Yukawas in F-theory GUTs (including E₈ point)

fernando marchesano

Yukawas in F-theory GUTs (including E₈ point)

fernando marchesano

Based on:

Font, Ibáñez, F.M., Regalado [1211.6529] Font, F.M., Regalado, Zoccarato [1307.8089]

Motivation: GUTs from F-theory

F-theory GUT models have proven to be a rich and elegant avenue to realize realistic vacua in string theory

Motivation: GUTs from F-theory

- F-theory GUT models have proven to be a rich and elegant avenue to realize realistic vacua in string theory
- With respect to heterotic strings, they allow to implement a bottom-up approach when constructing 4d vacua, and to analyze several features of the GUT gauge sector at a local level
- With respect to type II strings, they allow for certain couplings and representations that are otherwise forbidden at the perturbative level
 - Example: For type II SU(5) GUTs the Yukawa coupling 5x10x10 is forbidden at the perturbative level and needs to be generated by, e.g., D-instanton effects

F-theory Yukawas

- Despite their differences, one can easily gain intuition in understanding
 F-theory in terms of their type IIB and heterotic cousins
- Just like in type IIB, Yukawa couplings arise from the triple intersection of 4-cycles in a 6d manifold

 $Y = \frac{(S+S^*)^{1/4}}{[(T_1+T_1^*)(T_2+T_2^*)(T_3+T_3^*)]^{1/4}}$

Figures taken from Ibañez & Uranga (2012)

F-theory Yukawas

- Despite their differences, one can easily gain intuition in understanding • F-theory in terms of their type IIB and heterotic cousins
- Like for heterotic strings in CYs, one may compute Yukawas from dim. * red. of a higher dimensional field theory

Beasley,	Heckman,	Vafa	'08
----------	----------	------	-----

Heterotic	F-theory	
I0d SYM	8d tw.YM	
$W = \int_X \Omega \wedge \operatorname{Tr} \left(A \wedge F \right)$	$W = \int_{S} \operatorname{Tr} \left(F \wedge \Phi \right)$	
$G_X = E_8 \times E_8, \ SO(32)$	$G_S = SO(2N), E_6, E_7, E_8 \dots$	

Computation of zero mode wavefunctions in a certain background •

Yukawas = triple overlap of wavefunctions

F-theory Yukawas

- In practice, to compute Yukawa couplings one considers a divisor S and a gauge group G_S = SO(12), E₆, E₇, E₈... on it
 - (Φ) ≠0 describes the intersection pattern near the Yukawa point and breaks G_S → G_{GUT} x U(1)^N
 - ♦ (F) ≠0 necessary to generate chirality and family replication at the intersection curves
 - ← $\langle F_Y \rangle \neq 0$ necessary to break $G_{GUT} \rightarrow G_{MSSM}$

The presence of $\langle F \rangle$ also localizes the wavefunctions and allows for an ultra-local computation of Yukawa couplings

Computing wavefunctions

The superpotential and D-term encode the 7-brane BPS equations

$$W = \int_{S} \operatorname{Tr}(F \wedge \Phi) \qquad F^{(2,0)} = 0$$

$$D = \int_{S} F \wedge \omega + \frac{1}{2} [\Phi, \bar{\Phi}] \qquad \omega \wedge F = 0$$

Which in turn encode the zero mode eom:

$$\Phi = \langle \Phi \rangle + \varphi_{xy} dx \wedge dy
A = \langle A \rangle + a_{\bar{x}} d\bar{x} + a_{\bar{y}} d\bar{y} \longrightarrow D_A \Psi = 0$$

$$\mathbf{D}_{\mathbf{A}} = \begin{pmatrix} 0 & D_{x} & D_{y} & D_{z} \\ -D_{x} & 0 & -D_{\bar{z}} & D_{\bar{y}} \\ -D_{y} & D_{\bar{z}} & 0 & -D_{\bar{x}} \\ -D_{z} & -D_{\bar{y}} & D_{\bar{x}} & 0 \end{pmatrix} \qquad \Psi = \begin{pmatrix} 0 \\ a_{\bar{x}} \\ a_{\bar{y}} \\ \varphi_{xy} \end{pmatrix}$$

