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Motivation

I PART I
I Torsion part of Mordell-Weil group gives info beyond the

Lie-algebra of non-abelian gauge symmetries;

I PART II
I Chiral matter spectrum requires G4-flux;
I However, need to know full massless matter spectrum;

I Not obvious that all (unwanted) vector like pairs obtain mass
and lift;

I Even if, mass might be small (if SUSY breaking scale is low)
such that they will contribute to all kind of threshold
corrections;

I To obtain full massless matter spectrum, need gauge data
beyond four-form flux;

I Chow groups will give us handle on them;
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Part I

Global Structure of Gauge Groups



Mordell-Weil group

I Points on elliptic curve E = C/Λ, with Λ = 〈1, τ〉, are additive
as complex numbers;

I Points (x , y) with rational coordinates on E ,

y2 = x3 + f x + g with j(τ) ∼ f 3

4 f 3 + 27 g2
,

over field K form abelian group under addition, E (K );
I Mordell-Weil theorem for elliptic curves states that E (K ) is

finitely generated;

⇒ E (K ) = Zr︸︷︷︸
free part

⊕Zk1 ⊕ . . .⊕ Zki︸ ︷︷ ︸
torsion subgroup

I Can be extended to elliptic fibrations Y → B; Field K rational
functions; Hence, (x , y) ∈ rational functions over B;
Mordell-Weil group becomes group of sections; Group law
fibrewise over each point of B;
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Torsion subgroup

I Possible torsion subgroups for elliptic K3 surface are:

Zk (k = 2, . . . , 8), Z2⊕Z2k (k = 1, 2, 3), Z3⊕Z3, Z4⊕Z4

I No classification for higher dimensional Calabi-Yau varieties;
I Among 16 reflexive polygons, 3 admit torsion points/sections

as restriction of ambient toric divisors to hypersurface;
I For these Mordell-Weil groups are: Z2, Z⊕ Z2 and Z3;

I Torsion of elliptic fibre does not induce torsion in homology of
fibration;

I Torsion sections lead (generically) to singularities in co-dim. 1
(order of sing. matches order of tor. section);

I Can take Zk -section mode resolution divisors;
⇒ Gives torsion relation;
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Shioda map

I Shioda map is homomorphism from group of sections E (K ) to
group of divisors NS(Y );

I Shioda map of Zk -torsion section T gives trivial divisor class
on Y;

T 7→ T − Z − K̄ + (δ) +
1

k

k∑
i

ai Fi ∈ Pic0(Y )

with ai ∈ Z and Fi resolution divisors; Not related to U(1);

I Can be used to define:

Ξk = T − Z − K̄ = −1

k

k∑
i

ai Fi

Note fractional coefficients on right-hand side;

4 / 20



Implications for gauge theories
I Intersection pairing of Ξ with split curves over matter loci is

integer;
I − 1

k

∑k
i ai Fi adds generator for coweight lattice Λ∨ (finer);

I Restricted matter spectrum; Only allowed representations
integer charged under Ξk ; Hence, coarser weight lattice Λ;

I Root and coroot lattices Q and Q∨ sublattices of weight and
coweight lattices Λ and Λ∨, respectively;

I Center ZG and fundamental group of gauge group G :

ZG = Λ/Q π1(G ) = Λ∨/Q∨;

I Torsion section refines coweight lattice;
I Enhances π1 of G , or equivalently reduces center of G ;

I E.g.: A2 sing. for fibration w/o torsion sec. gives SU(3); If
there is Z3-section, gauge group becomes SU(3)/Z3;

I Constrains matter spectrum to representations invariant under
action of center Z3;
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Part II

Gauge Data via Chow Groups



Fluxes I
I F-theory has higher form gauge potential

C3 ' C3 + dΛ2;

⇒ Four-form flux of F-theory

G4 = dC3

I General condition on flux for 4d Poincaré invariance (from dual
M-theory picture): ‘one leg in the fibre, three legs in the base’∫

Ỹ4

G4 ∧ ωb = 0∫
Ỹ4

G4 ∧ [Z ] ∧ ωa = 0 ;

∀ωa, ωb with legs in base

I Supersymmetry: G4 ∈ H2,2(Y4);
I Has to be quantised: G4 + c2

2 ∈ H4(Y4,Z);
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Chirality

I Type IIB: chirality along curve of intersecting branes given by

q

∫
CRq

FX ;

