Yukawas in F-theory GUTs (including E_{8} point)

fernando marchesano

Ift
Instituto de
Física
Téórica

UAM-CSIC

Yukawas in F-theory GUTs (including E_{8} point)

fernando marchesano

Based on:
Font, báñez, F.M., Regalado
[1211.6529]
Font, F.M., Regalado, Zoccarato
[1307.8089]

Motivation: GUTs from F-theory

\% F-theory GUT models have proven to be a rich and elegant avenue to realize realistic vacua in string theory

GUT gauge group

Motivation: GUTs from F-theory

\% F-theory GUT models have proven to be a rich and elegant avenue to realize realistic vacua in string theory
\% With respect to heterotic strings, they allow to implement a bottom-up approach when constructing 4d vacua, and to analyze several features of the GUT gauge sector at a local level
\% With respect to type II strings, they allow for certain couplings and representations that are otherwise forbidden at the perturbative level
\downarrow Example: For type II SU(5) GUTs the Yukawa coupling $5 \times 10 \times 10$ is forbidden at the perturbative level and needs to be generated by, e.g., D-instanton effects

F-theory Yukawas

\% Despite their differences, one can easily gain intuition in understanding F-theory in terms of their type IIB and heterotic cousins
\% Just like in type IIB, Yukawa couplings arise from the triple intersection of 4-cycles in a 6d manifold

- Type IIB:

$$
Y=\frac{\left(S+S^{*}\right)^{1 / 4}}{\left[\left(T_{1}+T_{1}^{*}\right)\left(T_{2}+T_{2}^{*}\right)\left(T_{3}+T_{3}^{*}\right)\right]^{1 / 4}}
$$

F-theory Yukawas

\% Despite their differences, one can easily gain intuition in understanding F-theory in terms of their type IIB and heterotic cousins
$\%$ Like for heterotic strings in CYs, one may compute Yukawas from dim. red. of a higher dimensional field theory

Beasley, Heckman. Vafa'08

Heterotic	F-theory
IOd SYM	8d tw.YM
$W=\int_{X} \Omega \wedge \operatorname{Tr}(A \wedge F)$	$W=\int_{S} \operatorname{Tr}(F \wedge \Phi)$
$G_{X}=E_{8} \times E_{8}, S O(32)$	$G_{S}=S O(2 N), E_{6}, E_{7}, E_{8} \cdots$

\% Computation of zero mode wavefunctions in a certain background
\% Yukawas = triple overlap of wavefunctions

F-theory Yukawas

\% In practice, to compute Yukawa couplings one considers a divisor S and a gauge group $\mathrm{G}_{5}=\mathrm{SO}(12), \mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8} \ldots$ on it
$\uparrow\langle\Phi\rangle \neq 0$ describes the intersection pattern near the Yukawa point and breaks $\mathrm{G}_{s} \rightarrow$ GGUT $\mathrm{XU}(1)^{\mathrm{N}}$

- $\langle F\rangle \neq 0$ necessary to generate chirality and family replication at the intersection curves
$\rightarrow\left\langle\mathrm{F}_{\mathrm{Y}}\right\rangle \neq 0$ necessary to break $\mathrm{G}_{\mathrm{Gut}} \rightarrow \mathrm{G}_{\text {mssm }}$
Example: SU(5) $\begin{gathered}5_{H_{u}} \times 10 \times 10 \\ \overline{5}_{H_{d}} \times \overline{5} \times 10\end{gathered} \longrightarrow \begin{aligned} & \mathrm{F}_{\mathrm{Y}} \\ & \lambda_{u}^{i j} Q^{i} U^{j} H_{u} \\ & \lambda_{d}^{i j} Q^{i} D^{j} H_{d}+\lambda_{l}^{i j} L^{i} E^{j} H_{d}\end{aligned}$

The presence of $\langle F\rangle$ also localizes the wavefunctions and allows for an ultra-local computation of Yukawa couplings

Computing wavefunctions

\% The superpotential and D-term encode the 7-brane BPS equations

$$
\begin{array}{rlrl}
W & =\int_{S} \operatorname{Tr}(F \wedge \Phi) \\
D & =\int_{S} F \wedge \omega+\frac{1}{2}[\Phi, \bar{\Phi}] & F^{(2,0)} & =0 \\
\bar{\partial}_{A} \Phi & =0 \\
\omega \wedge F & =0
\end{array}
$$

