F-Theory Models with Torsion Mordell-Weil

 Group and Massless Matter via Chow Groups joint work with D. Morrison, O. Till and T. Weigand: arXiv:1405.3656\&
M. Bies, C. Pehle and T. Weigand: arXiv:1402.5144

Christoph Mayrhofer

29 ${ }^{\text {th }}$ July, 2014

Motivation

- PART I
- Torsion part of Mordell-Weil group gives info beyond the Lie-algebra of non-abelian gauge symmetries;
- PART II
- Chiral matter spectrum requires G_{4}-flux;
- However, need to know full massless matter spectrum;
- Not obvious that all (unwanted) vector like pairs obtain mass and lift;
- Even if, mass might be small (if SUSY breaking scale is low) such that they will contribute to all kind of threshold corrections;
- To obtain full massless matter spectrum, need gauge data beyond four-form flux;
- Chow groups will give us handle on them;

Part I
Global Structure of Gauge Groups

Mordell-Weil group

- Points on elliptic curve $E=\mathbb{C} / \Lambda$, with $\Lambda=\langle 1, \tau\rangle$, are additive as complex numbers;
- Points (x, y) with rational coordinates on E,

$$
y^{2}=x^{3}+f x+g \quad \text { with } \quad j(\tau) \sim \frac{f^{3}}{4 f^{3}+27 g^{2}}
$$

over field K form abelian group under addition, $E(K)$;

- Mordell-Weil theorem for elliptic curves states that $E(K)$ is finitely generated;

$$
\Rightarrow E(K)=\underbrace{\mathbb{Z}^{r}}_{\text {free part }} \oplus \underbrace{\mathbb{Z}_{k_{1}} \oplus \ldots \oplus \mathbb{Z}_{k_{i}}}_{\text {torsion subgroup }}
$$

- Can be extended to elliptic fibrations $Y \rightarrow \mathcal{B}$; Field K rational functions; Hence, $(x, y) \in$ rational functions over \mathcal{B}; Mordell-Weil group becomes group of sections; Group law fibrewise over each point of \mathcal{B};

Torsion subgroup

- Possible torsion subgroups for elliptic K3 surface are:

$$
\mathbb{Z}_{k}(k=2, \ldots, 8), \quad \mathbb{Z}_{2} \oplus \mathbb{Z}_{2 k}(k=1,2,3), \quad \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}, \quad \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}
$$

- No classification for higher dimensional Calabi-Yau varieties;
- Among 16 reflexive polygons, 3 admit torsion points/sections as restriction of ambient toric divisors to hypersurface;
- For these Mordell-Weil groups are: $\mathbb{Z}_{2}, \mathbb{Z} \oplus \mathbb{Z}_{2}$ and \mathbb{Z}_{3};
- Torsion of elliptic fibre does not induce torsion in homology of fibration;
- Torsion sections lead (generically) to singularities in co-dim. 1 (order of sing. matches order of tor. section);
- Can take \mathbb{Z}_{k}-section mode resolution divisors;
\Rightarrow Gives torsion relation;

Shioda map

- Shioda map is homomorphism from group of sections $E(K)$ to group of divisors NS (Y);
- Shioda map of \mathbb{Z}_{k}-torsion section \mathcal{T} gives trivial divisor class on Y ;

$$
\mathcal{T} \mapsto T-Z-\bar{K}+(\delta)+\frac{1}{k} \sum_{i}^{k} a_{i} F_{i} \in \operatorname{Pic}_{0}(Y)
$$

with $a_{i} \in \mathbb{Z}$ and F_{i} resolution divisors; Not related to $U(1)$;

- Can be used to define:

$$
\bar{E}_{k}=T-Z-\bar{K}=-\frac{1}{k} \sum_{i}^{k} a_{i} F_{i}
$$

Note fractional coefficients on right-hand side;