CRq denotes curve with states in representation Rq and q
U(1)X -charge;

I F-theory: replaced by integral of four-form flux over matter
surfaces CRq in Ŷ4, ∫

CRq

G4 ;

I Matter surfaces, CRq , consist of linear combinations of
blow-up P1’s fibred over enhancement curve CRq ;

I Recall: linear combination such that in dual M-theory picture,
M2-brane wrapping this combination is one state of Rq ;
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Beyond the Chiral Index I

I To calculate number chiral states in rep. R and R̄—not just
index—need information about gauge data C3;

I Encoded in Deligne cohomology H4
D(Ŷ4,Z(2)) or

Cheeger-Simons twisted differential characters;
I Can get intuition from IIB:

1. Discrete (bundle) data: 2-form field strength 1
2πF

2. Gauge field adds continues/discrete info: Wilson lines
∮
A

1. + 2. form Picard group (Pic), i.e. class of holomorphic line
bundles modulo gauge transformations;

I Splitting of Pic encoded via:

0→ J 1(X )→ Pic(X )
c1→ H1,1

Z (X )→ 0

c1(L) = 1
2πF linear map onto H1,1(X ,Z),

J 1(X ) = H0,1(X ,C)/H1(X ,Z) Jacobian of X (space of flat
connections).

8 / 20



Beyond the Chiral Index II

I For A3 & G4 in F-theory exists similar decomposition:

0→ J 2(Ŷ4)︸ ︷︷ ︸
2nd intermediate

Jakobian

→ H4
D(Ŷ4,Z(2))︸ ︷︷ ︸

4th Deligne
cohomology class

c2→ H2,2
Z (Ŷ4)→ 0

I H4
D(Ŷ4,Z(2)) ↔ equivalence classes of gauge data

I H2,2
Z (Ŷ4) ↔ field strength G4;

I J 2(Ŷ4) ' H3(Ŷ4,C)/(H3,0(Ŷ4) + H2,1(Ŷ4) + H3(Ŷ4,Z)) ↔
data beyond flux (flat connections);

I Usually difficult to work directly with Deligne cohomology;

I But can work indirectly by using Chow groups;
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Chow Groups I
I ‘Bundle data’ via rational equivalence class of 4-cycles
I Rational equivalence: C1

∼= C2 ∈ Zn(X ) if C1−C2 is zero/pole
of meromorphic function defined on (n + 1)-dim. irreducible
subvariety of X ; Equivalently: two algebraic cycles C1,
C2 ∈ Zi (X ) rationally equivalent if ∃ rationally parametrised
family of cycles interpolating between them;

t

X × t1

X × t0
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Chow Groups II

I Chow group CHk(X ) = group of rational equivalence classes
of (complex) codim. k-cycles; CHk(X ) = . . . dim. k-cycles;

I Special case: CH1(X ) = Pic(X )

⇒ Rational equivalence is finer than homological equivalence.

I ∃ map (homomorphism) from second Chow group into
Deligne cohom.:
γ̂ : CH2(X )→ H4

D(Ŷ4,Z(2)) (refined cycle map);

0 CHp
hom(X ) CHp(X ) Hp,p

alg (X ) 0

0 Jp(X ) H2p
D (X ,Z(p)) Hp,p

Z (X ) 0

AJ

γp

γ̂p

ĉp
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Chow Groups III

I Can use Chow groups to describe gauge data;

I Has clear advantage if we know Chow groups of Ŷ4;
I In case of hypersurface or CICYs in toric varieties, we know at

least parts of it;
I Part which inherited from ambient space

CH∗(X5) ' H∗(X5,Z);

I γ̂2 in general not surjective, but every complex 2-cycle class
gives gauge data up to gauge equivalence;

I Strategy:

1. Fix cycle (class) αG ∈ CH2(X ) with G4 = [αG ] = ĉ2 ◦ γ̂2(αG );
2. Manipulations modulo rational equivalence preserve C3 modulo

gauge equivalence;
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Matter I

I With gauge data given by αG ∈ CH2(Ŷ4), we have natural
pairing with matter surfaces;

I matter surface CR ∈ Z2(Ŷ4) with projection πR : |CR | → CR ;
I CR ·r αG ∈ CH2(|CR |) = Chow class of points on |CR |

where · denotes intersection, i.e. map from CHp × CHq to
CHp+q;