$\%$ Which in turn encode the zero mode eom:

$$
\begin{aligned}
& \Phi=\langle\Phi\rangle+\varphi_{x y} d x \wedge d y \\
& A=\langle A\rangle+a_{\bar{x}} d \bar{x}+a_{\bar{y}} d \bar{y} \\
& \longrightarrow D_{A} \Psi= \\
& \mathbf{D}_{\mathbf{A}}=\left(\begin{array}{cccc}
0 & D_{x} & D_{y} & D_{z} \\
-D_{x} & 0 & -D_{\bar{z}} & D_{\bar{y}} \\
-D_{y} & D_{\bar{z}} & 0 & -D_{\bar{x}} \\
-D_{z} & -D_{\bar{y}} & D_{\bar{x}} & 0
\end{array}\right) \quad \Psi=\left(\begin{array}{c}
0 \\
a_{\bar{x}} \\
a_{\bar{y}} \\
\varphi_{x y}
\end{array}\right)
\end{aligned}
$$

Computing wavefunctions

\% The superpotential and D-term encode the 7-brane BPS equations

$$
\begin{array}{rlrl}
W & =\int_{S} \operatorname{Tr}(F \wedge \Phi) & F^{(2,0)} & =0 \\
D & =\int_{S} F \wedge \omega+\frac{1}{2}[\Phi, \bar{\Phi}] & \bar{\partial}_{A} \Phi & =0 \\
\omega \wedge F & =0
\end{array}
$$

Which in turn encode the zero mode eom:

$$
\begin{aligned}
\Phi & =\langle\Phi\rangle+\varphi_{x y} d x \wedge d y \\
A & =\langle A\rangle+a_{\bar{x}} d \bar{x}+a_{\bar{y}} d \bar{y}
\end{aligned} \quad \longrightarrow \quad D_{A} \Psi \quad=0
$$

Example: $\langle\Phi\rangle$ and $\langle A\rangle$ linear
Solution: $\quad \Psi_{a}=J_{a}\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right) \begin{array}{r}\psi_{a} \mathfrak{t}_{a}, \quad \psi_{a}=e^{\lambda_{a}|x|^{2}} f_{a}(y) \\ \lambda_{a} \text { depends on }\langle\Phi\rangle \text { and }\langle A\rangle\end{array}$

Computing Yukawas

$\%$ Inserting these wavefunctions in W we obtain the Yukawa couplings in terms of a triple overlap of wavefunctions

Heckman \& Vafa'08
Font \& Tbäñez'09
$\int_{S} \operatorname{Tr}(A \wedge A \wedge \Phi) \rightarrow Y^{i j}=\mathcal{N}_{\lambda} f_{a b c} \int_{S} d \mu f_{a}^{i} g_{b}^{j} h_{c}$
$\mathcal{N}_{\lambda}=\lambda_{a} \lambda_{b}+\lambda_{c}\left(\lambda_{a}+\lambda_{b}\right)$
$d \mu=d^{2} x d^{2} y e^{\lambda_{a}|x|^{2}+\lambda_{b}|y|^{2}+\lambda_{c}|x-y|^{2}}$

Computing Yukawas

$\%$ Inserting these wavefunctions in W we obtain the Yukawa couplings in terms of a triple overlap of wavefunctions
$\int_{S} \operatorname{Tr}(A \wedge A \wedge \Phi) \rightarrow Y^{i j}=\mathcal{N}_{\lambda} f_{a b c} \int_{S} d \mu f_{a}^{i} g_{b}^{j} h_{c}$

$$
\begin{aligned}
& \mathcal{N}_{\lambda}=\lambda_{a} \lambda_{b}+\lambda_{c}\left(\lambda_{a}+\lambda_{b}\right) \\
& d \mu=d^{2} x d^{2} y e^{\lambda_{a}|x|^{2}+\lambda_{b}|y|^{2}+\lambda_{c}|x-y|^{2}}
\end{aligned}
$$

$\mathrm{U}(1)$ symmetry: $(x, y) \rightarrow e^{i \alpha}(x, y)$, only invariant integrands survive:
$f_{a}^{i}=x^{3-i} \quad g_{b}^{j}=y^{3-j} \quad h_{c}=1 \Rightarrow$ only $Y^{33} \neq 0 \Rightarrow$ Yukawas of rank one
Moreover $\int_{S} d \mu=\pi^{2} \mathcal{N}_{\lambda}^{-1} \Rightarrow Y^{i j}$ indep. of $\lambda \Rightarrow$ indep. of F

