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Motivation: GUTs from F-theory

“* F-theory GUT models have proven to be a rich and elegant avenue to
realize realistic vacua in string theory

GUT gauge group

Chiral matter

Yukawa couplings / | Mass terms
q y

Taksen from Beasley, Feckman, Vafa OF



Motivation: GUTs from F-theory

“* F-theory GUT models have proven to be a rich and elegant avenue to
realize realistic vacua in string theory

 With respect to heterotic strings, they allow to implement a bottom-up
approach when constructing 4d vacua, and to analyze several features
of the GUT gauge sector at a local level

* With respect to type Il strings, they allow for certain couplings and
representations that are otherwise forbidden at the perturbative level

4+ Example: For type Il SU(5) GUTs the Yukawa coupling 5x10x10 is
forbidden at the perturbative level and needs to be generated by,
e.g., D-instanton effects



F-theory Yukawas

“ Despite their differences, one can easily gain intuition in understanding
F-theory in terms of their type |IB and heterotic cousins

 Just like in type IIB, Yukawa couplings arise from the triple intersection
of 4-cycles in a 6d manifold

+ Type lIB: 4+ F-theory:

D7,

D7,

(S + 5*)t/4
(Ty + Ty)(To + T3 ) (Ts + T3]/

Figanes taken from Vbane; & Uhanga (2012)



F-theory Yukawas

“* Despite their differences, one can easily gain intuition in understanding
F-theory in terms of their type IIB and heterotic cousins

“* Like for heterotic strings in CYs, one may compute Yukawas from dim.

red. of a higher dimensional field theory Bevatey, Feckman, Vaja 0

Heterotic F-theory
10d SYM 8d tw.YM
W:/XQ/\Tr(A/\F) W:/STI‘(F/\CI))
GX :Eg XEg, 50(32) GS :SO<2N),E6,E7,E8...

“* Computation of zero mode wavefunctions in a certain background

“* Yukawas = triple overlap of wavefunctions >/




F-theory Yukawas

“* In practice, to compute Yukawa couplings one considers a divisor S
and a gauge group Gs = SO(12), Es, E7, Es... on it

4+ (®)=#0 describes the intersection pattern near the Yukawa point
and breaks Gs = Ggut x U(I)N

+ (F)#0 necessary to generate chirality and family replication at
the intersection curves

4+ (Fv)#0 necessary to break Goutr = Gmssm

o SuE e 10100 YU,
xample: SUG) 5 510 N QIDIH, + NP LB H,

The presence of (F) also localizes the wavefunctions and allows for
an ultra-local computation of Yukawa couplings



Computing wavefunctions

“* The superpotential and D-term encode the 7-brane BPS equations

W = / Tr(F A\ <I>) 20—
D = /SF/\W—|—§[(I),(I)] OANEF = 0
¢ Which in turn encode the zero mode eom: &
d = (D)4 pyydr ANdy |
—3 DAV =
o D, D, D, 0
-D, 0 —D: Dy | as
Da = -D, D; 0 D, V= ay



Computing wavefunctions

“* The superpotential and D-term encode the 7-brane BPS equations

W = / Tr(F A <I>) 20—
D = /SF/\W—|—§[(I),(I)] OANF = 0
¢ Which in turn encode the zero mode eom: &
d = (D)4 pyydr ANdy

| —3 DU = 0

(A) + azdx 4 azdy
Example: (®) and (A) linear

Yata,  ta = 7 £ (y)

) Aq depends on (®) and (A)

Solution: Y, = J,

-~ N

—_—O O O



Computing Yukawas

“* Inserting these wavefunctions in W we obtain the Yukawa couplings in

terms of a triple overlap of wavefunctions Feckman &Tafa OF

. o Tout & Wdiey 09
/Tr(A/\A/\ D) —» YU :j\/')\fabC/ du fE gl he Coulon & Paltc 09
S S

Ny = Ao + Ac(Ag + Ap)

du = dzd?y pAalzP+Ap P +Aclz—yl|?



Computing Yukawas

“* Inserting these wavefunctions in W we obtain the Yukawa couplings in

terms of a triple overlap of wavefunctions Feckman &Tafa OF

. o Goat & Udies 09
[ TARAND) = Y= N fu / Gufigihe  Cudon & Put07
S S

Na = XaXp + Ac(Ag + M)
dp = d2zd?y eral=l FAlylP +Aclz—yl”
U(1) symmetry: (#,y) = €' (z,y), only invariant integrands survive:

fi=a®" g=¢y>J h.=1 = only Y3 #£0 = Yukawas of rank one

Moreover/ du = >Ny ' = Yiindep. of A = indep. of F
S



Computing Yukawas

“* Inserting these wavefunctions in W we obtain the Yukawa couplings in

terms of a triple overlap of wavefunctions Feckman &Tafa OF

. o Goat & Udies 09
[ TARAND) = Y= N fu [dusigihe ot s 7tic0
S S

Na = XaXp + Ac(Ag + M)
dp = d2zd?y eral=l FAlylP +Aclz—yl”
U(1) symmetry: (#,y) = €' (z,y), only invariant integrands survive:

fi=a®" g=¢y>J h.=1 = only Y3 #£0 = Yukawas of rank one

Moreover/ du = >Ny ' = Yiindep. of A = indep. of F
S .
Juk®”

gark ©_ple””
Cecotti, Phens, Feckman, Vajn 09 pre

% The same is true for general fluxes =



Deforming the superpotential

“* A possible way out is to consider a non-commutative deformation of

the 7-brane superpotential ,
Cecotte, (Cheng, Heckman, Vaja 09

Wy = / Tr(d® F) Non-comm parameter € 0,
5 0 holomorphic function

Such deformations typically arise for D-branes Rapustin 03
in B-deformed backgrounds Peostun 06



Deforming the superpotential

“* A possible way out is to consider a non-commutative deformation of

the 7-brane superpotential ,
Cecotte, (Cheng, Heckman, Vaja 09

Wy = / Tr(d® F) Non-comm parameter € 0,
5 0 holomorphic function

Such deformations typically arise for D-branes %ﬁm'éf
in B-deformed backgrounds Peostun 06
< Results:

4+ Rank higher than one

4+ Holom YU can be computed via a residue formula.
Depend on coeff. of 8 but independent of fluxes

4+ Pattern y hol el e ¢
— 63 62 € 4+ ...
Yhol 5
33 € € 1




Deforming the superpotential

“* This nc deformation is however subtle for the groups of interest in
F-theory GUTs

“* A simple way to realize this is to write down the commutative version
of the above deformation

N R R SW map
W- = / Tr ((I) ) F)
S Am = Ap— geij{Ai, 0;Am + Fim} + O(2)
‘i buy = By (A0 (0 D)9} + O)
W, = /Tr(F/\<I>) + % / 0 Tr (yy F°) DM, & Martuees 10
S S

» The deformation is proportional to dasc= STr (tatbtc), which vanishes
for Gs = SO(12), Es, E7, Es



Yukawas from non-perturbative effects

“* This commutative version of the deformed superpotential admits a
simple physical interpretation in terms of non-perturbative effects

Z . & Wantueec 10

= D3-instantons generate non-
perturbative superpotentials
for D3-branes and
magnetized D7-branes




Yukawas from non-perturbative effects

“* This commutative version of the deformed superpotential admits a
simple physical interpretation in terms of non-perturbative effects

Z . & Wantueec 10

= D3-instantons generate non-
perturbative superpotentials
for D3-branes and
magnetized D7-branes

TN

= pAe =exp [—/ STr(log h F' A F)]
S

S7r2

h = instanton divisor function  Snp = {R(X) =0}



Yukawas from non-perturbative effects

<% h must be Taylor-expanded on the positions field Py = z/2ma, just
as in the non-Abelian DBI action

Whe = mie(l—l—/STr(logﬁF/\F)—l—...)
S

e=Ae TopliPs = h/h



Yukawas from non-perturbative effects

<% h must be Taylor-expanded on the positions field Py = z/2ma, just
as in the non-Abelian DBI action

W™ = mie (1—|—/ STr(log iLF/\F)—I—)
S
i e=Ae TeplPs b= n/hy
logh = log fz|s + &, L log fz]s -+ @iy [L21og iL]S +

= O+ 61D,y + 0,97, +

|

WP = mie U HOTrF2+/91Tr(<I>xyF2)+/6’2STr(<I>in2)+...
S S S



Yukawas from non-perturbative effects

<% h must be Taylor-expanded on the positions field Py = z/2ma, just
as in the non-Abelian DBI action

W™ = mie (1—|—/ STr(log iLF/\F)—I—)
S
i e=Ae TeplPs b= n/hy
logh = log fz|s + &, L log fz]s -+ @iy [L21og iL]S +

= O+ 61D,y + 0,97, +

!
U ﬁ2 /91Tr (Pupy F?) + /H2STr(cI>2 F2)+ ..

h|s const.



Yukawas from non-perturbative effects

<% h must be Taylor-expanded on the positions field Py = z/2ma, just
as in the non-Abelian DBI action

W™ = mie <1+/ STr(log iLF/\F)—I—)
S
J{ e=Ae TeplPs b= n/hy
logh = log fz\s + &, L log fz]s -+ @iy [L21og iL]S +

= O+ 61D,y + 0,97, +

!
[/}é? +[ 01Tr <I>a;yF23 /HQSTI'(CI>2 F2) 4+

h|s const.




