectors K_{1} and $\tilde{\mathrm{K}}_{1}$.

The constraints for this model are almost satisfied:

- constraints from gauging the sigma-model
- the matrix $\mathcal{G}_{\alpha \beta}=k_{\alpha}^{i} G_{i j} k_{\beta}^{j}$ is invertible

$$
\boldsymbol{X} \quad \operatorname{det} \mathcal{G}=\frac{R^{4}}{16} \sin ^{2}(2 \eta)
$$

The dual model, via the above formalism, takes a form similar to the T-fold

$$
\begin{aligned}
& \check{\mathrm{G}}=R^{2}(d \eta)^{2}+\frac{1}{R^{2}} \frac{\left(d \tilde{\chi}_{1}\right)^{2}}{\sin ^{2} \eta+\left[\frac{h}{4 \pi^{2} R^{2}}\right]^{2} \cos ^{2} \eta}+\frac{1}{R^{2}} \frac{\left(d \tilde{\chi}_{2}\right)^{2}}{\cos ^{2} \eta+\left(\frac{h}{4 \pi^{2} R^{2}}\right)^{2} \frac{\cos ^{4} \eta}{\sin ^{2} \eta}}, \\
& \check{\mathrm{H}}=-8 h \pi^{2}\left(h^{2}-16 \pi^{4} R^{4}\right) \frac{\sin \eta \cos \eta}{\left[16 \pi^{2} R^{4} \sin ^{2} \eta+h^{2} \cos ^{2} \eta\right]^{2}} d \eta \wedge d \tilde{\chi}_{1} \wedge d \tilde{\chi}_{2} .
\end{aligned}
$$

But, when starting from a conformal model with $h=4 \pi^{2} R^{2}$, the background becomes

$$
\begin{aligned}
& \overline{\mathrm{G}}=R^{2}(d \eta)^{2}+\frac{1}{R^{2}}\left[\left(d \tilde{\chi}_{1}\right)^{2}+\tan ^{2} \eta\left(d \tilde{\chi}_{2}\right)^{2}\right], \\
& \overline{\mathrm{H}}=0
\end{aligned}
$$

With dual dilaton $\bar{\phi}=-\log \left(R^{2} \cos \eta\right)+\phi$, this is again a conformal model.

Consider finally a non-abelian T-duality along $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3}.

- The constraints from gauging the sigma-model imply $\quad H=0$,
- and the matrix $\mathcal{G}_{\alpha \beta}=k_{\alpha}^{i} G_{i j} k_{\beta}^{j}$ is invertible

The dual model is obtained as (with $\rho \geq 0$ and $\phi_{1,2}=0, \ldots, 2 \pi$)

$$
\begin{aligned}
\check{\mathrm{G}} & =\frac{4}{R^{2}} d \rho \wedge \star d \rho+\frac{R^{2}}{4} \frac{\rho^{2}}{\rho^{2}+\frac{R^{4}}{16}}\left[d \phi_{1} \wedge \star d \phi_{1}+\sin ^{2}\left(\phi_{1}\right) d \phi_{2} \wedge \star d \phi_{2}\right] \\
\check{\mathrm{H}} & =\frac{\rho^{2}}{\left(\rho^{2}+\frac{R^{4}}{16}\right)^{2}}\left[\rho^{2}+3 \frac{R^{4}}{16}\right] \sin \left(\phi_{1}\right) d \rho \wedge d \phi_{1} \wedge d \phi_{2} .
\end{aligned}
$$

sphere :: summary

In the formalism for T-duality introduced above, for a conformal model one finds:

three-sphere with
H-flux

2 T-dualities
three-sphere with
$H=0$

S^{2} fibered over a ray

outline

1. introduction
2. collective t-duality
3. three-torus
4. three-sphere
5. discussion

A formalism for collective T-duality transformations was developed

- Restrictions on allowed transformations arise.
\rightarrow Reduction of the duality group?

For the three-torus with H-flux,

- known results have been reproduced, and
- a twisted T-fold has been obtained.

For the three-sphere with H-flux,

- new geometric backgrounds have been obtained,
- but their global structure is not clear.

For two collective T-duality transformations it was found ::

Thus, the origin of non-geometry remains unclear ...

