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Motivation

» PART |

» Torsion part of Mordell-Weil group gives info beyond the
Lie-algebra of non-abelian gauge symmetries;
» PART II
» Chiral matter spectrum requires Gy-flux;
» However, need to know full massless matter spectrum;
> Not obvious that all (unwanted) vector like pairs obtain mass
and lift;
> Even if, mass might be small (if SUSY breaking scale is low)
such that they will contribute to all kind of threshold
corrections;
» To obtain full massless matter spectrum, need gauge data
beyond four-form flux;
» Chow groups will give us handle on them;
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Part |

Global Structure of Gauge Groups



Mordell-Weil group

>

Points on elliptic curve E = C/A, with A = (1, 7), are additive
as complex numbers;

Points (x, y) with rational coordinates on E,

f3

2_ 3 . .

over field K form abelian group under addition, E(K);
Mordell-Weil theorem for elliptic curves states that E(K) is
finitely generated;

= E(K)= Z' @Ly&..8Z

free part torsion subgroup

Can be extended to elliptic fibrations Y — B; Field K rational
functions; Hence, (x, y) € rational functions over 5;
Mordell-Weil group becomes group of sections; Group law
fibrewise over each point of B;

N)
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Torsion subgroup

> Possible torsion subgroups for elliptic K3 surface are:

Zi(k=2,...,8), Zy®Zox(k=1,2,3), Z3DZLs, ZLaDZs

» No classification for higher dimensional Calabi-Yau varieties;

» Among 16 reflexive polygons, 3 admit torsion points/sections
as restriction of ambient toric divisors to hypersurface;

» For these Mordell-Weil groups are: Z,, Z & Z, and Zs;

» Torsion of elliptic fibre does not induce torsion in homology of
fibration;

» Torsion sections lead (generically) to singularities in co-dim. 1
(order of sing. matches order of tor. section);

» Can take Zj-section mode resolution divisors;
= Gives torsion relation;
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Shioda map
» Shioda map is homomorphism from group of sections E(K) to

group of divisors NS(Y);

» Shioda map of Z-torsion section T gives trivial divisor class
onY,

k
— 1 .
T»—>T—Z—K+(5)+E E a,-F,-eP|c0(Y)

with a; € Z and F; resolution divisors; Not related to U(1);
» Can be used to define:

Note fractional coefficients on right-hand side;
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Implications for gauge theories

> Intersection pairing of = with split curves over matter loci is
integer;
» —1 Zf a; F; adds generator for coweight lattice AV (finer);
» Restricted matter spectrum; Only allowed representations
integer charged under =; Hence, coarser weight lattice A;
» Root and coroot lattices @ and QV sublattices of weight and
coweight lattices A and AV, respectively;

» Center Zg and fundamental group of gauge group G:
Ze=NQ  m(G)=NAN/Q;

» Torsion section refines coweight lattice;
» Enhances m; of G, or equivalently reduces center of G;
» E.g.: A sing. for fibration w/o torsion sec. gives SU(3); If
there is Z3-section, gauge group becomes SU(3)/Zs;
» Constrains matter spectrum to representations invariant under
action of center Zs;



Part 1l

Gauge Data via Chow Groups



Fluxes |
» F-theory has higher form gauge potential
(3 ~ Gz + dNy;

= Four-form flux of F-theory
Gy =dG

» General condition on flux for 4d Poincaré invariance (from dual
M-theory picture): ‘one leg in the fibre, three legs in the base’

Gy Nwp =0
va

Yw,, wp with legs in base
/ GaN[Z]ANw,=0;
Ys

» Supersymmetry: Gz € H>2(Yy);
» Has to be quantised: G + % € H*(Ya,Z);

6
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Chirality

» Type lIB: chirality along curve of intersecting branes given by

q/ Fx;
Crq

Cr, denotes curve with states in representation R, and g
U(1)x-charge;

» F-theory: replaced by integral of four-form flux over matter

surfaces CRq in Ya,
/ Gy ;
Cr

q

» Matter surfaces, Cg,, consist of linear combinations of
blow-up P’s fibred over enhancement curve CRq;

» Recall: linear combination such that in dual M-theory picture,
M2-brane wrapping this combination is one state of Ry ;
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Beyond the Chiral Index |

» To calculate number chiral states in rep. R and R—not just
index—need information about gauge data Gg;

» Encoded in Deligne cohomology H3(Va, Z(2)) or
Cheeger-Simons twisted differential characters;
» Can get intuition from [IB:

1. Discrete (bundle) data: 2-form field strength 5= F
2. Gauge field adds continues/discrete info: Wilson lines ¢ A

1. + 2. form Picard group (Pic), i.e. class of holomorphic line
bundles modulo gauge transformations;

» Splitting of Pic encoded via:
0 — JYX) = Pic(X) 3 Hy'(X) =0

ci(L) = 5=F linear map onto HY(X, Z),
JHX) = H%(X,C)/HY(X,Z) Jacobian of X (space of flat
connections).