Yukawas in GUTs

“* The assumption 6o = 0 turns out to be too restrictive

“* Example: SO(12) model in type |IB

> SUG)
>
N

O7-plane (S)




Yukawas in GUTs

¢ The assumption 6o = 0 turns out to be too restrictive

“ Example: SO(12) model in type |IB

O(1) E3 €— \
O7-plane (S)

/

Yukawa point —



Yukawas in GUTs

¢ The assumption 6o = 0 turns out to be too restrictive

“ F-theory perspective: an E3-instanton with the right number
of zero modes must intersect one 7-brane
Beanctii, (ollinucec, Martuces Il
Two possible scenarios: Cuetic, Gancia- Etvebarnia, Falverson 1l

E3

SU(S)



Yukawas in SO(12)

“* In the first scenario 680 # 0, and the full superpotential is

Wiotal = m’ [/ Tr(P,, F) /\dm/\dy%—gf 0o Tr (F' A F) 4+ 05STr (@in/\F)
S S

4+ No obvious non-commutative interpretation

4+ We can still solve for the wavefunctions and compute the Yukawas,
using a residue formula to identify the holomorphic part



Yukawas in SO(12)

“* In the first scenario 680 # 0, and the full superpotential is

Wiotal = m’ [/ Tr(P,, F) /\dm/\dy%—gf 0o Tr (F' A F) 4+ 05STr (@in/\F)
S S

4+ No obvious non-commutative interpretation

4+ We can still solve for the wavefunctions and compute the Yukawas,
using a residue formula to identify the holomorphic part

4+ Result for SO(12) point, with 8o = i(Boo + X Box + Y Boy), 62 const.

yhol 0 0 O 0 0 00
yhol — 00 0 | +e 0 Oz +boy O |+0O()

hierarchy (1, €, €2) of eigenvalues, still independent of worldvolume fluxes



Yukawas in SO(12)

“* The hypercharge flux Fy is the only GUT - MSSM gauge group
breaking effect. This means that at the holomorphic level

Y;jj _ Yli)jR
* If that was the final answer it would imply

Me My 1 my

Gerngt & fntobag 79



Yukawas in SO(12)

“* The hypercharge flux Fy is the only GUT - MSSM gauge group
breaking effect. This means that at the holomorphic level

Y;jj _ Yli)jR
* If that was the final answer it would imply

my, Mg M my i, Mme| M, 1 my
— = = — vs. |— ~3 : ~ -

L mp| MM, 3 my,

Gerngt & fntobag 79



Yukawas in SO(12)

The hypercharge flux Fv is the only GUT — MSSM gauge group
breaking effect. This means that at the holomorphic level

] 1]
YL o YDR

However, the physical Yukawas depend on Fy via wavefunction
normalization v

phys

o =1)2—1/2 7 —1/2 <rij
= K, K, TRy Yo

Ki - / WP o / dy e IMIVE | £ ()2

These normalization factors depend on the family and on the flux M

KV o (DM VRMERL) M = Ny
V2

For higher hypercharge we have thinner wavefunctions and larger

quotients. One can then accommodate a realistic GUT scale mass

ratio my, M Ny

m—T ggmb for WﬁlS




Yukawas in SO(12)

“* One can in general accommodate the GUT scale masses

tanf 10 38 50
ma/ms || 5.14+0.7x 1072 | 5.14£0.7x 1072 | 5.1 £0.7 x 102
me/my || 1.9+ 02x 1072 | 1.74£0.2 x 102 | 1.6 0.2 x 102
me/m, | 4.8+£02x 1073 | 48+0.2x 1073 | 4.8+0.2 x 103
mu/ms || 5.9+£02x 1072 | 54+0.2%x 1072 | 5.0 +0.2 x 102
ms/m- | 0.73+0.03 0.73 £ 0.03 0.73 £ 0.04

Y, 0.070 = 0.003 0.32 £ 0.02 0.51 & 0.04
Y, 0.051 = 0.002 0.23 +0.01 0.37 & 0.02
Y, 0.48 & 0.02 0.49 £ 0.02 0.51 & 0.04

for large tan B and € ~ 1073 —10"1*




T-branes and Up-type Yukawas

Down-type Up-type
YY 558,10, Y7 55 10,10),

107,




T-branes and Up-type Yukawas

Down-type
Y)Y 5y 54,107,

107,

Up-type
Y7 155 10%, 10,




Yukawas in Eg

“* We now have the breaking

Es 25 sU(5) Y sU(3) x SU(2) x U(1)

where O lives in su(5) @ su(2) Bu(l) C ¢q

78 — (24,1)0 @ (1,3)0 & (1, 1)o @ (10,2)_1 & (10,2)1 & (5,1)2 & (5,1) _»



Yukawas in Eg

“* We now have the breaking

Es 25 sU(5) Y sU(3) x SU(2) x U(1)

where O lives in su(5) @ su(2) Bu(l) C ¢q
78 — (24, 1)0 D (1, 3)0 D (1, 1)0 D (10, 2)_1 D (E, 2)1 D (5, 1)2 D (5, 1)_2
(®py) = m(e! BT +mae ™ E7) + p?(ax + by)Q, (A1) = —%éfP

f=logc+m?c®r® +. ..

