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this talk is based on ...

I

This talk is based on T-duality revisited |[arXiv:1310.4194],
and on some work in progress |arXiv: 1407 .xxxx]|.



Introduction :: motivation

I

Non-geometric backgrounds



Introduction :: motivation

—

Non-geometric backgrounds :: why?
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—

Non-geometric backgrounds :: why?

= Have non-commutative or non-associative features.
= Are part of the string-theory landscape.
= Provide uplifts for gauged supergravities.

= Can help with moduli stabilization & cosmology.
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iIntroduction :: main example

I

What is a non-geometric background? ... apply T-duality to a three-torus:

y Tc N y Tb \ b ) Ta N b
Habc S 7 fabc S 7 Qa ¢ S 7 RCL ¢
flux background "twisted torus” T-fold non-associative

Shelton, Taylor, Wecht - 2005
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iIntroduction :: main example
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fabc

AN
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introduction :: h-flux background

T. T b T, b
H.,pe | < S L Q¢ < sy RV
Consider string theory compactified on a three-torus with H-flux:
= The geometry is determined by  ds? = da? + dy? + dz?,
B,,=Nux,
x~x+1, y~y+1, z~z+1.

s [he H-flux reads

Hyy. = N.
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introduction :: h-flux background

T. T b T, . b
H.,pe | < S L Q¢ < sy RV
ds* = dz® + dy* + dz°,
B,,=Nux,
x~x+1, y~y+1, z~z4+1.
G B)@+1) ST (G, B)(x)
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introduction :: h-flux background

T. T b T, b
H.,pe | < S L Q¢ < sy RV
Consider string theory compactified on a three-torus with H-flux:
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B,,=Nux,
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introduction :: f-flux background

T

Habc <

fabc

~

1%

T,
y Qabc y , Rabc

AN

After a T-duality in the z-direction, one arrives at a twisted torus:

= [he geometry is determined by

= [he geometric flux reads

ds® = dx* + dy* + (dz + Nxdy)?,

(x,2) ~(x+1,z—Ny), y~y+1, z~z+1.

e’ =dx, e’ = dy, e =dz+ Nzxdy,
W ey =N/2,
ez, eyl = —Ne,.

Scherk, Schwarz - 1979
Dasgupta, Rajesh, Sethi - 1999
Kachru, Schulz, Tripathy, Trivedi - 2002
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introduction :: f-flux background

Tc T b Ta b
H.p. < | fap’ |4 L Q¢ < sy RV
ds® = dx* + dy* + (dz + Nxdy)?,
B=0,
(x,2) ~(x+1,z—Ny), y~y+1, z~z+1.
c.B@+y MY (@.B)(a) |
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introduction :: f-flux background
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After a T-duality in the z-direction, one arrives at a twisted torus:

= [he geometry is determined by

= [he geometric flux reads

ds® = dx* + dy* + (dz + Nxdy)?,

(x,2) ~(x+1,z—Ny), y~y+1, z~z+1.
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Scherk, Schwarz - 1979
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introduction :: g-flux background

I

T

1%
Habc < 7 fabc <

~
N
~

Rabc

ch
a

After a second T-duality in the x-direction, one arrives at a T-fold:

= The geometry is determined by~ ds? = dy® + (dz? + d2?),

14+ (Ny)?
Ny
B:cz: )
14+ (Ny)?

r~x+1, z~z+1.

» The non-geometric flux reads Q,”” =—N.

This space is locally geometry, but globally non-geometric.

Hellermann, McGreevy, Williams - 2002
Dabholkar, Hull - 2002
Hull - 2004
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introduction :: g-flux background

T, T b T, b
H.p. < S Q.| < sy RV
ds® = dy* + dr? + dz?),
v T g2 )
N
B:cz — J )
1+ (Ny)?
r~x+1, z~z+1.
T-dualit
GBw+y = (G, B)(y)
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After a second T-duality in the x-direction, one arrives at a T-fold:

= The geometry is determined by~ ds? = dy® + (dz? + d2?),

14+ (Ny)?
Ny
B:cz: )
14+ (Ny)?
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» The non-geometric flux reads Q,”” =—N.
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introduction :: r-flux background

I

Tc Tb

T,
Habc < ? fabc < ? Qabc <

Rabc

~

After formally applying a third T-duality, one obtains an R-flux background:

= [he geometry is not even locally defined.