Computing Yukawas

$\%$ Inserting these wavefunctions in W we obtain the Yukawa couplings in terms of a triple overlap of wavefunctions
$\int_{S} \operatorname{Tr}(A \wedge A \wedge \Phi) \rightarrow Y^{i j}=\mathcal{N}_{\lambda} f_{a b c} \int_{S} d \mu f_{a}^{i} g_{b}^{j} h_{c}$

$$
\begin{aligned}
& \mathcal{N}_{\lambda}=\lambda_{a} \lambda_{b}+\lambda_{c}\left(\lambda_{a}+\lambda_{b}\right) \\
& d \mu=d^{2} x d^{2} y e^{\lambda_{a}|x|^{2}+\lambda_{b}|y|^{2}+\lambda_{c}|x-y|^{2}}
\end{aligned}
$$

U (1) symmetry: $(x, y) \rightarrow e^{i \alpha}(x, y)$, only invariant integrands survive:
$f_{a}^{i}=x^{3-i} \quad g_{b}^{j}=y^{3-j} \quad h_{c}=1 \Rightarrow$ only $Y^{33} \neq 0 \Rightarrow$ Yukawas of rank one
Moreover $\int_{S} d \mu=\pi^{2} \mathcal{N}_{\lambda}^{-1} \Rightarrow Y^{i \mathrm{i}}$ indep. of $\lambda \Rightarrow$ indep. of F
\% The same is true for general fluxes \Rightarrow Rank one Yukawa Cecotti, Cheng, Heckman, Vafa'09

Deforming the superpotential

\% A possible way out is to consider a non-commutative deformation of the 7-brane superpotential

$$
\hat{W}_{7}=\int_{S} \operatorname{Tr}(\hat{\Phi} \circledast \hat{F})
$$

Non-comm parameter $\in \theta$, θ holomorphic function

Such deformations typically arise for D-branes
Kapustin' 03 in β-deformed backgrounds

Deforming the superpotential

\% A possible way out is to consider a non-commutative deformation of the 7-brane superpotential

$$
\hat{W}_{7}=\int_{S} \operatorname{Tr}(\hat{\Phi} \circledast \hat{F})
$$

Non-comm parameter $\epsilon \theta$, θ holomorphic function

Such deformations typically arise for D-branes
Kapusti'i' 03
in β-deformed backgrounds
Pestun'06
\% Results:

- Rank higher than one
\uparrow Holom $Y^{i j}$ can be computed via a residue formula. Depend on coeff. of θ but independent of fluxes
\checkmark Pattern

$$
\frac{Y^{\mathrm{hol}}}{Y_{33}^{\mathrm{hol}}}=\left(\begin{array}{ccc}
\epsilon^{4} & \epsilon^{3} & \epsilon^{2} \\
\epsilon^{3} & \epsilon^{2} & \epsilon \\
\epsilon^{2} & \epsilon & 1
\end{array}\right)+\ldots
$$

Deforming the superpotential

\% This nc deformation is however subtle for the groups of interest in F-theory GUTs
$\%$ A simple way to realize this is to write down the commutative version of the above deformation

$$
\begin{aligned}
& \hat{W}_{7}=\int_{S} \operatorname{Tr}(\hat{\Phi} \circledast \hat{F}) \\
& \text { SW map } \\
& \hat{A}_{\bar{m}}=A_{\bar{m}}-\frac{\epsilon}{2}{ }^{i j}\left\{A_{i}, \partial_{j} A_{\bar{m}}+F_{j \bar{m}}\right\}+\mathcal{O}\left(\epsilon^{2}\right) \\
& \hat{\Phi}_{x y}=\Phi_{x y}-\frac{\epsilon}{2}\left\{A_{i},\left(\partial_{j}+D_{j}\right)\left(\theta^{i j} \Phi_{x y}\right)\right\}+\mathcal{O}\left(\epsilon^{2}\right) \\
& W_{7}=\int_{S} \operatorname{Tr}(F \wedge \Phi)+\frac{\epsilon}{2} \int_{S} \theta \operatorname{Tr}\left(\Phi_{x y} F^{2}\right)
\end{aligned}
$$

$\%$ The deformation is proportional to $d_{a b c}=S \operatorname{Tr}\left(\mathrm{t}_{\mathrm{a}} \mathrm{t}_{\mathrm{b}} \mathrm{t}_{\mathrm{c}}\right)$, which vanishes for $G_{s}=S O(12), E_{6}, E_{7}, E_{8}$

Yukawas from non-perturbative effects

$\%$ This commutative version of the deformed superpotential admits a simple physical interpretation in terms of non-perturbative effects

\Rightarrow D3-instantons generate nonperturbative superpotentials for D3-branes and magnetized D7-branes

Yukawas from non-perturbative effects

\% This commutative version of the deformed superpotential admits a simple physical interpretation in terms of non-perturbative effects