Implications for gauge theories

- Intersection pairing of \equiv with split curves over matter loci is integer;
- $-\frac{1}{k} \sum_{i}^{k} a_{i} F_{i}$ adds generator for coweight lattice Λ^{\vee} (finer);
- Restricted matter spectrum; Only allowed representations integer charged under $\bar{\Xi}_{k}$; Hence, coarser weight lattice Λ;
- Root and coroot lattices Q and Q^{\vee} sublattices of weight and coweight lattices Λ and Λ^{\vee}, respectively;
- Center Z_{G} and fundamental group of gauge group G :

$$
Z_{G}=\Lambda / Q \quad \pi_{1}(G)=\Lambda^{\vee} / Q^{\vee}
$$

- Torsion section refines coweight lattice;
- Enhances π_{1} of G, or equivalently reduces center of G;
- E.g.: A_{2} sing. for fibration w/o torsion sec. gives $S U(3)$; If there is \mathbb{Z}_{3}-section, gauge group becomes $S U(3) / \mathbb{Z}_{3}$;
- Constrains matter spectrum to representations invariant under action of center \mathbb{Z}_{3};

Part II
Gauge Data via Chow Groups

Fluxes I

- F-theory has higher form gauge potential

$$
C_{3} \simeq C_{3}+d \Lambda_{2}
$$

\Rightarrow Four-form flux of F-theory

$$
G_{4}=d C_{3}
$$

- General condition on flux for 4d Poincaré invariance (from dual M-theory picture): 'one leg in the fibre, three legs in the base'

$$
\begin{aligned}
& \int_{\tilde{Y}_{4}} G_{4} \wedge \omega_{b}=0 \\
& \int_{\tilde{Y}_{4}} G_{4} \wedge[Z] \wedge \omega_{a}=0
\end{aligned}
$$

$\forall \omega_{a}, \omega_{b}$ with legs in base

- Supersymmetry: $G_{4} \in H^{2,2}\left(Y_{4}\right)$;
- Has to be quantised: $G_{4}+\frac{c_{2}}{2} \in H^{4}\left(Y_{4}, \mathbb{Z}\right)$;

Chirality

- Type IIB: chirality along curve of intersecting branes given by

$$
q \int_{\mathcal{C}_{R_{q}}} F_{X}
$$

$\mathcal{C}_{R_{q}}$ denotes curve with states in representation R_{q} and q $U(1)_{X}$-charge;

- F-theory: replaced by integral of four-form flux over matter surfaces $C_{R_{q}}$ in \hat{Y}_{4},

$$
\int_{C_{R_{q}}} G_{4}
$$

- Matter surfaces, $C_{R_{q}}$, consist of linear combinations of blow-up \mathbb{P}^{1} 's fibred over enhancement curve $\mathcal{C}_{R_{q}}$;
- Recall: linear combination such that in dual M -theory picture, M2-brane wrapping this combination is one state of R_{q};

Beyond the Chiral Index I

- To calculate number chiral states in rep. R and \bar{R}-not just index-need information about gauge data C_{3};
- Encoded in Deligne cohomology $H_{D}^{4}\left(\hat{Y}_{4}, \mathbb{Z}(2)\right)$ or Cheeger-Simons twisted differential characters;
- Can get intuition from IIB:

1. Discrete (bundle) data: 2-form field strength $\frac{1}{2 \pi} F$
2. Gauge field adds continues/discrete info: Wilson lines $\oint A$
3. +2 . form Picard group (Pic), i.e. class of holomorphic line bundles modulo gauge transformations;

- Splitting of Pic encoded via:

$$
0 \rightarrow \mathcal{J}^{1}(X) \rightarrow \operatorname{Pic}(X) \xrightarrow{c_{1}} H_{\mathbb{Z}}^{1,1}(X) \rightarrow 0
$$

$c_{1}(L)=\frac{1}{2 \pi} F$ linear map onto $H^{1,1}(X, \mathbb{Z})$,
$\mathcal{J}^{1}(X)=H^{0,1}(X, \mathbb{C}) / H^{1}(X, \mathbb{Z})$ Jacobian of X (space of flat connections).

