F-Theory Models with Torsion Mordell-Weil Group and Massless Matter via Chow Groups joint work with D. Morrison, O. Till and T. Weigand: arXiv:1405.3656 & M. Bies, C. Pehle and T. Weigand: arXiv:1402.5144

Christoph Mayrhofer

29th July, 2014

Motivation

PART I

- Torsion part of Mordell-Weil group gives info beyond the Lie-algebra of non-abelian gauge symmetries;
- PART II
 - Chiral matter spectrum requires G₄-flux;
 - However, need to know full massless matter spectrum;
 - Not obvious that all (unwanted) vector like pairs obtain mass and lift;
 - Even if, mass might be small (if SUSY breaking scale is low) such that they will contribute to all kind of threshold corrections;
 - To obtain full massless matter spectrum, need gauge data beyond four-form flux;
 - Chow groups will give us handle on them;

Part I

Global Structure of Gauge Groups

Mordell-Weil group

- ▶ Points on elliptic curve E = C/A, with A = (1, τ), are additive as complex numbers;
- Points (x, y) with rational coordinates on E,

$$y^2 = x^3 + f x + g$$
 with $j(\tau) \sim \frac{f^3}{4 f^3 + 27 g^2}$,

over field K form abelian group under addition, E(K);

 Mordell-Weil theorem for elliptic curves states that E(K) is finitely generated;

$$\Rightarrow E(K) = \underbrace{\mathbb{Z}^r}_{\text{free part}} \oplus \underbrace{\mathbb{Z}_{k_1} \oplus \ldots \oplus \mathbb{Z}_{k_i}}_{\text{torsion subgroup}}$$

► Can be extended to elliptic fibrations Y → B; Field K rational functions; Hence, (x, y) ∈ rational functions over B; Mordell-Weil group becomes group of sections; Group law fibrewise over each point of B;

Torsion subgroup

Possible torsion subgroups for elliptic K3 surface are:

 $\mathbb{Z}_k (k = 2, \dots, 8), \quad \mathbb{Z}_2 \oplus \mathbb{Z}_{2k} (k = 1, 2, 3), \quad \mathbb{Z}_3 \oplus \mathbb{Z}_3, \quad \mathbb{Z}_4 \oplus \mathbb{Z}_4$

- No classification for higher dimensional Calabi-Yau varieties;
- Among 16 reflexive polygons, 3 admit torsion points/sections as restriction of ambient toric divisors to hypersurface;
 - For these Mordell-Weil groups are: \mathbb{Z}_2 , $\mathbb{Z} \oplus \mathbb{Z}_2$ and \mathbb{Z}_3 ;
- Torsion of elliptic fibre does not induce torsion in homology of fibration;
- Torsion sections lead (generically) to singularities in co-dim. 1 (order of sing. matches order of tor. section);
 - Can take \mathbb{Z}_k -section mode resolution divisors;
 - \Rightarrow Gives torsion relation;

Shioda map

- Shioda map is homomorphism from group of sections E(K) to group of divisors NS(Y);
- Shioda map of Z_k-torsion section T gives trivial divisor class on Y;

$$\mathcal{T} \mapsto \mathcal{T} - Z - \bar{K} + (\delta) + \frac{1}{k} \sum_{i}^{k} a_{i} F_{i} \in \mathsf{Pic}_{0}(Y)$$

with $a_i \in \mathbb{Z}$ and F_i resolution divisors; Not related to U(1); Can be used to define:

$$\Xi_k = T - Z - ar{K} = -rac{1}{k}\sum_i^k \mathsf{a}_i\,\mathsf{F}_i$$

Note fractional coefficients on right-hand side;

Implications for gauge theories

- ► Intersection pairing of Ξ with split curves over matter loci is integer;
 - $-\frac{1}{k}\sum_{i}^{k}a_{i}F_{i}$ adds generator for coweight lattice Λ^{\vee} (finer);
- Restricted matter spectrum; Only allowed representations integer charged under Ξ_k; Hence, coarser weight lattice Λ;
- Root and coroot lattices Q and Q^V sublattices of weight and coweight lattices Λ and Λ^V, respectively;
- Center Z_G and fundamental group of gauge group G:

$$Z_G = \Lambda/Q$$
 $\pi_1(G) = \Lambda^{\vee}/Q^{\vee};$

- Torsion section refines coweight lattice;
 - Enhances π_1 of *G*, or equivalently reduces center of *G*;
- ► E.g.: A₂ sing. for fibration w/o torsion sec. gives SU(3); If there is Z₃-section, gauge group becomes SU(3)/Z₃;
 - Constrains matter spectrum to representations invariant under action of center Z₃;