Computing wavefunctions

The superpotential and D-term encode the 7-brane BPS equations

$$W = \int_{S} \operatorname{Tr}(F \wedge \Phi) \qquad F^{(2,0)} = 0$$

$$D = \int_{S} F \wedge \omega + \frac{1}{2} [\Phi, \overline{\Phi}] \qquad \omega \wedge F = 0$$

Which in turn encode the zero mode eom:

$$\Phi = \langle \Phi \rangle + \varphi_{xy} dx \wedge dy
A = \langle A \rangle + a_{\bar{x}} d\bar{x} + a_{\bar{y}} d\bar{y} \longrightarrow D_A \Psi = 0$$

Example: (Φ) and (A) linear Solution: $\Psi_a = J_a \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \psi_a \mathfrak{t}_a, \quad \psi_a = e^{\lambda_a |x|^2} f_a(y)$ λ_a depends on $\langle \Phi \rangle$ and $\langle A \rangle$

Computing Yukawas

Inserting these wavefunctions in W we obtain the Yukawa couplings in terms of a triple overlap of wavefunctions

$$\int_{S} \operatorname{Tr}(A \wedge A \wedge \Phi) \longrightarrow Y^{ij} = \mathcal{N}_{\lambda} f_{abc} \int_{S} d\mu f_{a}^{i} g_{b}^{j} h_{c}$$

Heckman & Vafa'08 Font & Ibáñez'09 Conlon & Palti'09

 $\mathcal{N}_{\lambda} = \lambda_a \lambda_b + \lambda_c (\lambda_a + \lambda_b)$ $d\mu = d^2 x d^2 y \, e^{\lambda_a |x|^2 + \lambda_b |y|^2 + \lambda_c |x - y|^2}$

Computing Yukawas

 Inserting these wavefunctions in W we obtain the Yukawa couplings in terms of a triple overlap of wavefunctions
 Heckman & Vafa'08

$$\int_{S} \operatorname{Tr}(A \wedge A \wedge \Phi) \longrightarrow Y^{ij} = \mathcal{N}_{\lambda} f_{abc} \int_{S} d\mu f_{a}^{i} g_{b}^{j} h_{c}$$
$$\mathcal{N}_{\lambda} = \lambda_{a} \lambda_{b} + \lambda_{c} (\lambda_{a} + \lambda_{b})$$

 $d\mu = d^2 x d^2 y \, e^{\lambda_a |x|^2 + \lambda_b |y|^2 + \lambda_c |x-y|^2}$

Font & Ibáñez'09

Conlon & Palti'09

U(1) symmetry: $(x, y) \rightarrow e^{i\alpha}(x, y)$, only invariant integrands survive:

 $f_a^i = x^{3-i}$ $g_b^j = y^{3-j}$ $h_c = 1 \Rightarrow \text{ only } Y^{33} \neq 0 \Rightarrow \text{Yukawas of rank one}$ Moreover $\int_S d\mu = \pi^2 \mathcal{N}_{\lambda}^{-1} \Rightarrow \mathbf{Y}^{\text{ij}} \text{ indep. of } \lambda \Rightarrow \text{ indep. of F}$

Computing Yukawas

Inserting these wavefunctions in W we obtain the Yukawa couplings in terms of a triple overlap of wavefunctions

$$\int_{S} \operatorname{Tr}(A \wedge A \wedge \Phi) \longrightarrow Y^{ij} = \mathcal{N}_{\lambda} f_{abc} \int_{S} d\mu f_{a}^{i} g_{b}^{j} h_{c}$$
$$\mathcal{N}_{\lambda} = \lambda_{a} \lambda_{b} + \lambda_{c} (\lambda_{a} + \lambda_{b})$$

Heckman & Vafa'08 Font & Ibáñez'09 Conlon & Palti'09

 $d\mu = d^2 x d^2 y e^{\lambda_a |x|^2 + \lambda_b |y|^2 + \lambda_c |x-y|^2}$

U(1) symmetry: $(x, y) \rightarrow e^{i\alpha}(x, y)$, only invariant integrands survive:

 $f_a^i = x^{3-i}$ $g_b^j = y^{3-j}$ $h_c = 1 \Rightarrow \text{ only } Y^{33} \neq 0 \Rightarrow \text{Yukawas of rank one}$

Moreover $\int_{\Omega} d\mu = \pi^2 \mathcal{N}_{\lambda}^{-1} \Rightarrow \mathbf{Y}^{ij}$ indep. of $\lambda \Rightarrow$ indep. of F Rank one Yukawa problem The same is true for general fluxes \Rightarrow

Cecotti, Cheng, Heckman, Vafa'09

Deforming the superpotential

A possible way out is to consider a non-commutative deformation of the 7-brane superpotential

Cecotti, Cheng, Heckman, Vafa'09

$$\hat{W}_7 = \int_S \operatorname{Tr}\left(\hat{\Phi} \circledast \hat{F}\right)$$

Non-comm parameter $\epsilon \theta$, θ holomorphic function

Such deformations typically arise for D-branes in β-deformed backgrounds

Kapustin'03 Pestun'06

Deforming the superpotential

A possible way out is to consider a non-commutative deformation of the 7-brane superpotential

Cecotti, Cheng, Heckman, Vafa'09

$$\hat{W}_7 = \int_S \operatorname{Tr}\left(\hat{\Phi} \circledast \hat{F}\right)$$

Non-comm parameter $\epsilon \theta$, θ holomorphic function

Such deformations typically arise for D-branes in β-deformed backgrounds

Kapustin'03 Pestun'06

Results:

- Rank higher than one
- Holom Y^{ij} can be computed via a residue formula.
 Depend on coeff. of θ but independent of fluxes

• Pattern
$$\frac{Y^{\text{hol}}}{Y_{33}^{\text{hol}}} = \begin{pmatrix} \epsilon^4 & \epsilon^3 & \epsilon^2 \\ \epsilon^3 & \epsilon^2 & \epsilon \\ \epsilon^2 & \epsilon & 1 \end{pmatrix} + \dots$$

Deforming the superpotential

- This nc deformation is however subtle for the groups of interest in F-theory GUTs
- A simple way to realize this is to write down the commutative version of the above deformation

The deformation is proportional to d_{abc}= STr (t_at_bt_c), which vanishes for G_S = SO(12), E₆, E₇, E₈

This commutative version of the deformed superpotential admits a simple physical interpretation in terms of non-perturbative effects

7.M. & Martucci'10

 D3-instantons generate nonperturbative superpotentials for D3-branes and magnetized D7-branes

This commutative version of the deformed superpotential admits a simple physical interpretation in terms of non-perturbative effects

h = instanton divisor function $S_{np} = \{h(X) = 0\}$

✤ h must be Taylor-expanded on the positions field $Φ_{xy} = z/2πα'$, just as in the non-Abelian DBI action

$$W^{\rm np} = m_*^4 \epsilon \left(1 + \int_S \operatorname{STr}(\log \tilde{h} F \wedge F) + \dots \right)$$
$$\epsilon = \mathcal{A} e^{-T_{\rm np}} h_0^{N_{\rm D3}} \qquad \tilde{h} = h/h_0$$

✤ h must be Taylor-expanded on the positions field $Φ_{xy} = z/2πα'$, just as in the non-Abelian DBI action

$$W^{np} = m_*^4 \epsilon \left(1 + \int_S STr(\log \tilde{h} F \wedge F) + \dots \right)$$

$$\downarrow \qquad \epsilon = \mathcal{A} e^{-T_{np}} h_0^{N_{D3}} \qquad \tilde{h} = h/h_0$$

$$\log \tilde{h} = \log \tilde{h}|_S + \Phi_{xy} [\mathcal{L}_z \log \tilde{h}]_S + \Phi_{xy}^2 [\mathcal{L}_z^2 \log \tilde{h}]_S + \dots$$

$$= \theta_0 + \theta_1 \Phi_{xy} + \theta_2 \Phi_{xy}^2 + \dots$$

$$W^{\rm np} = m_*^4 \epsilon \left[\int_S \theta_0 \operatorname{Tr} F^2 + \int_S \theta_1 \operatorname{Tr}(\Phi_{xy} F^2) + \int_S \theta_2 \operatorname{STr}(\Phi_{xy}^2 F^2) + \dots \right]$$