Beyond the Chiral Index II

- For $A_{3} \& G_{4}$ in F-theory exists similar decomposition:

$$
0 \rightarrow \underbrace{\mathcal{J}^{2}\left(\hat{Y}_{4}\right)}_{\substack{2^{\text {nd }} \\
\text { Jintermediate } \\
\text { Jakobian }}} \rightarrow \underbrace{H_{D}^{4}\left(\hat{Y}_{4}, \mathbb{Z}(2)\right)}_{\begin{array}{c}
4^{\text {th }} \text { Deligne } \\
\text { chohomology class }
\end{array}} \xrightarrow{c_{2}} H_{\mathbb{Z}}^{2,2}\left(\hat{Y}_{4}\right) \rightarrow 0
$$

- $H_{D}^{4}\left(\hat{Y}_{4}, \mathbb{Z}(2)\right) \leftrightarrow$ equivalence classes of gauge data
- $H_{\mathbb{Z}}^{2,2}\left(\hat{Y}_{4}\right) \leftrightarrow$ field strength G_{4};
- $\mathcal{J}^{2}\left(\hat{Y}_{4}\right) \simeq H^{3}\left(\hat{Y}_{4}, \mathbb{C}\right) /\left(H^{3,0}\left(\hat{Y}_{4}\right)+H^{2,1}\left(\hat{Y}_{4}\right)+H^{3}\left(\hat{Y}_{4}, \mathbb{Z}\right)\right) \leftrightarrow$ data beyond flux (flat connections);
- Usually difficult to work directly with Deligne cohomology;
- But can work indirectly by using Chow groups;

Chow Groups I

- 'Bundle data' via rational equivalence class of 4-cycles
- Rational equivalence: $C_{1} \cong C_{2} \in Z_{n}(X)$ if $C_{1}-C_{2}$ is zero/pole of meromorphic function defined on $(n+1)$-dim. irreducible subvariety of X; Equivalently: two algebraic cycles C_{1}, $C_{2} \in Z_{i}(X)$ rationally equivalent if \exists rationally parametrised family of cycles interpolating between them;

Chow Groups II

- Chow group $\mathrm{CH}^{k}(X)=$ group of rational equivalence classes of (complex) codim. k-cycles; $\mathrm{CH}_{k}(X)=\ldots$ dim. k-cycles;
- Special case: $\mathrm{CH}^{1}(X)=\operatorname{Pic}(X)$
\Rightarrow Rational equivalence is finer than homological equivalence.
- \exists map (homomorphism) from second Chow group into Deligne cohom.:
$\hat{\gamma}: \mathrm{CH}_{2}(X) \rightarrow H_{D}^{4}\left(\hat{Y}_{4}, \mathbb{Z}(2)\right)$ (refined cycle map);

Chow Groups III

- Can use Chow groups to describe gauge data;
- Has clear advantage if we know Chow groups of \hat{Y}_{4};
- In case of hypersurface or CICYs in toric varieties, we know at least parts of it;
- Part which inherited from ambient space

$$
\mathrm{CH}^{*}\left(X_{5}\right) \simeq H^{*}\left(X_{5}, \mathbb{Z}\right)
$$

- $\hat{\gamma}_{2}$ in general not surjective, but every complex 2-cycle class gives gauge data up to gauge equivalence;
- Strategy:

1. Fix cycle (class) $\alpha_{G} \in \mathrm{CH}_{2}(X)$ with $G_{4}=\left[\alpha_{G}\right]=\hat{c}_{2} \circ \hat{\gamma}_{2}\left(\alpha_{G}\right)$;
2. Manipulations modulo rational equivalence preserve C_{3} modulo gauge equivalence;