$\mathrm{h}=$ instanton divisor function $\quad S_{\mathrm{np}}=\{h(X)=0\}$

Yukawas from non-perturbative effects

$\% \mathrm{~h}$ must be Taylor-expanded on the positions field $\Phi_{x y}=z / 2 \pi \alpha^{\prime}$, just as in the non-Abelian DBI action

$$
\begin{aligned}
W^{\mathrm{np}}=m_{*}^{4} \epsilon\left(1+\int_{S} \mathrm{~S} \operatorname{Tr}(\log \tilde{h}\right. & F \wedge F)+\ldots) \\
\epsilon & =\mathcal{A} e^{-T_{\mathrm{np}}} h_{0}^{N_{\mathrm{D} 3}} \quad \tilde{h}=h / h_{0}
\end{aligned}
$$

Yukawas from non-perturbative effects

$\% \mathrm{~h}$ must be Taylor-expanded on the positions field $\Phi_{x y}=z / 2 \pi \alpha^{\prime}$, just as in the non-Abelian DBI action

$$
\left.\begin{array}{c}
W^{\mathrm{np}}=m_{*}^{4} \epsilon\left(1+\int_{S} \mathrm{~S} \operatorname{Tr}(\log \tilde{h} F \wedge F)+\ldots\right) \\
\downarrow \quad \epsilon=\mathcal{A} e^{-T_{\mathrm{np}}} h_{0}^{N_{\mathrm{D} 3}} \quad \tilde{h}=h / h_{0} \\
\log \tilde{h}=\left.\log \tilde{h}\right|_{S}+\Phi_{x y}\left[\mathcal{L}_{z} \log \tilde{h}\right]_{S}+\Phi_{x y}^{2}\left[\mathcal{L}_{z}^{2} \log \tilde{h}\right]_{S}+\ldots \\
=\theta_{0}+\theta_{1} \Phi_{x y}+\theta_{2} \Phi_{x y}^{2}+\ldots \\
\downarrow
\end{array}\right\}
$$

Yukawas from non-perturbative effects

$\% \mathrm{~h}$ must be Taylor-expanded on the positions field $\Phi_{x y}=z / 2 \pi \alpha^{\prime}$, just as in the non-Abelian DBI action

$$
\begin{aligned}
& W^{\mathrm{np}}=m_{*}^{4} \epsilon\left(1+\int_{S} \operatorname{STr}(\log \tilde{h} F \wedge F)+\ldots\right) \\
& \downarrow \quad \epsilon=\mathcal{A} e^{-T_{\mathrm{np}}} h_{0}^{N_{\mathrm{D} 3}} \quad \tilde{h}=h / h_{0} \\
& \log \tilde{h}=\left.\log \tilde{h}\right|_{S}+\Phi_{x y}\left[\mathcal{L}_{z} \log \tilde{h}\right]_{S}+\Phi_{x y}^{2}\left[\mathcal{L}_{z}^{2} \log \tilde{h}\right]_{S}+\ldots \\
& =\theta_{0}+\theta_{1} \Phi_{x y}+\theta_{2} \Phi_{x y}^{2}+\ldots \\
& W^{\mathrm{np}}=m_{*}^{4} \epsilon\left[\int_{S} \theta_{0} \text { Dhr } F^{2}+\int_{S} \theta_{1} \operatorname{Tr}\left(\Phi_{x y} F^{2}\right)+\int_{S} \theta_{2} \operatorname{STr}\left(\Phi_{x y}^{2} F^{2}\right)+\ldots\right] \\
& \text { h|s const. }
\end{aligned}
$$

Yukawas from non-perturbative effects

$\% \mathrm{~h}$ must be Taylor-expanded on the positions field $\Phi_{x y}=z / 2 \pi \alpha^{\prime}$, just as in the non-Abelian DBI action

$$
\begin{gathered}
W^{\mathrm{np}}=m_{*}^{4} \epsilon\left(1+\int_{S} \operatorname{STr}(\log \tilde{h} F \wedge F)+\ldots\right) \\
\downarrow \quad \epsilon=\mathcal{A} e^{-T_{\mathrm{np}}} h_{0}^{N_{\mathrm{D} 3}} \quad \tilde{h}=h / h_{0} \\
\begin{aligned}
& \log \tilde{h}=\left.\log \tilde{h}\right|_{S}+\Phi_{x y}\left[\mathcal{L}_{z} \log \tilde{h}\right]_{S}+\Phi_{x y}^{2}\left[\mathcal{L}_{z}^{2} \log \tilde{h}\right]_{S}+\ldots \\
&= \theta_{0}+\theta_{1} \Phi_{x y}+\theta_{2} \Phi_{x y}^{2}+\ldots \\
& \downarrow
\end{aligned} \\
W^{\mathrm{np}}=m_{*}^{4} \epsilon\left[\int_{S} \theta_{0} \not \operatorname{lrf}^{2}+\int_{S} \theta_{1} \operatorname{Tr}\left(\Phi_{x y} F^{2}\right)+\int_{S} \theta_{2} \operatorname{STr}\left(\Phi_{x y}^{2} F^{2}\right)+\ldots\right]
\end{gathered}
$$