I Projection to base B3 gives points on matter curve CR :

πR∗(CR ·r αG ) ∈ CH0(CR) ∼= Pic(CR)

I This collection of points AR,G ∈ Z0(CR) can be used to define
line bundle LG ,R = OCR (AR,G ) on CR ;
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Matter II

I Proposal:
massless N = 1 chiral multiplets counted by

H i (CR , LG ,R ⊗
√

KCR ), i = 0, 1

with
√

KCR the spin bundle of the matter curve CR (induced
by embedding);

I Can checked proposal for fluxes/gauge data coming from
e.g. U(1)-symmetries;
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Applied to U(1)-model I

I In F-theory U(1)’s in one-to-one relation with rank of
Mordell-Weil group (without torsion part);

I Rank of MW corresponds to number of independent sections
(minus one);

⇒ Call additional section sA (consider only one U(1));

I Take wA ∈ CH1(Ŷ4) such that

γ(wA)
!

= ϕ(γ(sA))

where ϕ denotes Shioda map;

⇒ γ(wA) together with f ∈ CH1(B3) gives four-form flux (class)

GA
4 = π∗γ(f ) ∪ γ(wA) ∈ H2,2(Ŷ4)

which satisfies ‘one leg . . . ’ condition and leaves all
non-abelian sym. untouched.
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Applied to U(1)-model II

I Have now more then flux, because

αF ,A = wA ·π f ∈ CH2(Ŷ4)

specifies “U(1) bundle” with associated flux GA
4 ;

I Via projection can extract actual line bundle on CR , matter
curve on base

π|CR ∗(αR ·ιRαF ,A) = π|CR ∗(αR ·ιR (wA·πf )) = π|CR ∗(αR ·ιR wA)·ιR |B3 f ;

I In many cases, CY four-fold embedded in toric ambient space
and wA is pullback (wA = j∗w̃A) then

π|CR ∗(αR ·ιR wA) = π|CR ∗(αR ·jιR w̃A);
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Applied to U(1)-model III

I In such cases, can use intersections of toric ambient variety to
calculate αR ·jιR w̃A and find:

π|CR ∗(αR ·ιR wA) = π|CR ∗(αR ·jιR w̃A) = qA(R) [CR ], ∈ CH1(CR)

with qA(R) number of intersections over CR (is interpreted as
U(1)-charge);

I Finally from [CR ] ·ιR |B3 f obtain collection of points

AR,A ∈ Z0(CR) on CR ;

⇒ Defines line bundle OCR
(AR,A); Massless matter states

correspond to

H i (CR , LR,A ⊗
√
KCR

), LR,A = [OCR
(AR,A)]⊗qA(R);

I In geometries with well-defined Sen limit, agrees with massless
matter states in Type IIB limit;
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Explicit example I

I Can work out explicit examples;

I As starting point took hypersurface (DB3 = H1 + 2H2 + H3)
in P2 × P1 × P1;

I GUT surface placed at DGUT = (H1 + H3)|B3 and
f = f̃ |B3 = (n H1 + mH2 + o H3)|B3

I By means of cohomCalg and self-write Mathematica code,
could work out spectral sequences to obtain cohomologies of
line bundles on curves;
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Explicit example II

I Consider U(1)-restricted case;

I With flux choice γ(f̃ ) = 1
2 (−7, 0, 9), in agreement with

quantisation cond.;

curve h0 (C , L|C ) representation h1 (C , L|C ) representation

C10 4 10−1 1 10+1

C5̄m
6 53 3 5−3

C5H
9 52 9 5−2

C1 585 15 0 1−5
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Summary & Outlook

I Showed implications of torsion sections on gauge group;
I To go beyond Z2 and Z3 need complete intersections or

non-toric methods;
I MSSM with gauge group SU(3)× SU(2)× U(1)/Z6?

I General procedure to compute all light matter states; Not only
chiral index;

I Applied it already to the U(1)-restricted case;
I See whether there is projection formulae (overall factor) also

in other cases;
I Will not be the general case; Immediate counter example

universal spectral cover flux which appears in SU(5)-models
even without abelian symmetry;

I Apply our methods to cases where intersections have to be
done on CY itself;
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