✤ h must be Taylor-expanded on the positions field $Φ_{xy} = z/2πα'$, just as in the non-Abelian DBI action

$$W^{np} = m_*^4 \epsilon \left(1 + \int_S \operatorname{STr}(\log \tilde{h} F \wedge F) + \dots \right)$$

$$\epsilon = \mathcal{A} e^{-T_{np}} h_0^{N_{D3}} \quad \tilde{h} = h/h_0$$

$$\log \tilde{h} = \log \tilde{h}|_S + \Phi_{xy} [\mathcal{L}_z \log \tilde{h}]_S + \Phi_{xy}^2 [\mathcal{L}_z^2 \log \tilde{h}]_S + \dots$$

$$= \theta_0 + \theta_1 \Phi_{xy} + \theta_2 \Phi_{xy}^2 + \dots$$

$$\downarrow$$

$$= m_*^4 \epsilon \left[\int_{\mathbb{R}^3} \theta_0 \operatorname{Tr} E^2 + \int_{\mathbb{R}^3} \theta_1 \operatorname{Tr}(\Phi - E^2) + \int_{\mathbb{R}^3} \theta_2 \operatorname{STr}(\Phi^2 - E^2) + \dots \right]$$

 $W^{\rm np} = m_*^4 \epsilon \left[\int_S \theta_0 T F^2 + \int_S \theta_1 \operatorname{Tr}(\Phi_{xy} F^2) + \int_S \theta_2 \operatorname{STr}(\Phi_{xy}^2 F^2) + \dots \right]$

h|_S const.

✤ h must be Taylor-expanded on the positions field $Φ_{xy} = z/2πα'$, just as in the non-Abelian DBI action

Yukawas in GUTs

- The assumption $\theta_0 = 0$ turns out to be too restrictive
- Example: SO(12) model in type IIB

Yukawas in GUTs

- The assumption $\theta_0 = 0$ turns out to be too restrictive
- Example: SO(12) model in type IIB

Yukawas in GUTs

- The assumption $\theta_0 = 0$ turns out to be too restrictive
- F-theory perspective: an E3-instanton with the right number of zero modes must intersect one 7-brane

Two possible scenarios:

Bianchi, Collinucci, Martucci'11 Cvetic, Garcia-Etxebarria, Halverson'11

♣ In the first scenario $\theta_0 \neq 0$, and the full superpotential is

$$W_{\text{total}} = m_*^4 \left[\int_S \text{Tr}(\Phi_{xy}F) \wedge dx \wedge dy + \frac{\epsilon}{2} \int_S \theta_0 \operatorname{Tr}(F \wedge F) + \theta_2 \text{STr}\left(\Phi_{xy}^2 F \wedge F\right) \right]$$

- No obvious non-commutative interpretation
- We can still solve for the wavefunctions and compute the Yukawas, using a residue formula to identify the holomorphic part

♣ In the first scenario $\theta_0 \neq 0$, and the full superpotential is

$$W_{\text{total}} = m_*^4 \left[\int_S \text{Tr}(\Phi_{xy}F) \wedge dx \wedge dy + \frac{\epsilon}{2} \int_S \theta_0 \operatorname{Tr}(F \wedge F) + \theta_2 \text{STr}\left(\Phi_{xy}^2 F \wedge F\right) \right]$$

- No obvious non-commutative interpretation
- We can still solve for the wavefunctions and compute the Yukawas, using a residue formula to identify the holomorphic part
- Result for SO(12) point, with $\theta_0 = i(\theta_{00} + x \theta_{0x} + y \theta_{0y})$, θ_2 const.