Yukawas in GUTs

$\%$ The assumption $\theta_{0}=0$ turns out to be too restrictive
\% Example: SO(12) model in type IIB

Yukawas in GUTs

$\%$ The assumption $\theta_{0}=0$ turns out to be too restrictive

* Example: SO(12) model in type IIB

Yukawas in GUTs

\because The assumption $\theta_{0}=0$ turns out to be too restrictive
\% F-theory perspective: an E3-instanton with the right number of zero modes must intersect one 7-brane

Two possible scenarios:
Bianchi, Collinucci, Martucci'11
Cuetic, Garcia-Etxebarria. Haluersan'11

Yukawas in SO(12)

$\%$ In the first scenario $\theta_{0} \neq 0$, and the full superpotential is

$$
W_{\text {total }}=m_{*}^{4}\left[\int_{S} \operatorname{Tr}\left(\Phi_{x y} F\right) \wedge d x \wedge d y+\frac{\epsilon}{2} \int_{S} \theta_{0} \operatorname{Tr}(F \wedge F)+\theta_{2} \operatorname{STr}\left(\Phi_{x y}^{2} F \wedge F\right)\right]
$$

- No obvious non-commutative interpretation
- We can still solve for the wavefunctions and compute the Yukawas, using a residue formula to identify the holomorphic part

Yukawas in SO(12)

$\%$ In the first scenario $\theta_{0} \neq 0$, and the full superpotential is

$$
W_{\text {total }}=m_{*}^{4}\left[\int_{S} \operatorname{Tr}\left(\Phi_{x y} F\right) \wedge d x \wedge d y+\frac{\epsilon}{2} \int_{S} \theta_{0} \operatorname{Tr}(F \wedge F)+\theta_{2} \operatorname{STr}\left(\Phi_{x y}^{2} F \wedge F\right)\right]
$$

\downarrow No obvious non-commutative interpretation
\downarrow We can still solve for the wavefunctions and compute the Yukawas, using a residue formula to identify the holomorphic part

- Result for $\operatorname{SO}(12)$ point, with $\theta_{0}=i\left(\theta_{00}+x \theta_{0 x}+y \theta_{0 y}\right), \theta_{2}$ const.

$$
\frac{Y^{\mathrm{hol}}}{Y_{33}^{\mathrm{hol}}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\epsilon\left(\begin{array}{ccc}
0 & 0 & \theta_{0 x} \\
0 & \theta_{0 x}+\theta_{0 y} & \theta_{2} \\
\theta_{0 y} & -\theta_{2} & 0
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

hierarchy ($1, \epsilon, \epsilon^{2}$) of eigenvalues, still independent of worldvolume fluxes

Yukawas in SO(12)

\because The hypercharge flux FY is the only GUT \rightarrow MSSM gauge group breaking effect. This means that at the holomorphic level

$$
Y_{L}^{i j}=Y_{D_{R}}^{i j}
$$

\% If that was the final answer it would imply

$$
\frac{m_{\mu}}{m_{\tau}}=\frac{m_{s}}{m_{b}}, \frac{m_{e}}{m_{\tau}}=\frac{m_{d}}{m_{b}} \quad \text { vs. } \quad \frac{m_{\mu}}{m_{\tau}} \simeq 3 \frac{m_{s}}{m_{b}}, \frac{m_{e}}{m_{\tau}} \simeq \frac{1}{3} \frac{m_{d}}{m_{b}}
$$

Yukawas in SO(12)

\because The hypercharge flux FY is the only GUT \rightarrow MSSM gauge group breaking effect. This means that at the holomorphic level

$$
Y_{L}^{i j}=Y_{D_{R}}^{i j}
$$

$\%$ If that was the final answer it would imply

$$
\frac{m_{\mu}}{m_{\tau}}=\frac{m_{s}}{m_{b}}, \frac{m_{e}}{m_{\tau}}=\frac{m_{d}}{m_{b}} \text { vs. } \frac{m_{\mu}}{m_{\tau}} \simeq 3 \frac{m_{s}}{m_{b}}, \frac{m_{e}}{m_{\tau}} \simeq \frac{1}{3} \frac{m_{d}}{m_{b}}
$$