Beyond the Chiral Index Il

» For A; & G, in F-theory exists similar decomposition:

0— J2(Ya) — HH(Ya,Z(2)) 3 HZ*(Ya) — 0
N —r e e

2" intermediate 4™ Deligne

Jakobian cohomology class

> HA(Y4,7Z(2)) + equivalence classes of gauge data
> HQ’Q(%) > field strength Gg;
> j2(Y4) ~ H3(Y4, C)/(H3’0(Y4) + H2’1(Y4) + H3(Y47Z)) <~
data beyond flux (flat connections);
» Usually difficult to work directly with Deligne cohomology;

» But can work indirectly by using Chow groups;
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Chow Groups |

» ‘Bundle data’ via rational equivalence class of 4-cycles

» Rational equivalence: C; = G, € Z,(X) if C; — G, is zero/pole
of meromorphic function defined on (n + 1)-dim. irreducible
subvariety of X; Equivalently: two algebraic cycles (7,
G € Zi(X) rationally equivalent if 3 rationally parametrised
family of cycles interpolating between them;
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Chow Groups I

» Chow group CH¥(X) = group of rational equivalence classes
of (complex) codim. k-cycles; CH(X) = ...dim. k-cycles;
» Special case: CH!(X) = Pic(X)
=- Rational equivalence is finer than homological equivalence.
» 3 map (homomorphism) from second Chow group into

Deligne cohom.:
4. CHa(X) — HA(Ya,Z(2)) (refined cycle map);

0 —— CHf, (X) ——— CHP(X) —2— HEP(X) —— 0

L

0 ——— JP(X) ——— HP(X,Z(p)) —— HEP(X) —— 0
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Chow Groups Il

» Can use Chow groups to describe gauge data;
» Has clear advantage if we know Chow groups of Ya;

» In case of hypersurface or CICYs in toric varieties, we know at
least parts of it;

» Part which inherited from ambient space

CH*(Xs) ~ H*(Xs, Z);

> 42 in general not surjective, but every complex 2-cycle class
gives gauge data up to gauge equivalence;
> Strategy:
1. Fix cycle (class) ag € CHa(X) with G4 = [ag] = & o Y2(ac);
2. Manipulations modulo rational equivalence preserve Cz modulo
gauge equivalence;
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Matter |

» With gauge data given by a¢ € CH2(V4), we have natural
pairing with matter surfaces;

» matter surface Cp € Zg(\A/4) with projection 7g : |Cr| — Ckg;
» Cgr -y ag € CH?(|Cr|) = Chow class of points on |Cg|
where - denotes intersection, i.e. map from CHP x CHY to
CHPT9:
> Projection to base B3 gives points on matter curve Cg:
7TR*(CR r Ozc) € CHo(CR) = PiC(CR)

» This collection of points Ag ¢ € Zo(Cr) can be used to define
line bundle Lg g = Oc,(Ar,c) on Cg;
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Matter Il

» Proposal:
massless N' = 1 chiral multiplets counted by

HI(CR,LG7R®\/KCR), i=0,1
with /Kc, the spin bundle of the matter curve Cg (induced
by embedding);

» Can checked proposal for fluxes/gauge data coming from
e.g. U(1)-symmetries;
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Applied to U(1)-model |

> In F-theory U(1)'s in one-to-one relation with rank of
Mordell-Weil group (without torsion part);

» Rank of MW corresponds to number of independent sections
(minus one);
= Call additional section sa (consider only one U(1));

» Take wa € CHY(Y,) such that

Y(wa) = o(v(sa))

where ¢ denotes Shioda map;
= 7(wa) together with f € CH'(Bs) gives four-form flux (class)

Gt =y (f) Ury(wa) € H(Ys)

which satisfies ‘one leg ...’ condition and leaves all
non-abelian sym. untouched.
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Applied to U(1)-model I

» Have now more then flux, because
OF A= WA 1 f e CHz(\Aﬁ)

specifies “U(1) bundle” with associated flux G;

» Via projection can extract actual line bundle on Cg, matter
curve on base

Tl e (@R pF A) = Tlcg (R g (WA f)) = Tl g (OR g WA) 11, T

» In many cases, CY four-fold embedded in toric ambient space
and wy is pullback (waq = j*Wp4) then

T|cry (R 1 Wa) = | (R jig WA);
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Applied to U(1)-model III

» In such cases, can use intersections of toric ambient variety to
calculate ag -j,, Wa and find:

Tlcrs (@R zWA) = T|cp (@R jrWA) = ga(R) [Cr], € CH1(CR)
with ga(R) number of intersections over Cg (is interpreted as
U(1)-charge);

» Finally from [CR] ‘LRl f obtain collection of points
AR,A c Zo(CR) on CR;

= Defines line bundle O¢,(Ar a); Massless matter states
correspond to

H(Cr, Lr.a @ \/Kcy), Lra = [Oc,(Ar.a)] 2R,

> In geometries with well-defined Sen limit, agrees with massless
matter states in Type IIB limit;
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Explicit example |

» Can work out explicit examples;

» As starting point took hypersurface (Dg, = Hi + 2 H + H3)
in P2 x P! x PL;

» GUT surface placed at Dgyt = (H1 + H3)|B, and
f= ?‘33 = (nH1 + mH> +OH3)‘B3

» By means of cohomCalg and self-write Mathematica code,

could work out spectral sequences to obtain cohomologies of
line bundles on curves;
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Explicit example I

» Consider U(1)-restricted case;

» With flux choice v(f) = %(—7,0,9), in agreement with
quantisation cond.;

’ curve H R (C, L|c) ‘ representation ‘ ht(C, L|c) ‘ representation ‘

Cio 4 10_; 1 ﬁ+1
G, 6 53 3 5_3
Gs,, 9 5> 9 5,
G 585 15 0 1.5
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Summary & Outlook

» Showed implications of torsion sections on gauge group;
» To go beyond Zy and Z3 need complete intersections or
non-toric methods;
» MSSM with gauge group SU(3) x SU(2) x U(1)/Ze?
» General procedure to compute all light matter states; Not only
chiral index;

» Applied it already to the U(1)-restricted case;

» See whether there is projection formulae (overall factor) also
in other cases;

» Will not be the general case; Immediate counter example
universal spectral cover flux which appears in SU(5)-models
even without abelian symmetry;

» Apply our methods to cases where intersections have to be
done on CY itself;
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