$$\frac{Y^{\text{hol}}}{Y_{33}^{\text{hol}}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \epsilon \begin{pmatrix} 0 & 0 & \theta_{0x} \\ 0 & \theta_{0x} + \theta_{0y} & \theta_{2} \\ \theta_{0y} & -\theta_{2} & 0 \end{pmatrix} + \mathcal{O}(\epsilon^{2})$$

hierarchy $(1, \varepsilon, \varepsilon^2)$ of eigenvalues, still independent of worldvolume fluxes

✤ The hypercharge flux F_Y is the only GUT → MSSM gauge group breaking effect. This means that at the holomorphic level

$$Y_L^{ij} = Y_{D_R}^{ij}$$

If that was the final answer it would imply

$$\frac{m_{\mu}}{m_{\tau}} = \frac{m_s}{m_b} , \ \frac{m_e}{m_{\tau}} = \frac{m_d}{m_b} \quad \text{vs.} \quad \frac{m_{\mu}}{m_{\tau}} \simeq 3 \ \frac{m_s}{m_b} , \ \frac{m_e}{m_{\tau}} \simeq \frac{1}{3} \frac{m_d}{m_b}$$

Georgi & Jarlskog'79

✤ The hypercharge flux F_Y is the only GUT → MSSM gauge group breaking effect. This means that at the holomorphic level

$$Y_L^{ij} = Y_{D_R}^{ij}$$

If that was the final answer it would imply

$$\frac{m_{\mu}}{m_{\tau}} = \frac{m_s}{m_b}, \ \frac{m_e}{m_{\tau}} = \frac{m_d}{m_b} \quad \text{vs.} \left(\frac{m_{\mu}}{m_{\tau}} \simeq 3 \ \frac{m_s}{m_b}\right), \ \frac{m_e}{m_{\tau}} \simeq \frac{1}{3} \frac{m_d}{m_b}$$

Georgi & Jarlskog'79

✤ The hypercharge flux F_Y is the only GUT → MSSM gauge group breaking effect. This means that at the holomorphic level

$$Y_L^{ij} = Y_{D_R}^{ij}$$

However, the physical Yukawas depend on F_Y via wavefunction normalization $Y_{phys}^{ij} = K_i^{-1/2} K_j^{-1/2} K_H^{-1/2} Y_{hol}^{ij}$

$$K_i = \int |\psi|^2 \propto \int_0^\infty dy \, e^{-\pi |M||y|^2} \, |f^i(y)|^2$$

These normalization factors depend on the family and on the flux M

$$K_i^{-1/2} \propto \left(\frac{\pi}{\sqrt{2}}|M|, \sqrt{\pi}|M|^{1/2}, 1\right) \qquad M = N + q_Y N_Y$$

• For higher hypercharge we have thinner wavefunctions and larger quotients. One can then accommodate a realistic GUT scale mass ratio $\frac{m_{\mu}}{m_{\tau}} \simeq 3 \frac{m_s}{m_b}$ for $\frac{N_Y}{N} \simeq 1.8$

One can in general accommodate the GUT scale masses

aneta	10	38	50
m_d/m_s	$5.1\pm0.7\times10^{-2}$	$5.1 \pm 0.7 imes 10^{-2}$	$5.1\pm0.7 imes10^{-2}$
m_s/m_b	$1.9\pm0.2 imes10^{-2}$	$1.7 \pm 0.2 imes 10^{-2}$	$1.6\pm0.2 imes10^{-2}$
m_e/m_μ	$4.8\pm0.2\times10^{-3}$	$4.8\pm0.2 imes10^{-3}$	$4.8\pm0.2 imes10^{-3}$
$m_\mu/m_ au$	$5.9\pm0.2\times10^{-2}$	$5.4 \pm 0.2 \times 10^{-2}$	$5.0\pm0.2 imes10^{-2}$
$m_b/m_ au$	0.73 ± 0.03	0.73 ± 0.03	0.73 ± 0.04
$Y_{ au}$	0.070 ± 0.003	0.32 ± 0.02	0.51 ± 0.04
Y_b	0.051 ± 0.002	0.23 ± 0.01	0.37 ± 0.02
Y_t	0.48 ± 0.02	0.49 ± 0.02	0.51 ± 0.04