Yukawas in SO(12)

\because The hypercharge flux F_{Y} is the only GUT \rightarrow MSSM gauge group breaking effect. This means that at the holomorphic level

$$
Y_{L}^{i j}=Y_{D_{R}}^{i j}
$$

\% However, the physical Yukawas depend on F_{Y} via wavefunction normalization

$$
\begin{gathered}
Y_{p h y s}^{i j}=K_{i}^{-1 / 2} K_{j}^{-1 / 2} K_{H}^{-1 / 2} Y_{h o l}^{i j} \\
K_{i}=\int|\psi|^{2} \propto \int_{0}^{\infty} d y e^{-\pi|M||y|^{2}}\left|f^{i}(y)\right|^{2}
\end{gathered}
$$

$\%$ These normalization factors depend on the family and on the flux M

$$
K_{i}^{-1 / 2} \propto\left(\frac{\pi}{\sqrt{2}}|M|, \sqrt{\pi}|M|^{1 / 2}, 1\right) \quad M=N+q_{Y} N_{Y}
$$

\% For higher hypercharge we have thinner wavefunctions and larger quotients. One can then accommodate a realistic GUT scale mass ratio

$$
\frac{m_{\mu}}{m_{\tau}} \simeq 3 \frac{m_{s}}{m_{b}} \quad \text { for } \quad \frac{N_{Y}}{N} \simeq 1.8
$$

Yukawas in SO(12)

$\%$ One can in general accommodate the GUT scale masses

$\tan \beta$	10	38	50
m_{d} / m_{s}	$5.1 \pm 0.7 \times 10^{-2}$	$5.1 \pm 0.7 \times 10^{-2}$	$5.1 \pm 0.7 \times 10^{-2}$
m_{s} / m_{b}	$1.9 \pm 0.2 \times 10^{-2}$	$1.7 \pm 0.2 \times 10^{-2}$	$1.6 \pm 0.2 \times 10^{-2}$
m_{e} / m_{μ}	$4.8 \pm 0.2 \times 10^{-3}$	$4.8 \pm 0.2 \times 10^{-3}$	$4.8 \pm 0.2 \times 10^{-3}$
m_{μ} / m_{τ}	$5.9 \pm 0.2 \times 10^{-2}$	$5.4 \pm 0.2 \times 10^{-2}$	$5.0 \pm 0.2 \times 10^{-2}$
m_{b} / m_{τ}	0.73 ± 0.03	0.73 ± 0.03	0.73 ± 0.04
Y_{τ}	0.070 ± 0.003	0.32 ± 0.02	0.51 ± 0.04
Y_{b}	0.051 ± 0.002	0.23 ± 0.01	0.37 ± 0.02
Y_{t}	0.48 ± 0.02	0.49 ± 0.02	0.51 ± 0.04

for large $\tan \beta$ and $\epsilon \sim 10^{-3}-10^{-4}$

T-branes and Up-type Yukawas

Down-type $Y_{D}^{i j}: \overline{\mathbf{5}}_{H} \overline{\mathbf{5}}_{M}^{i} \mathbb{1 0}^{j}{ }_{M}$

Up-type
$Y_{U}^{i j}: 5_{H} 10_{M}^{i} 10_{M}^{j}$

T-branes and Up-type Yukawas

Down-type

$$
Y_{D}^{i j}: \overline{\mathbf{5}}_{H} \overline{\mathbf{5}}_{M}^{i} 10_{M}^{j}
$$

Intersecting branes, $\quad[\langle\Phi\rangle,\langle\bar{\Phi}\rangle]=.0$

$$
\begin{gathered}
\langle\Phi\rangle \sim\left(\begin{array}{ccc}
-x & 0 & 0 \\
0 & y & 0 \\
0 & 0 & x-y
\end{array}\right) d x \wedge d y \\
\omega \wedge F=0
\end{gathered}
$$

Up-type

$$
Y_{U}^{i j}: \mathbf{5}_{H} \mathbb{1 0}_{M}^{i} \mathbb{1 0}_{M}^{j}
$$

 Cecotit et al. 10
T-branes, $[\langle\Phi\rangle,\langle\Phi\rangle] \neq .0$

$$
\begin{aligned}
\langle\Phi\rangle & \sim\left(\begin{array}{lll}
0 & 1 & 0 \\
x & 0 & 0 \\
0 & 0 & y
\end{array}\right) d x \wedge d y \\
\omega & \wedge F+\frac{1}{2}[\Phi, \bar{\Phi}]=0
\end{aligned}
$$

