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Motivation and summary

Why string compactifications?

Physics: string models with good phenomenology (particle physics and cosmology)

o Calabi—Yau 3-folds: good 4D physics models, but with moduli.
@ Background fluxes can stabilise moduli.
o Fluxes deform geometry —> SU(3) structure instead of SU(3) holonomy.

Math: probe (non-complex, non-K&hler) compact geometry.

This talk: Heterotic compactifications on SU(3) structure manifolds

@ Properties of heterotic 4D A = 1/2 domain wall solutions.

@ Flow of SU(3) structures and moduli spaces.
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Heterotic supersymmetric vacua

N = 1 Heterotic supergravity
@ Bosonic fields: Metric G, B-field B, dilaton ¢, gauge field A
o Fermionic fields: Gravitino Wy, dilatino A, gaugino x

@ Bosonic action:

1

2/
where H =dB + d/(...).

@ At lowest order in o’: only NSNS fields, Bianchi identity dH = 0

S

/d1°xe—2¢ |G| <R+4(6¢)2 - %HZ +a'(...)>

SUSY at O(a”®) <=

(V}\/I-i-%HM)G:O , (yﬂ?w%b‘l)e:o

where V = rMVM, H = FM’VPHMNP, Hy = FNPHMNP
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Heterotic supersymmetric vacua

Compactifications
(] Mlo = ME x X

e SUSY

(VM—}—%H/\//>€:0 5 (7(13-{-%/7‘/)6:0

<= nowhere vanishing spinor 7 on X: € = pe ® 7
<= X has reduced structure group

Hitchin:02, Gualtieri:04, Grana et al:05, ...
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SU(3) structure

Koerber:10
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SU(3) structure

M orientable with metric: G = SO(6) C GL(6).
M spinnable: SO(6) lifts to Spin(6) = SU(4).

Let n Weyl, positive chirality: 1 € 4 of SU(4). Choose basis:

0
o 0 g o U 031
n=|q | invariant under <01X3 1 ) , U e SU(3)

Tlo

Globally defined 7 = G = SU(3). |
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SU(3) structure

Gray—Hervalla:80, Chiossi—Salamon:02
Nowhere vanishing spinor 1 on 6-manifold X <= X has SU(3) structure

n <= complex decomposable (3,0)-form W and real (1,1) form w such that

wAV =0, WAWAwW~VAW

@ w,V closed < X is Calabi—Yau.

@ Otherwise: non-zero torsion
12

dw = — ||\U||2 Tm(Wp )—i—Wl“’/\w—i—W3,

AV =Wy wAw+ Ws Aw+ W, AW .
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4D Heterotic N/ = 1 Minkowski solutions

No ﬂUXZ CaIabi—Yau Candelas, Horowitz, Strominger, Witten:85
SUSY variations, H =0 = covariantly constant spinor n on X: Vi =0

<= holonomy group of X restricted to SU(3).

<= X is Calabi—Yau.

With flux: Strominger system Strominger:86, Hull:86
SUSY variations, H #0 * = globally defined spinor n on X: Vn =20
<= structure group of X restricted to SU(3).
<= X is complex and conformally balanced:
dle™?wAw) =d(e™>?V) =0
Wo=Ws =0 WY =2W =2d¢ .

* Need o’ corrections to avoid no-go theorem for flux if X is compact without boundary
lvanov, Papadopoulos:00; Gauntlett, Martelli, Waldram:03
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Other SU(3) structure compactifications

SU(3) structure <= nowhere vanishing spinor 7
= compactification to 4D A = 1 effective theory

@ 4D N =1 vacua: fluxless Calabi-Yau or Strominger

@ SUSY-breaking vacua: more flux and torsion classes allowed.

Remark: such SU(3) structures are also relevant for type Il compactifications J

4D domain wall vacuum: Mg = My xyw X(t) = M3 x Y
My = M3 x R, M3 max. symmetric

Will see: several types of solutions, with different torsion classes.
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4D Heterotic N = % domain wall solutions

Lukas et al:10; Gray, ML, Lust:12, ...

M10=M4XWX(t)EM3><Y J

X(t): SU(3) structure

Y: G structure <

N t
N
Domain wall direction
H-flux allowed by symmetry: fe,s, (along Ms), Hemn, Flmnp (along Y) J
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G2 perspective G, structure: Fernandez—Gray:82, Chiossi—Salamon:02

SUSY <= Y has G; structure determined by 3-form ¢ (¢ = *7¢)

dro =70% + 37T AN+ 773,
d7’¢=47’1 /\’lﬁ—i—*ﬂ'z.
with torsion
To=—-2f, n=13dd¢,

14
~H+ 4 fo—Ldipw

=0 , T3

This is an integrable G, structure.
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G, perspective

@ Bianchi identity constrains the G, structure further:

Tp = constant ,

0=ds (7'3—|—T1_11/)~|— %Tocp)
@ To zeroth order in &/, can show Martelli, Sparks:10

SUSY + Bl — Einstein equation + dilaton EOM + flux EOM

Magdalena Larfors (Uppsala University) SU(3) structures and heterotic domain wall solutions 31.07.2014

13 /22



SU(3) perspective

SU(3) structure and embedding
SU(3) structure: (3,0)-form W and real (1,1) form w

Embed in G, using 1-form N = N,(t, x) dt, cpl function @ (=1 for this talk):

¢ =NAw+ Re(aV¥) .