Part II

Gauge Data via Chow Groups

Fluxes I

F-theory has higher form gauge potential

$$C_3 \simeq C_3 + d\Lambda_2;$$

 \Rightarrow Four-form flux of F-theory

$$G_4 = dC_3$$

 General condition on flux for 4d Poincaré invariance (from dual M-theory picture): 'one leg in the fibre, three legs in the base'

$$\begin{split} &\int_{\tilde{Y}_4} G_4 \wedge \omega_b = 0 \\ &\int_{\tilde{Y}_4} G_4 \wedge [Z] \wedge \omega_a = 0 \,; \end{split} \qquad \forall \omega_a, \, \omega_b \, \text{ with legs in base}$$

- Supersymmetry: $G_4 \in H^{2,2}(Y_4)$;
- Has to be quantised: $G_4 + \frac{c_2}{2} \in H^4(Y_4, \mathbb{Z});$

Chirality

> Type IIB: chirality along curve of intersecting branes given by

$$q \int_{\mathcal{C}_{R_q}} F_X;$$

 \mathcal{C}_{R_q} denotes curve with states in representation R_q and q $U(1)_X\text{-charge};$

► F-theory: replaced by integral of four-form flux over matter surfaces C_{R_q} in \hat{Y}_4 ,

$$\int_{C_{R_q}} G_4$$

- ► Matter surfaces, C_{Rq}, consist of linear combinations of blow-up P¹'s fibred over enhancement curve C_{Rq};
- Recall: linear combination such that in dual M-theory picture, M2-brane wrapping this combination is one state of R_q;

Beyond the Chiral Index I

- ► To calculate number chiral states in rep. R and R
 —not just index—need information about gauge data C₃;
- Encoded in Deligne cohomology H⁴_D(Ŷ₄, Z(2)) or Cheeger-Simons twisted differential characters;
- Can get intuition from IIB:
 - 1. Discrete (bundle) data: 2-form field strength $\frac{1}{2\pi}F$
 - 2. Gauge field adds continues/discrete info: Wilson lines $\oint A$
 - 1. + 2. form Picard group (Pic), i.e. class of holomorphic line bundles modulo gauge transformations;
- Splitting of Pic encoded via:

$$0 \to \mathcal{J}^1(X) \to \operatorname{Pic}(X) \stackrel{c_1}{\to} H^{1,1}_{\mathbb{Z}}(X) \to 0$$

 $c_1(L) = \frac{1}{2\pi}F$ linear map onto $H^{1,1}(X,\mathbb{Z})$, $\mathcal{J}^1(X) = H^{0,1}(X,\mathbb{C})/H^1(X,\mathbb{Z})$ Jacobian of X (space of flat connections).

Beyond the Chiral Index II

▶ For A₃ & G₄ in F-theory exists similar decomposition:

$$0 \rightarrow \underbrace{\mathcal{J}^2(\hat{Y}_4)}_{\text{2nd intermediate}} \rightarrow \underbrace{\mathcal{H}^4_D(\hat{Y}_4, \mathbb{Z}(2))}_{\substack{4^{\text{th }}\text{ Deligne} \\ \text{ cohomology class}}} \stackrel{c_2}{\rightarrow} \mathcal{H}^{2,2}_{\mathbb{Z}}(\hat{Y}_4) \rightarrow 0$$

- $H^4_D(\hat{Y}_4,\mathbb{Z}(2)) \leftrightarrow$ equivalence classes of gauge data
- $H^{2,2}_{\mathbb{Z}}(\hat{Y}_4) \leftrightarrow \text{field strength } G_4;$
- ► $\mathcal{J}^2(\hat{Y}_4) \simeq H^3(\hat{Y}_4, \mathbb{C})/(H^{3,0}(\hat{Y}_4) + H^{2,1}(\hat{Y}_4) + H^3(\hat{Y}_4, \mathbb{Z})) \leftrightarrow$ data beyond flux (flat connections);
- Usually difficult to work directly with Deligne cohomology;
- But can work indirectly by using Chow groups;