Yukawas in E_{6}

$\%$ We now have the breaking

$$
E_{6} \xrightarrow{\langle\Phi\rangle} S U(5) \xrightarrow{\left\langle F_{Y}\right\rangle} S U(3) \times S U(2) \times U(1)
$$

where Φ lives in $\mathfrak{s u}(5) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) \subset \mathfrak{e}_{6}$
$78 \rightarrow(24,1)_{0} \oplus(1,3)_{0} \oplus(1,1)_{0} \oplus(10,2)_{-1} \oplus(\overline{10}, 2)_{1} \oplus(5,1)_{2} \oplus(\overline{5}, 1)_{-2}$

Yukawas in E_{6}

$\%$ We now have the breaking

$$
E_{6} \xrightarrow{\langle\Phi\rangle} S U(5) \xrightarrow{\left\langle F_{Y}\right\rangle} S U(3) \times S U(2) \times U(1)
$$

where Φ lives in $\mathfrak{s u}(5) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) \subset \mathfrak{e}_{6}$

$$
\begin{aligned}
& 78 \rightarrow(24,1)_{0} \oplus(1,3)_{0} \oplus(1,1)_{0} \oplus(10,2)_{-1} \oplus(\overline{10}, 2)_{1} \oplus(5,1)_{2} \oplus(\overline{5}, 1)_{-2} \\
& \left\langle\Phi_{x y}\right\rangle=m\left(e^{f} E^{+}+m x e^{-f} E^{-}\right)+\mu^{2}(a x+b y) Q, \quad\left\langle A_{0,1}\right\rangle=-\frac{i}{2} \bar{\partial} f P \\
& f=\log c+m^{2} c^{2} r^{2}+\ldots \\
& \Sigma_{5}=\{a x+b y=0\}
\end{aligned}
$$

Matter curves:

$$
\Sigma_{10}=\left\{m^{3} x-\mu^{4}(a x+b y)^{2}=0\right\}
$$

Yukawas in E_{6}

$\%$ We now have the breaking

$$
E_{6} \xrightarrow{\langle\Phi\rangle} S U(5) \xrightarrow{\left\langle F_{Y}\right\rangle} S U(3) \times S U(2) \times U(1)
$$

where Φ lives in $\mathfrak{s u}(5) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) \subset \mathfrak{e}_{6}$
\% Using the superpotential

$$
W_{\text {total }}=m_{*}^{4}\left[\int_{S} \operatorname{Tr}\left(\Phi_{x y} F\right) \wedge d x \wedge d y+\frac{\epsilon}{2} \int_{S} \theta_{0} \operatorname{Tr}(F \wedge F)\right]
$$

with $\theta_{0}=i\left(\theta_{00}+x \theta_{0 x}+y \theta_{0 y}\right)$ we obtain

$$
\frac{Y^{\mathrm{hol}}}{Y_{33}^{\mathrm{hhl}}}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)+\tilde{\epsilon}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)+\mathcal{O}\left(\tilde{\epsilon}^{2}\right)
$$

$$
\tilde{\epsilon}=\epsilon\left(a \theta_{y}-b \theta_{x}\right)
$$

Yukawas in E_{6}

\% The physical Yukawas read

$$
Y^{i j}=\frac{\pi^{2} \gamma_{5}}{4 \rho_{\mu} \rho_{m}}\left(\begin{array}{ccc}
0 & 0 & \tilde{\epsilon} \rho_{\mu}^{-1} \gamma_{10}^{1} \gamma_{10}^{3} \\
0 & \tilde{\epsilon} \rho_{\mu}^{-1} \gamma_{10}^{2} \gamma_{10}^{2} & 0 \\
\tilde{\epsilon} \rho_{\mu}^{-1} \gamma_{10}^{1} \gamma_{10}^{3} & 0 & -2 \gamma_{10}^{3} \gamma_{10}^{3}
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

where

$$
\tilde{\epsilon}=\epsilon\left(a \theta_{y}-b \theta_{x}\right) \quad \rho_{m}=\frac{m^{2}}{m_{*}^{2}} \quad \rho_{\mu}=\frac{\mu^{2}}{m_{*}^{2}}
$$

and the normalization factors γ^{i} can be computed in the limit $m \gg \mu$

Yukawas in E_{6}

\% The physical Yukawas read

$$
Y^{i j}=\frac{\pi^{2} \gamma_{5}}{4 \rho_{\mu} \rho_{m}}\left(\begin{array}{ccc}
0 & 0 & \tilde{\epsilon} \rho_{\mu}^{-1} \gamma_{10}^{1} \gamma_{10}^{3} \\
0 & \tilde{\epsilon} \rho_{\mu}^{-1} \gamma_{10}^{2} \gamma_{10}^{2} & 0 \\
\tilde{\epsilon} \rho_{\mu}^{-1} \gamma_{10}^{1} \gamma_{10}^{3} & 0 & -2 \gamma_{10}^{3} \gamma_{10}^{3}
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