for large tan β and $~\epsilon \sim 10^{-3}-10^{-4}$

T-branes and Up-type Yukawas

T-branes and Up-type Yukawas

We now have the breaking

 $E_6 \xrightarrow{\langle \Phi \rangle} SU(5) \xrightarrow{\langle F_Y \rangle} SU(3) \times SU(2) \times U(1)$

where Φ lives in $\mathfrak{su}(5) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1) \subseteq \mathfrak{e}_6$

 $78 \to (24,1)_0 \oplus (1,3)_0 \oplus (1,1)_0 \oplus (10,2)_{-1} \oplus (\overline{10},2)_1 \oplus (5,1)_2 \oplus (\overline{5},1)_{-2}$

We now have the breaking

 $E_6 \xrightarrow{\langle \Phi \rangle} SU(5) \xrightarrow{\langle F_Y \rangle} SU(3) \times SU(2) \times U(1)$

where Φ lives in $\mathfrak{su}(5) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1) \subseteq \mathfrak{e}_6$

 $78 \to (24,1)_0 \oplus (1,3)_0 \oplus (1,1)_0 \oplus (10,2)_{-1} \oplus (\overline{10},2)_1 \oplus (5,1)_2 \oplus (\overline{5},1)_{-2}$

$$\langle \Phi_{xy} \rangle = m(e^f E^+ + mxe^{-f} E^-) + \mu^2 (ax + by) Q, \qquad \langle A_{0,1} \rangle = -\frac{i}{2} \bar{\partial} f P$$
$$f = \log c + m^2 c^2 r^2 + \dots$$

$$\Sigma_5 = \{ax + by = 0\}$$

Matter curves:

$$\Sigma_{10} = \{m^3 x - \mu^4 (ax + by)^2 = 0\}$$

We now have the breaking

$$E_6 \xrightarrow{\langle \Phi \rangle} SU(5) \xrightarrow{\langle F_Y \rangle} SU(3) \times SU(2) \times U(1)$$

where Φ lives in $\mathfrak{su}(5) \oplus \mathfrak{su}(2) \oplus \mathfrak{u}(1) \subseteq \mathfrak{e}_6$

Using the superpotential

$$W_{\text{total}} = m_*^4 \left[\int_S \text{Tr}(\Phi_{xy}F) \wedge dx \wedge dy + \frac{\epsilon}{2} \int_S \theta_0 \operatorname{Tr}(F \wedge F) \right]$$

with $\theta_0 = i(\theta_{00} + x \theta_{0x} + y \theta_{0y})$ we obtain

$$\frac{Y^{\text{hol}}}{Y_{33}^{\text{hol}}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \tilde{\epsilon} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + \mathcal{O}(\tilde{\epsilon}^2)$$
$$\tilde{\epsilon} = \epsilon \left(a\theta_y - b\theta_x\right)$$

The physical Yukawas read

$$Y^{ij} = \frac{\pi^2 \gamma_5}{4\rho_\mu \rho_m} \begin{pmatrix} 0 & 0 & \tilde{\epsilon} \rho_\mu^{-1} \gamma_{10}^1 \gamma_{10}^3 \\ 0 & \tilde{\epsilon} \rho_\mu^{-1} \gamma_{10}^1 \gamma_{10}^3 & 0 & -2\gamma_{10}^3 \gamma_{10}^3 \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

where
 $\tilde{\epsilon} = \epsilon \left(a\theta_y - b\theta_x \right) \qquad \rho_m = \frac{m^2}{m_*^2} \qquad \rho_\mu = \frac{\mu^2}{m_*^2}$