Chow Groups I

- 'Bundle data' via rational equivalence class of 4-cycles
- Rational equivalence: C₁ ≅ C₂ ∈ Z_n(X) if C₁ − C₂ is zero/pole of meromorphic function defined on (n + 1)-dim. irreducible subvariety of X; Equivalently: two algebraic cycles C₁, C₂ ∈ Z_i(X) rationally equivalent if ∃ rationally parametrised family of cycles interpolating between them;

Chow Groups II

- ► Chow group CH^k(X) = group of rational equivalence classes of (complex) codim. k-cycles; CH_k(X) = ... dim. k-cycles;
- Special case: $\operatorname{CH}^1(X) = \operatorname{Pic}(X)$
 - \Rightarrow Rational equivalence is finer than homological equivalence.
- ► ∃ map (homomorphism) from second Chow group into Deligne cohom.:
 - $\hat{\gamma}: \operatorname{CH}_2(X) \to H^4_D(\hat{Y}_4, \mathbb{Z}(2))$ (refined cycle map);

Chow Groups III

- Can use Chow groups to describe gauge data;
- Has clear advantage if we know Chow groups of \hat{Y}_4 ;
- In case of hypersurface or CICYs in toric varieties, we know at least parts of it;
 - Part which inherited from ambient space

$$\operatorname{CH}^*(X_5) \simeq H^*(X_5, \mathbb{Z});$$

- Ŷ₂ in general not surjective, but every complex 2-cycle class gives gauge data up to gauge equivalence;
- Strategy:
 - 1. Fix cycle (class) $\alpha_{\mathcal{G}} \in CH_2(X)$ with $\mathcal{G}_4 = [\alpha_{\mathcal{G}}] = \hat{c}_2 \circ \hat{\gamma}_2(\alpha_{\mathcal{G}})$;
 - 2. Manipulations modulo rational equivalence preserve C_3 modulo gauge equivalence;

Matter I

- With gauge data given by α_G ∈ CH₂(Ŷ₄), we have natural pairing with matter surfaces;
 - matter surface $C_R \in Z_2(\hat{Y}_4)$ with projection $\pi_R : |C_R| \to C_R$;
 - C_R · r α_G ∈ CH²(|C_R|) = Chow class of points on |C_R| where · denotes intersection, i.e. map from CH^p × CH^q to CH^{p+q};
- Projection to base B_3 gives points on matter curve C_R :

 $\pi_{R*}(\mathcal{C}_R \cdot_r \alpha_G) \in \operatorname{CH}_0(\mathcal{C}_R) \cong \operatorname{Pic}(\mathcal{C}_R)$

► This collection of points A_{R,G} ∈ Z₀(C_R) can be used to define line bundle L_{G,R} = O_{C_R}(A_{R,G}) on C_R;

Matter II

Proposal:

massless $\mathcal{N}=1$ chiral multiplets counted by

$$H^{i}(C_{R}, L_{G,R} \otimes \sqrt{K_{C_{R}}}), \qquad i = 0, 1$$

with $\sqrt{K_{C_R}}$ the spin bundle of the matter curve C_R (induced by embedding);

 Can checked proposal for fluxes/gauge data coming from e.g. U(1)-symmetries;

Applied to U(1)-model I

- In F-theory U(1)'s in one-to-one relation with rank of Mordell-Weil group (without torsion part);
- Rank of MW corresponds to number of independent sections (minus one);
 - \Rightarrow Call additional section s_A (consider only one U(1));
- Take $\mathsf{w}_{\mathcal{A}} \in \mathrm{CH}^1(\hat{Y}_4)$ such that

$$\gamma(\mathsf{w}_{\mathcal{A}}) \stackrel{!}{=} \varphi(\gamma(s_{\mathcal{A}}))$$

where φ denotes Shioda map;

 $\Rightarrow \gamma(\mathsf{w}_{A})$ together with $f \in CH^{1}(B_{3})$ gives four-form flux (class)

$$\mathcal{G}_4^{\mathcal{A}} = \pi^* \gamma(f) \cup \gamma(\mathsf{w}_{\mathcal{A}}) \in \mathcal{H}^{2,2}(\hat{Y}_4)$$

which satisfies 'one leg ...' condition and leaves all non-abelian sym. untouched.