where

$$
\tilde{\epsilon}=\epsilon\left(a \theta_{y}-b \theta_{x}\right) \quad \rho_{m}=\frac{m^{2}}{m_{*}^{2}} \quad \rho_{\mu}=\frac{\mu^{2}}{m_{*}^{2}}
$$

and the normalization factors γ^{i} can be computed in the limit $m \gg \mu$
\because For instance for the values

$$
M=0.3, \quad N=0.03, \quad \tilde{N}_{Y}=0.6, \quad N_{Y}=-0.18, \quad m=0.5, \quad \mu=0.1
$$

we obtain that $Y_{t} \sim 0.5$. A realistic value for Y_{c} is obtained by taking

$$
\tilde{\epsilon} \sim 10^{-4}
$$

Beyond E_{6}

\% Realistic values for up and down-type Yukawas are obtained with similar flux densities and n.p. parameter ϵ
$\%$ One may then consider models where both type of Yukawas are generated at the same point, an scenario that is independently motivated by a hierarchical CKM matrix
\% Possible enhancements:
$\uparrow E_{7}$
$\uparrow E_{8}$

Beyond E_{6}

\% Realistic values for up and down-type Yukawas are obtained with similar flux densities and n.p. parameter ϵ
\% One may then consider models where both type of Yukawas are generated at the same point, an scenario that is independently motivated by a hierarchical CKM matrix
\% Possible enhancements:
$\downarrow \mathrm{E}_{7} \longrightarrow$ Vanishing Yukawas in SU(5) T-brane models Chiou. Jaraggi. 7atar. Walterw'11
$\uparrow \mathrm{E}_{8} \longrightarrow$ Motivated by neutrino sector and local computability

Yukawas in E8: an example

$\%$ The details of the computation will depend on the spectral cover splitting, which gives rise to different kinds of models

$$
E_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}
$$

\% Let us for instance take the E_{8} T-brane model of Cecotti et al.

$$
\Phi \sim\left(\begin{array}{ccccc}
\lambda_{1} & 1 & 0 & 0 & 0 \\
x & \lambda_{1} & 0 & 0 & 0 \\
0 & 0 & -2 \lambda_{1}-\lambda_{2} & 1 & 0 \\
0 & 0 & y & -2 \lambda_{1}-\lambda_{2} & 0 \\
0 & 0 & 0 & 0 & 2\left(\lambda_{1}+\lambda_{2}\right)
\end{array}\right)
$$

Yukawas in E8: an example

* The details of the computation will depend on the spectral cover splitting, which gives rise to different kinds of models

$$
E_{8} \rightarrow S U(5)_{G U T} \times S U(5)_{\perp}
$$

\% Let us for instance take the E_{8} T-brane model of Cecotti et al.

- Up-type sector: same like in E_{6}, same conditions for large top Yukawa

$$
\lambda_{i j}^{(u)} \sim\left(\begin{array}{ccc}
0 & 0 & \mathcal{O}(\epsilon) \\
0 & \mathcal{O}(\epsilon) & 0 \\
\mathcal{O}(\epsilon) & 0 & 1
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

- Down-like sector: more complicated than SO(12), but same hierarchy

$$
\lambda_{i j}^{(d)} \sim\left(\begin{array}{ccc}
0 & 0 & \mathcal{O}(\epsilon) \\
0 & \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) \\
\mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) & 1
\end{array}\right)+\mathcal{O}\left(\epsilon^{2}\right)
$$

Conclusions

\% Simplest F-theory GUTs have rank one Yukawas at tree-level
\% Non-perturbative effects change this result, in the sense that they correct the superpotential of seven-branes
\& We can have a explicit and simple expression for this correction, which allows to compute its effects at a local level
\% In simple cases one may express the new superpotential as a non-commutative deformation of the previous superpotential. However, this is not true for the cases of interest in F-theory GUTs.
\% The np effect provides rank 3, flux-indep holomorphic Yukawas. The hierarchy of eigenvalues is $\mathcal{O}(1), \mathcal{O}(\epsilon), \mathcal{O}\left(\epsilon^{2}\right)$
\% The flux dependence comes from wavefunction normalization. This in principle allows to accommodate a large top Yukawa and realistic MSSM mass ratios via Fy GUT breaking, more naturally than in 4d GUTs