= The non-geometric R-flux is obtained by raising the index of the Q-flux

Q,”* — R™* =N.

= This background gives rise to a non-associative structure.

Bouwknegt, Hannabuss, Mathai - 2004
Shelton, Taylor, Wecht - 2005

Ellwood, Hashimoto - 2006
Blumenhagen, EP & Lust - 2010



iIntroduction :: more examples

I

But :: ...



iIntroduction :: more examples

I

But :: what about other examples”?

= The torus is the mainly (and only) studied background.

s Other — and better — examples are needed!

— (Consider the three-sphere.



—

introduction :: goal

Goal :

Plan ::

Construct new non-geometric backgrounds.

Revisit (collective) T-duality.
Review the three-torus.

Consider the three-sphere.
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t-duality :: sigma-model action

To study T-duality for the three-sphere, a non-abelian version might be needed.

de la Ossa, Quevedo - 1992

Giveon, Rocek - 1993

Sfetsos - 1994

Alvarez, Alvarez-Gaume, [Barbon,] Lozano - 1993 & 1994

Consider the sigma-model action for the NS-NS sector of the closed string

1

Ama

1

S —

/ {Gij dX* ANxdX? 4+ o'R ¢ * 1} — 4 HjpdX' A dX7 AN dXP .
0 >

2ma’

This action is invariant under global transformations 6. X" = e*k’ (X) if

L G=0, e, H = dv,, , Lr.©»=0.

In general, the isometry algebra is non-abelian [kq, ksl = fap™ k- .

Hull, Spence - 1989 & 1991



t-duality :: gauged action

Following Buscher’s procedure, the gauged sigma-model action is found as

S=—— LG (dX" + kLAY Ax(dXT + k2 AP)

S / L HijpdX' A dX9 A dX*
)Yy

(

»/82 |: (Ua —I_an) /\Aa _|_ % (Lk[gvé] _|_ foéﬁ’yX’Y) Aa /\AB:| .

2o

Hull, Spence - 1989 & 1991
Alvarez, Alvarez-Gaume, Barbon, Lozano - 1994



t-duality :: gauged action

Following Buscher’s procedure, the gauged sigma-model action is found as

S=—— LG (dX" + kLAY Ax(dXT + k2 AP)

S / L HijpdX' A dX9 A dX*
)Yy

(

LZ |: (Ua —I_an) /\Aa _|_ % (Lk[gvé] _|_ fOéﬁ’VX’Y) Aa /\AB:| .

2o

Hull, Spence - 1989 & 1991
Alvarez, Alvarez-Gaume, Barbon, Lozano - 1994

The local symmetry transformations take the form
0 X = €k, 0cA* = —de® — " A7 fg,

5€on — _Lk(avg)eﬁ — faﬁq/eﬁXV .

EP (with F. Rennecke) - 2014
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t-duality :: gauged action

Following Buscher’s procedure, the gauged sigma-model action is found as

S=—— [ 3Gi;([dX"+ kL A*) N*(dX7 + k2, AP)

S / L HijpdX' A dX9 A dX*
)Yy

(

»/82 |: (Ua —I_an) /\Aa _|_ % (Lk[gvé] _|_ foéﬁ’yX’Y) Aa /\AB:| .

2o

Hull, Spence - 1989 & 1991
Alvarez, Alvarez-Gaume, Barbon, Lozano - 1994

This gauging is subject to the following constraints

1

'Ck[gvﬁ] — fO‘BWU'Y ? Lk[g f@]é’l)(s - g ba kg Lka .

EP (with F. Rennecke) - 2014



t-duality :: recovering the original model

The original model is recovered via the equations of motion for Xo

0=dA* — L f5,“A° N A7

The gauge action can then be rewritten in terms of DX* = dX"* + k', A“ as

N 1 | |
S=-—— [ [GyDX'A+DXT + 'R 1]
4o )

(

2o/

4 H;j, DX NDX’ NDX" .
D

Ignoring technical details, one replaces DX" — dY* and obtains the ungauged action.



t-duality :: obtaining the dual model |

The dual model is obtained via the equations of motion for A®

Aa:>—09—4DQ—Wﬂ‘ffw(n+¢*IMT4);Kk+i*€LN
where

gaﬁ — kngijkéa o = dXa + Vo,

Daﬁ = Lk[gvé] —+ fa57X77 ]Ca — kéGijde .