Y5 = {ax + by = 0}
Matter curves:

Y19 = {m’z — p*(ax + by)* = 0}



Yukawas in Eg

“* We now have the breaking

Es 25 sU(5) Y sU(3) x SU(2) x U(1)

where O lives in su(5) @ su(2) Bu(l) C ¢q

* Using the superpotential

Wiotal = mfkl [/ TI‘((I)xyF) /\df/\dy‘F E/
S 2 Js

with B0 = i(Boo + X Box + Y Boy) We obtain

yhol 0
hol — 0
Y33 0

0o Tt (F A F)]



Yukawas in Es
“* The physical Yukawas read

O O g —1.1 3
2 Pu V10710
id ™5 -
Y= 0 ép; 0o 0 +0O(e%)
wEm\ e I viovio 0 —2730750
where
i 2 102
€ =€ (ab, —bl,) D = e P = g

and the normalization factors y' can be computed in the limit m >> p



Yukawas in Es
“* The physical Yukawas read

0 0 e 1.1 .3
2 Pu V10710
i ™5 -
Ye = 0 e oo 0 +0O(e%)
P\ €p o 0 —270710
where
i m2 12
€= E(aey - beﬂ?) Pm — mz Pu = mz

and the normalization factors y' can be computed in the limit m >> p

¢ For instance for the values

M=03, N=003, Ny =06, Ny=-018, m=05, u=0.1

we obtain that Y: ~ 0.5. A realistic value for Y. is obtained by taking

&~ 1074



Beyond Es

Realistic values for up and down-type Yukawas are obtained with
similar flux densities and n.p. parameter €

One may then consider models where both type of Yukawas are
generated at the same point, an scenario that is independently
motivated by a hierarchical CKM matrix

Possible enhancements:

4+ E;

4+ Es



Beyond Es

Realistic values for up and down-type Yukawas are obtained with
similar flux densities and n.p. parameter €

One may then consider models where both type of Yukawas are
generated at the same point, an scenario that is independently
motivated by a hierarchical CKM matrix

Possible enhancements:

4 E; ———> Vanishing Yukawas in SU(5) T-brane models
Cliisw, Faraggi, Tatar, Waltens Il

4 Es ——> Motivated by neutrino sector and local computability

Heckman, Javanjar, Vaja 09
Palzc 12



Yukawas in Es: an example

“* The details of the computation will depend on the spectral cover
splitting, which gives rise to different kinds of models

Eg — SU(5)GUT X SU(5)J_

¢ Let us for instance take the Eg T-brane model of Cecotti et al.

(] 0 0 0 \
DEVEIE R 1 0
00 y = Ny 0
B0 0 0 2wl

Cecotti, Pordova, Fechman, Vafa 10



Yukawas in Es: an example

“* The details of the computation will depend on the spectral cover
splitting, which gives rise to different kinds of models

Eg — SU(5)GUT X SU(E))J_

¢ Let us for instance take the Eg T-brane model of Cecotti et al.

4+ Up-type sector: same like in Es, same conditions for large top Yukawa

0 0 Ofe)
a0 ol 0 | o
O) 0 1

4+ Down-like sector: more complicated than SO(12), but same hierarchy

0 0 Ofe)
)\Z(-;.i) ~ 0 @lel Ofe) || =Gl
Q) @7 7l



Conclusions

“* Simplest F-theory GUTs have rank one Yukawas at tree-level

“* Non-perturbative effects change this result, in the sense that they

correct the superpotential of seven-branes

We can have a explicit and simple expression for this correction,
which allows to compute its effects at a local level

In simple cases one may express the new superpotential as a
non-commutative deformation of the previous superpotential.
However, this is not true for the cases of interest in F-theory GUTs.

The np effect provides rank 3, flux-indep holomorphic Yukawas.
The hierarchy of eigenvalues is O(1), O(e), O(€?)

The flux dependence comes from wavefunction normalization.
This in principle allows to accommodate a large top Yukawa and
realistic MSSM mass ratios via Fy GUT breaking, more naturally
than in 4d GUTs