SUSY and BI
Restricts torsion and t-flow of the SU(3) structure, and the flux.
SU(3) torsion: X(t) conformally balanced, but otherwise generic
Wy = de; Wo, Wa, WY*, Ws # 0.
SU(3) flow: 0w fixed in terms of N;, ¢ and SU(3) torsion
OV fixed up to primitive (2,1)+(1,2)-form ~.

Flux H: fixed by SUSY in terms of ¢ and SU(3) torsion up to ~y
= can check Bianchi idenitity.
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Flow of SU(3) structures

) structure manifolds

//\
| &

t parametrizes a curve in the moduli space of SU(3) structures J
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Flow of SU(3) structures

SU(3) structure manifolds

//\
IR

Two options:

o Fix torsion classes of SU(3)
structure.

o Flow between different types of
SU(3) structure.

Magdalena Larfors (Uppsala University)

SU(3) structures and heterotic domain wall solutions

DA



Examples: Hitchin flow Hitchin:00

Assume G, holonomy: 7, =0, a=0,..,4 and embed ¢ = dt A w + Re(V¥)
SUSY = No flux and constant dilaton
— Half-flat SU(3) structure

dwAw)=0,
dRe(V) =0,
dIm(V) = Im(Wp) w Aw + Im(Wa) Aw .

Hitchin flow:
Or(w A w) = 2dIm(V)
OtRe(V) = dw .
The presence of flux/ G, torsion allows to find generalisations of Hitchin flow. J
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Examples: Flow of Calabi—Yau with flux

Flow that preserves CY

Assume that W; =0 for all t < X is CY for all t.

Embed v = N Aw + Re(V).

Flux (determined by SUSY):

H=27NAw— 8 7oRe(aV) + N7y Im(aW) + Jy

Analysis of SUSY and BI gives
dow =0 <+ ddf(N;V)=0 <= dN,=0,
do;V=0 <+= dy=0,
&H=0 < diy=0

Conclusion:
Flow preserves CY <= N, is constant and the primitive form ~ is harmonic
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Examples: Flow of Calabi—Yau with flux

Flow away from CY
Assume X has W; =0 for t = 0.
What does X flow to if N; is non-constant and +y is not harmonic?
@ Taylor expand all forms in the equations 3(t) = 8o + 618t + O(t?)
@ Solve for W; order by order
First order result:
S Wo=—Ldlod N,
aWy' =0,
SIWy = =Nyt (OnNo) AT + 1 (Mo Ng ' + Zimo) ONo
SiWa = —2wo(No 7o) + i (2 (dfod No) wo — d(J(dN)))
W5 =1 (9% (No W) + 007 (No W)) .

where AP = 2 W57 (2(9,No) woan — No 7 sey) dX”
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Examples: Flow of Calabi—Yau with flux

Flow away from CY: 1st order results

Remarks:
@ No flow from a CY to a complex non-CY manifold
@ Integrability of non-CY flow: under study

o Simplified case with dNy = 0:
flow from CY to SU(3) structure with only ReW; # 0.
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Examples: Flow of Calabi—Yau with flux

Flow away from CY: 1st order results

Remarks:
@ No flow from a CY to a complex non-CY manifold
@ Integrability of non-CY flow: under study

o Simplified case with dNy = 0:
flow from CY to SU(3) structure with only ReW; # 0.

Flow of symplectic half-flat SU(3) structure

Assume W;=0,i#2
constant embedding ¢ = dt A w + Re(V¥)

Flow of Ws:  (0;:ReW, — %)\tReW2) ANw =dy
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Conclusions

Conclusions

General 4D heterotic N' = 1/2 domain wall solutions
@ Y Non-compact with integrable G, structure
@ X(t) Conformally balanced (non-complex) SU(3) structure
o Flow equations generalize Hitchin flow

@ Flow can change the torsion of the SU(3) structure

Work in progress and outlook
@ Integrability of flow
@ Study moduli space of SU(3) structure manifolds
@ Higher order in o’: gauge sector, Bl

@ Non-perturbative “uplift” to 4D AdS.
Lukas et al11, 12, 13 (CY and Nearly-K3hler cosets)

V.
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Thank You

DA
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