and the normalization factors γ^i can be computed in the limit m >> μ

The physical Yukawas read

$$Y^{ij} = \frac{\pi^2 \gamma_5}{4\rho_\mu \rho_m} \begin{pmatrix} 0 & 0 & \tilde{\epsilon} \rho_\mu^{-1} \gamma_{10}^1 \gamma_{10}^3 \\ 0 & \tilde{\epsilon} \rho_\mu^{-1} \gamma_{10}^1 \gamma_{10}^3 & 0 & -2\gamma_{10}^3 \gamma_{10}^3 \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

where
 $\tilde{\epsilon} = \epsilon \left(a\theta_y - b\theta_x \right) \qquad \rho_m = \frac{m^2}{m_*^2} \qquad \rho_\mu = \frac{\mu^2}{m_*^2}$

and the normalization factors γ^i can be computed in the limit m >> μ

For instance for the values

M = 0.3, N = 0.03, $\tilde{N}_Y = 0.6$, $N_Y = -0.18$, m = 0.5, $\mu = 0.1$

we obtain that $Y_t \sim 0.5$. A realistic value for Y_c is obtained by taking

 $\tilde{\epsilon} \sim 10^{-4}$

Beyond E₆

- Realistic values for up and down-type Yukawas are obtained with similar flux densities and n.p. parameter c
- One may then consider models where both type of Yukawas are generated at the same point, an scenario that is independently motivated by a hierarchical CKM matrix
- Possible enhancements:

Beyond E₆

- Realistic values for up and down-type Yukawas are obtained with similar flux densities and n.p. parameter c
- One may then consider models where both type of Yukawas are generated at the same point, an scenario that is independently motivated by a hierarchical CKM matrix
- Possible enhancements:

E₇ -----> Vanishing Yukawas in SU(5) T-brane models

Chiou, Faraggi, Tatar, Walters'11

 \bullet E₈ \longrightarrow Motivated by neutrino sector and local computability

Heckman, Tavanfar, Vafa'09 Palti '12

Yukawas in E₈: an example

The details of the computation will depend on the spectral cover splitting, which gives rise to different kinds of models

 $E_8 \to SU(5)_{GUT} \times SU(5)_{\perp}$

* Let us for instance take the E_{8} -brane model of Cecotti et al.

Yukawas in E₈: an example

The details of the computation will depend on the spectral cover splitting, which gives rise to different kinds of models

 $E_8 \to SU(5)_{GUT} \times SU(5)_{\perp}$

Let us for instance take the E₈ T-brane model of Cecotti et al.

 $\begin{array}{c|c} \bullet & \text{Up-type sector:} \left(\begin{array}{c} \text{sam} \theta \text{ like in } E_{\delta}, \text{ sam} \theta \text{ (solutions for large top Yukawa} \\ \lambda_{ij}^{(u)} \sim & \begin{pmatrix} 0 & \mathcal{O}(\epsilon) & 0 \\ \mathcal{O}(\epsilon) & 0 & \mathcal{O}(\epsilon) \\ 0 & \mathcal{O}(\epsilon) & 0 \\ \mathcal{O}(\epsilon) & 0 & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2) \\ \end{array} \right)$

Down-like sector: more complicated than SO(12), but same hierarchy

$$\lambda_{ij}^{(d)} \sim \begin{pmatrix} 0 & 0 & \mathcal{O}(\epsilon) \\ 0 & \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) \\ \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) & 1 \end{pmatrix} + \mathcal{O}(\epsilon^2)$$

Conclusions

- Simplest F-theory GUTs have rank one Yukawas at tree-level
- Non-perturbative effects change this result, in the sense that they correct the superpotential of seven-branes
- We can have a explicit and simple expression for this correction, which allows to compute its effects at a local level
- In simple cases one may express the new superpotential as a non-commutative deformation of the previous superpotential. However, this is not true for the cases of interest in F-theory GUTs.
- ✤ The np effect provides rank 3, flux-indep holomorphic Yukawas. The hierarchy of eigenvalues is $\mathcal{O}(1), \mathcal{O}(\epsilon), \mathcal{O}(\epsilon^2)$
- The flux dependence comes from wavefunction normalization. This in principle allows to accommodate a large top Yukawa and realistic MSSM mass ratios via F_Y GUT breaking, more naturally than in 4d GUTs