The action of the dual sigma-model is found by integrating-out A% and reads

3::——1— {é%ﬂﬂR¢*ﬁ—— i /hﬁ,
>

Ara | o5 2mal

where, with M = G — DG~ 'D invertible,

) AV VES! —M-1pg1 A
mon () (g ) ()

v B\" (+M'DG1 M k
H=H+zd <€) ( M Mngl)A(s)}'




t-duality :: obtaining the dual model |

Consider an enlarged target-space parametrized by coordinates X* and X .

The enlarged metric G and field strength H have null-eigenvectors (and isometries)

G =0,

Lna
Ng = ko + Dagagﬂ .

A

Ly H:O,

(0%

The dual metric and field strength are obtained via a change of coordinates
k0O = < 0 O
Tia= (D ]1) ) Gap = (T"GT)ap = <0 G(w) ’

v % I —~J ~+K
Hapec=Hrigx T AT BT ¢,

Hipc = 0.



t-duality :: summary

—

The T-duality transformation rules are obtained via Buscher’s procedure of
1. gauging isometries in the sigma-model action,
2. Integrating-out the gauge field,

3. performing a change of coordinates.

The possible gaugings are restricted by (recall that v, H = dv,, )

1

Lhinvg) = Jas vy thia F) 08 = 5 bt o, H

The change of coordinates is performed using null-eigenvectors n,,

~ > J -~ - K
G[Jna:(), H[JKna:O.
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torus :: setting

Consider a three-torus with H-flux specified as follows
ds® = R? (dX")° + R2 (dX?)° + R2 (dX?)?, X'~ X0,

H=hdX'NdX?* NdX?, hel'7.

The Killing vectors (in the basis {01, 0-, d5} ) are abelian and can be chosen as
1 0 0
ki=101, ko=111], ks=10|.
0 0 1

The one-forms v, (defined via 1, H = dv,, ), up to exact terms take the form
UlzhOél XZdXS —hOéQXBdXZ, Oél—I—OéQ:l,
ve =hp X?dX' —hfy X'dX?, b1+ 062=1,
v = hy1 XtdX? —hys deXl, Y1+ =1.
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torus :: one t-duality |

Consider one T-duality along k; = 9;. The corresponding one-form reads
v=haX?dX® —h(l—a)X?dX?, a€R.

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities
G = Ry, § =dx+w,

— M=G=R;7.

D=0, k= R?dX!,

The metric and field strength are then computed as ...
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torus :: one t-duality |

=G - RPdX' AxdX* +

—|_R_%

1

Ry

0
1

)+

FARS

R2dX!
&

)

)7+()

§=dx+wv
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torus :: one t-duality |

1
RY

1
R%XmA*deﬁg/\*g
1

ENXE+ R5dX? AN*dX? + R5dX> A xdX?

_M—lpg—l N\ k
M *@

+(R%dX1>T ~q 0 A*(R%dX]L)
¢ 0 44 ¢

— G —

§=dx+v
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torus :: one t-duality |

—

- B\ (M- IDG? + M1
_ 1
H=H+3d (g) ( — M1 —M—lpg—1> A (
RZdXW\" [ 0 43 R2dX?
— H"‘ %d ( ) 1 1 /\ ( 1 )
f - R? 0 f




torus :: one t-duality |

—

(K (MDD M k

i=nda|(o) (a0 M”?gl)A(f)}
— H 1d R%Xm g 0 _l_RL% R%Xm
R AN — 0 A< ¢ )

:H+d[dX1/\§}




torus :: one t-duality |
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(K (MDD M k

i=nda|(o) (a0 M1D91>A<£>}
— H 1d R%Xm g 0 _l_RL% R%Xm
R AN — 0 A( ¢ )

:H+d[dX1/\§}

=0

dé = d(dxy +v) = hdX? NdX?




—

torus :: one t-duality |

Consider one T-duality along k; = 9;. The corresponding one-form reads
v=haX?dX® —h(l—a)X?dX?, a€R.

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities
G = Ry, § =dx+w,

— M=G=R;7.

D=0, k= R?dX!,

The metric and field strength are then computed as ...



—

torus :: one t-duality |

Consider one T-duality along k; = 9;. The corresponding one-form reads
v=haX?dX® —h(l—a)X?dX?, a€R.

The constraints for gauging the sigma-model are trivially satisfied.