Applied to U(1)-model II

Have now more then flux, because

$$\alpha_{F,A} = \mathsf{w}_A \cdot_{\pi} f \in \operatorname{CH}^2(\hat{Y}_4)$$

specifies "U(1) bundle" with associated flux G_4^A ;

► Via projection can extract actual line bundle on C_R, matter curve on base

$$\pi|_{C_{R*}}(\alpha_R\cdot_{\iota_R}\alpha_{F,A})=\pi|_{C_{R*}}(\alpha_R\cdot_{\iota_R}(\mathsf{w}_A\cdot_{\pi}f))=\pi|_{C_{R*}}(\alpha_R\cdot_{\iota_R}\mathsf{w}_A)\cdot_{\iota_R|_{B_3}}f;$$

In many cases, CY four-fold embedded in toric ambient space and w_A is pullback (w_A = j^{*} w̃_A) then

$$\pi|_{\mathcal{C}_{R*}}(\alpha_R \cdot_{\iota_R} \mathsf{w}_A) = \pi|_{\mathcal{C}_{R*}}(\alpha_R \cdot_{j\iota_R} \tilde{\mathsf{w}}_A);$$

Applied to U(1)-model III

 In such cases, can use intersections of toric ambient variety to calculate α_R · j_{μ_R} w̃_A and find:

$$\pi|_{C_{R*}}(\alpha_R\cdot_{\iota_R}\mathsf{w}_A) = \pi|_{C_{R*}}(\alpha_R\cdot_{j\iota_R}\tilde{\mathsf{w}}_A) = q_A(R)[C_R], \in \operatorname{CH}_1(C_R)$$

with $q_A(R)$ number of intersections over C_R (is interpreted as U(1)-charge);

► Finally from $[C_R] \cdot_{\iota_R|_{B_3}} f$ obtain collection of points $A_{R,A} \in Z_0(C_R)$ on C_R ;

⇒ Defines line bundle $\mathcal{O}_{C_R}(A_{R,A})$; Massless matter states correspond to

$$H^{i}(C_{R}, L_{R,A} \otimes \sqrt{K_{C_{R}}}), \qquad L_{R,A} = [\mathcal{O}_{C_{R}}(A_{R,A})]^{\otimes q_{A}(R)};$$

 In geometries with well-defined Sen limit, agrees with massless matter states in Type IIB limit;

Explicit example I

- Can work out explicit examples;
- As starting point took hypersurface (D_{B3} = H₁ + 2 H₂ + H₃) in P² × P¹ × P¹;
- GUT surface placed at $D_{GUT} = (H_1 + H_3)|_{B_3}$ and $f = \tilde{f}|_{B_3} = (n H_1 + m H_2 + o H_3)|_{B_3}$
- By means of *cohomCalg* and self-write Mathematica code, could work out spectral sequences to obtain cohomologies of line bundles on curves;

Explicit example II

Consider U(1)-restricted case;

With flux choice γ(*t̃*) = ½ (−7,0,9), in agreement with quantisation cond.;

curve	$h^{0}(C, \mathcal{L} _{C})$	representation	$h^1(C, \mathcal{L} _C)$	representation
C ₁₀	4	10_{-1}	1	$\overline{10}_{+1}$
$C_{\overline{5}_{m}}$	6	5 3	3	5 _3
С _{5н}	9	5 ₂	9	<u>5</u> _2
<i>C</i> ₁	585	1_{5}	0	$\overline{1}_{-5}$

Summary & Outlook

- Showed implications of torsion sections on gauge group;
- ► To go beyond Z₂ and Z₃ need complete intersections or non-toric methods;
 - MSSM with gauge group $SU(3) \times SU(2) \times U(1)/\mathbb{Z}_6$?
- General procedure to compute all light matter states; Not only chiral index;
- Applied it already to the U(1)-restricted case;
- See whether there is projection formulae (overall factor) also in other cases;
 - Will not be the general case; Immediate counter example universal spectral cover flux which appears in SU(5)-models even without abelian symmetry;
- Apply our methods to cases where intersections have to be done on CY itself;

Thank you for your attention!