Matter I

- With gauge data given by $\alpha_{G} \in \mathrm{CH}_{2}\left(\hat{Y}_{4}\right)$, we have natural pairing with matter surfaces;
- matter surface $C_{R} \in Z_{2}\left(\hat{Y}_{4}\right)$ with projection $\pi_{R}:\left|C_{R}\right| \rightarrow \mathcal{C}_{R}$;
- $C_{R} \cdot{ }_{r} \alpha_{G} \in \mathrm{CH}^{2}\left(\left|C_{R}\right|\right)=$ Chow class of points on $\left|C_{R}\right|$ where - denotes intersection, i.e. map from $\mathrm{CH}^{p} \times \mathrm{CH}^{q}$ to CH^{p+q};
- Projection to base B_{3} gives points on matter curve \mathcal{C}_{R} :

$$
\pi_{R *}\left(C_{R} \cdot{ }_{r} \alpha_{G}\right) \in \mathrm{CH}_{0}\left(\mathcal{C}_{R}\right) \cong \operatorname{Pic}\left(\mathcal{C}_{R}\right)
$$

- This collection of points $A_{R, G} \in Z_{0}\left(\mathcal{C}_{R}\right)$ can be used to define line bundle $L_{G, R}=\mathcal{O}_{\mathcal{C}_{R}}\left(A_{R, G}\right)$ on \mathcal{C}_{R};

Matter II

- Proposal: massless $\mathcal{N}=1$ chiral multiplets counted by

$$
H^{i}\left(C_{R}, L_{G, R} \otimes \sqrt{K_{\mathcal{C}_{R}}}\right), \quad i=0,1
$$

with $\sqrt{K_{\mathcal{C}_{R}}}$ the spin bundle of the matter curve \mathcal{C}_{R} (induced by embedding);

- Can checked proposal for fluxes/gauge data coming from e.g. $U(1)$-symmetries;

Applied to U(1)-model I

- In F-theory $U(1)$'s in one-to-one relation with rank of Mordell-Weil group (without torsion part);
- Rank of MW corresponds to number of independent sections (minus one);
\Rightarrow Call additional section s_{A} (consider only one $U(1)$);
- Take $\mathrm{w}_{A} \in \mathrm{CH}^{1}\left(\hat{Y}_{4}\right)$ such that

$$
\gamma\left(w_{A}\right) \stackrel{!}{=} \varphi\left(\gamma\left(s_{A}\right)\right)
$$

where φ denotes Shioda map;
$\Rightarrow \gamma\left(w_{A}\right)$ together with $f \in \mathrm{CH}^{1}\left(B_{3}\right)$ gives four-form flux (class)

$$
G_{4}^{A}=\pi^{*} \gamma(f) \cup \gamma\left(w_{A}\right) \in H^{2,2}\left(\hat{Y}_{4}\right)
$$

which satisfies 'one leg ...' condition and leaves all non-abelian sym. untouched.

Applied to U(1)-model II

- Have now more then flux, because

$$
\alpha_{F, A}=w_{A} \cdot \pi f \in \mathrm{CH}^{2}\left(\hat{Y}_{4}\right)
$$

specifies " $U(1)$ bundle" with associated flux G_{4}^{A};

- Via projection can extract actual line bundle on C_{R}, matter curve on base

$$
\pi\left|c_{R *}\left(\alpha_{R} \cdot \iota_{R} \alpha_{F, A}\right)=\pi\right| c_{R *}\left(\alpha_{R} \cdot \iota_{R}\left(w_{A \cdot \pi} f\right)\right)=\left.\pi\right|_{C_{R *}}\left(\alpha_{R} \cdot \iota_{R} w_{A}\right) \cdot \iota_{\iota_{R}| |_{3}} f ;
$$

- In many cases, CY four-fold embedded in toric ambient space and w_{A} is pullback $\left(w_{A}=j^{*} \tilde{w}_{A}\right)$ then

$$
\pi\left|c_{R *}\left(\alpha_{R} \cdot \iota_{R} \mathrm{w}_{A}\right)=\pi\right| c_{R *}\left(\alpha_{R} \cdot j_{\iota_{R}} \tilde{\mathrm{w}}_{A}\right) ;
$$