The geometry of the dual background is determined from the quantities
G = RY, £ =dx+w,

— M =G =R7.
D=0, k= R2dX!,

The metric and field strength are then computed as
< 1
G = ﬁf/\*ngR%dXQ AxdX? + R5dX> A xdX?,
1

H=0.



torus :: one t-duality |

—

As expected, the dual background is a twisted torus (with o = 1)

-2 1

5" = g (dx +hX?AX°)" 4 B (ax?)” + B (X7)

H=0.



torus :: two t-dualities |

—

Consider two collective T-dualities along k; = 0; and kg = 05.

The constraints on gauging the sigma-model imply (for v € R)

v = haX?dX? —h(l —a)X?dX?,
vo =h(l+a)X?dX' +haX'dX".

The geometry of the dual background is determined from (o, 5 € {1,2})
~ (R{ O ~ (dxi+ 0
gozﬂ — ( 0 R%) y Soz — (dXZ 4 ,02) )

s 0 +hX? . _ (Ridx
af — _hX3 0 ) o — R%dXQ .



torus :: two t-dualities I

—

The metric of the enlarged target space (in the basis {dX ", dX*, dX" &, &)) reads

[ [RihX?)° 0 0 0 ~RZAX?
| 0 [RyhX%])® 0 | +R2HX3 0
Grj= - 0 0 p R3 0 0 ,
’ 0 +RZhX3 0 R2 0
\ —R2p X3 0 0 0 R

p=RR:+ [nX%]".

Performing then a change of basis one finds

[ 1 0 00 o\ (0 0 0 0 0

0 1 0|0 0 oo o 0 0

T'a= 0 0 1|0 0 — (;AB:(TTGT)AB=; 0 0 pR3 0
0 —hX3 0|1 0 0 0 0 2.0

\ thX® 0 0]0 1) \ 0 0 0 R?

/



torus :: two t-dualities Il

—

Performing a similar analysis for the field strength and adjusting the notation, one finds

. 1 - .
ds” = R2R2 + [hX?)]? [R% (dX1)2 + R; (dX?f} + R (dXS)Q’
1+%2
2p2 312
il = (WX 5 dx1 Adxa AdX?.

B3RS+ [h )|

This is the familiar T-fold background.



torus :: three t-dualities

I

Finally, consider three collective T-dualities along k1 = 01, ks = 02 and k3 = 0s.

The constraints on gauging the sigma-model require the H-flux to be vanishing

LkabkﬁbkaZO —_— H=0.

The dual model is characterized by

.2 1

1
ds = ? (dX1)2 + — (dX2)2 + —5 (dX3) )
1

R3

H=0.



torus :: three t-dualities

—

The constraints on gauging the sigma-model require the H-flux to be vanishing

LkabkﬁbkaZO E— H=0.

Lrvp) = fap vy

_—

5, 1
Ukio JB4) V5 = 3 Lho g b, H




torus :: three t-dualities

I

Finally, consider three collective T-dualities along k1 = 01, ks = 02 and k3 = 0s.

The constraints on gauging the sigma-model require the H-flux to be vanishing

LkabkﬁbkaZO —_— H=0.

The dual model is characterized by

.2 1

1
ds = ? (dX1)2 + — (dX2)2 + —5 (dX3) )
1

R3

H=0.



torus :: summary

I

The formalism for T-duality introduced above works as expected.

] - 1 T-dualit -
three-torus with uaity twisted torus
H-flux
2 T-dualities
> T-fold
_ i 3 T-dualities :
three /t_;)_rtés with > torus with R — 1/R




torus :: twisted torus

I

Bonus :: T-duality for the twisted torus with H-flux leads to twisted T-folds.

3 1
G= (R2dX1 A *d X! + —gmg) + R2dX° AxdX?
1+ [B 7 x3]° R3 ’

2
R2 1-— Bor x3
R; 7 f ]2 S dXTAENAX3,
R4
i (H[R_an?’]) d¢ = —hdX' AndX?3.

This Is a background with geometric and non-geometric flux.
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sphere :: setting
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Consider a three-sphere with H-flux, specified by

ds* = R* [sin277(dC1)2 + cos”® n (d¢a)? + (dn)Z} : C12=0...2m,
h . T

H = — sinncosnd(y Nd(s Ndn, n=0...—=.
272 2

This model is conformal if h = 47%R>.