Applied to U(1)-model III

- In such cases, can use intersections of toric ambient variety to calculate $\alpha_{R} \cdot{ }^{j \iota_{R}} \tilde{w}_{A}$ and find:
$\pi\left|C_{R *}\left(\alpha_{R \cdot \iota_{R}} \mathrm{w}_{A}\right)=\pi\right| C_{R *}\left(\alpha_{R} \cdot j_{\iota_{R}} \tilde{\mathrm{w}}_{A}\right)=q_{A}(R)\left[C_{R}\right], \in \mathrm{CH}_{1}\left(C_{R}\right)$
with $q_{A}(R)$ number of intersections over C_{R} (is interpreted as $U(1)$-charge);
- Finally from $\left[C_{R}\right]{ }_{\iota_{R} \mid B_{3}} f$ obtain collection of points
$A_{R, A} \in Z_{0}\left(C_{R}\right)$ on C_{R};
\Rightarrow Defines line bundle $\mathcal{O}_{C_{R}}\left(A_{R, A}\right)$; Massless matter states correspond to

$$
H^{i}\left(C_{R}, L_{R, A} \otimes \sqrt{K_{C_{R}}}\right), \quad L_{R, A}=\left[\mathcal{O}_{C_{R}}\left(A_{R, A}\right)\right]^{\otimes q_{A}(R)} ;
$$

- In geometries with well-defined Sen limit, agrees with massless matter states in Type IIB limit;

Explicit example I

- Can work out explicit examples;
- As starting point took hypersurface ($D_{B_{3}}=H_{1}+2 H_{2}+H_{3}$) in $\mathbb{P}^{2} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$;
- GUT surface placed at $D_{\text {GUT }}=\left.\left(H_{1}+H_{3}\right)\right|_{B_{3}}$ and $f=\left.\tilde{f}\right|_{B_{3}}=\left.\left(n H_{1}+m H_{2}+o H_{3}\right)\right|_{B_{3}}$
- By means of cohomCalg and self-write Mathematica code, could work out spectral sequences to obtain cohomologies of line bundles on curves;

Explicit example II

- Consider $U(1)$-restricted case;
- With flux choice $\gamma(\tilde{f})=\frac{1}{2}(-7,0,9)$, in agreement with quantisation cond.;

curve	$h^{0}\left(C,\left.\mathcal{L}\right\|_{C}\right)$	representation	$h^{1}\left(C,\left.\mathcal{L}\right\|_{C}\right)$	representation
$C_{\mathbf{1 0}}$	4	$\mathbf{1 0}_{-\mathbf{1}}$	1	$\overline{\mathbf{1}}_{+\mathbf{1}}$
$C_{\overline{5}_{\mathbf{m}}}$	6	$\overline{\mathbf{5}}_{\mathbf{3}}$	3	$\mathbf{5}_{-\mathbf{3}}$
$C_{5_{\mathrm{H}}}$	9	$\mathbf{5}_{\mathbf{2}}$	9	$\overline{\mathbf{5}}_{-\mathbf{2}}$
$C_{\mathbf{1}}$	585	$\mathbf{1}_{\mathbf{5}}$	0	$\overline{\mathbf{1}}_{-\mathbf{5}}$

Summary \& Outlook

- Showed implications of torsion sections on gauge group;
- To go beyond \mathbb{Z}_{2} and \mathbb{Z}_{3} need complete intersections or non-toric methods;
- MSSM with gauge group $S U(3) \times S U(2) \times U(1) / \mathbb{Z}_{6}$?
- General procedure to compute all light matter states; Not only chiral index;
- Applied it already to the $U(1)$-restricted case;
- See whether there is projection formulae (overall factor) also in other cases;
- Will not be the general case; Immediate counter example universal spectral cover flux which appears in $S U(5)$-models even without abelian symmetry;
- Apply our methods to cases where intersections have to be done on CY itself;

Thank you for your attention!