The isometry algebra is so(4) = su(2) x su(2), and the Killing vectors satisfy
(Wlth Q, 67 8 S {17 27 3})

Ko, Kglt, = €07 K,
[KOURB]L:()a ’KQPZ‘RQPZ—.

~ ~ ~

[Kom KB]L — 6@[37 K’y )
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sphere :: setting

cos(C1 — C2)
[~ cos((1 — () cotn
Ks =5 | —cos(Ci —C2)tany |,
—sin((1 — C2)

’Koz‘2 — ‘Ra‘2 — T




sphere :: setting

I

Consider a three-sphere with H-flux, specified by

ds* = R* [sin277(dC1)2 + cos”® n (d¢a)? + (dn)Z} : C12=0...2m,
h . T

H = — sinncosnd(y Nd(s Ndn, n=0...—=.
272 2

This model is conformal if h = 47%R>.

The isometry algebra is so(4) = su(2) x su(2), and the Killing vectors satisfy
(Wlth Q, 67 8 S {17 27 3})

Ko, Kglt, = €07 K,
[KOURB]L:()a ’KQPZ‘RQPZ—.

~ ~ ~

[Kom KB]L — 6@[37 K’y )



sphere :: one t-duality

—

Consider one T-duality along K. In this case, all constraints are satisfied:

= constraints from gauging the sigma-model v

= the matrix Gap = ki, Gi; k) is invertible v

The dual model is characterized by the metric and H-flux
. R? ~ 4
G = = | (di)? + sin(7)(d0)?| + -3 E A€,
4 R h
dé = —
1672

sinf dij A dC .
H=sinidl AdijAE,

This metric describes a circle fibered over a two-sphere.

Bouwknegt, Evslin, Mathai - 2003
incomplete in Alvarez, Alvarez-Gaume, Barbon, Lozano - 1993



sphere :: two t-dualities |

—

For two collective T-dualities, consider the commuting Killing vectors Ky and Kj.

The constraints for this model are almost satisfied:
= constraints from gauging the sigma-model v

v the matrix Gap = k), Gi; k% is invertible X det G = £ sin%(2n)

The dual model, via the above formalism, takes a form similar to the T-fold

G = R?(dn)? + — (1) . (d%2)"
— n B2 . 2 3 2 5 R2 5 h 2 costn’
sim” 7 + |:47T2R2:| COS™ 1) cos® 1 + (47r2R2) sin® 7

Sin 7 cos 1)

H= —8hn*(h* — 167" R?)
1672 R* sin® 1 4 h2 cos? 7l

2d77/\d>21/\d>22.



sphere :: two t-dualities |l

I

But, when starting from a conformal model with h = 47 R?, the background becomes

_ 1 ~ B
G = R (dn)? + = | (d%1)? + tan’ n (d¥z)? |

H=0.

With dual dilaton ¢ = —log(R? cosn) + ¢, this is again a conformal model.



sphere :: three t-dualities

I

Consider finally a non-abelian T-duality along K;, Ky and Ks .

= [he constraints from gauging the sigma-model imply H=0,

= and the matrix Gap = ki, Gi; k}, is invertible v

The dual model is obtained as (with p > 0 and ¢ =0,...,2m7)

2 2

. 4 ;
G = R2 dp N\ *dp + 4 p? i Yi% {dﬁbl A xdpy + sin®(¢1) dga A *d@} ’
16
. 2 R*] .
= |7+ g | sl do o o
P 16

partially in Alvarez, Alvarez-Gaume, Barbon, Lozano - 1993



sphere :: summary

—

In the formalism for T-duality introduced above, for a conformal model one finds:

- ' 1 T-dualit .
three Z?QS;G with ey, ST fibered over S
2 T-dualities .
> non-compact, geometric
_ ' 3 T-dualities
three s/sb(e)re with > S2 fibered over a ray
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discussion :: summary

—

A formalism for collective T-duality transformations was developed

s Restrictions on allowed transformations arise.

— Reduction of the duality group?

For the three-torus with H-flux,

= known results have been reproduced, and

m g twisted T-fold has been obtained.

For the three-sphere with H-flux,

= new geometric backgrounds have been obtained,

= put their global structure is not clear.



—

discussion :: outlook

For two collective T-duality transformations it was found ::

three-torus with
H-flux
(not conformal)

2 T-dualities

three-sphere with
H-flux
(conformal)

>

2 T-dualities

>

Thus, the origin of non-geometry remains unclear ...

non-geometric

compact

geometric

non-compact



