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Introduction

Outline

The talk is split into two major parts:

1 Engineering elliptic Calabi-Yau manifolds

2 Detailed discussion of toric U(1) symmetries in different codimensions
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Introduction

Literature

Over the past few years, there has been much interest in constructing both
local and global F-theory compactifications with Abelian gauge factors.
For references, see for example papers by Anderson, Blumenhagen,

Borchmann, A. Braun, V. Braun, Collinucci, Cvetič, Dolan,

Dudas, Garcı́a-Etxebarria, Grassi, Grimm, Klevers, Marsano,

Mayrhofer, Palti, Piragua, Saulina, Schäfer-Nameki, Weigand.

For recent progress on landscape/classification questions in F-theory see
for instance papers by Grimm, Heckman, Johnson, Martini,

Morrison, Park, Seiberg, Taylor, Vafa.

In this talk, I wish to discuss the program initiated in
[arXiv:1306.0577] with Volker Braun and Thomas W. Grimm and
discuss its extension to complete intersection elliptic curves that has been
work in progress for quite some time.
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Engineering elliptic Calabi-Yau manifolds

Part I: Motivation

Engineer Calabi-Yau manifolds

Break up construction into different steps

Define ’good’ geometric quantities that can be considered
independently

Map geometric quantities to physical observables

Applications:

Provide laboratory for F-theory models

Landscape studies - classification of CYs and of their effective
theories:
⇒ possibly extend Kreuzer-Skarke classification to higher dimensions
by restricting class of target geometries
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Engineering elliptic Calabi-Yau manifolds

Roadmap

In the following, I wish to summarize the approach to this problem
suggested in [arXiv:1306.0577] with Volker Braun and Thomas W.
Grimm.

Ambient fiber space Top specifying 
toric gauge group  

Compact, resolved 
Calabi-Yau manifold  

Toric non-Abelian
symmetries

matter charges  

All gauge symmetries
and matter charges
+ flatness check  

base independent base dependent 

Toric U(1) symmetries

base independent 

In the second part of the talk, I will discuss step I in more detail.
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The Fiber

Step I: Choosing a fiber

Choose a toric ambient space F to embed the elliptic fiber in. This choice
fixes the minimum number of U(1)s of the total compactification, i.e. it
determines a subgroup

MWT ⊆ MW . (1)

Important: In general

rk MWT 6= #toric sections of fibration . (2)

Only this subgroup is independent of the base manifold.
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The Top

Step II: Choosing a Top

The algorithm in [Bouchard, Skarke ‘03] allows to construct all
possible tops that induce a given non-Abelian gauge group if the fiber
ambient space is two-dimensional.

Example

Modding out automorphisms, we find 5 different SU(5) tops for the fiber
dP2 (see also [Borchmann, Mayrhofer, Palti, Weigand ‘13]):

0

2

1

τ5,1 2

0,1

τ5,2

0

2

1

τ5,3

0

2

1

τ5,4 01,2
τ5,5
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The Top

U(1) Charges

The choice of top already determines the charge of the 10 and fixes the
charges of the 5 representations modulo 5 for SU(5).

Example

Pick f2 as zero section, f0 and f1 as generators for U(1)0 and U(1)1,
respectively. Then

QU(1)0
(5) ≡ 2 mod 5 QU(1)1

(5) ≡ 0 mod 5 (3)

QU(1)0
(10) = −1 QU(1)1

(10) = 0 (4)

for the top τ5,5:
01,2

τ5,5
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The Base

Step III: Choosing a Base

Last of all, choose the base manifold with dimC B = n − 1.

Question: How can one classify and construct all possible reflexive
polyhedra with given top and base?
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The Base

Polytope of Compactifications

Answer: There exists a simple geometric algorithm and the fibrations are
encoded in the integral points of a h1,1(B)× dimF -dimensional lattice
polytope.

Example

For τ5,5 with B = P3, there are 30 inequivalent fourfolds.
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The Base

Warning

The choice of top fixes the toric gauge group, not, however, the non-toric
parts [Braun, Grimm, Keitel ‘13.02] for an example). A complete
analysis of gauge groups, both Abelian and non-Abelian, is therefore base
dependent.
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Part II: Motivating U(1)s

Part II: U(1) gauge factors
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Part II: Motivating U(1)s

Part II: Motivation

Over the past two years, much activity has focused on studying U(1)
gauge symmetries in F-theory. Two main questions come to mind:

1 Why should one bother with U(1)s at all?

2 Why are U(1)s so tricky to handle in F-theory?
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Part II: Motivating U(1)s

Why should one bother with U(1)s at all?

In fact, there are plenty of useful scenarios involving U(1) gauge
symmetries and many in the audience have worked on (some variation) of
them.
A few include:

U(1)s can be used to forbid proton decay operators in GUTs.

U(1)s can be used to generate flavor hierarchies.

U(1)s can be used to induce chirality by supporting gauge flux.
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Part II: Motivating U(1)s

Why are U(1)s so tricky to handle in F-theory?

U(1)s are intrinsically global in character. For example, in 4d there are
gravitational-Abelian anomaly conditions.

Non-Abelian gauge groups are located on a stack of branes and can
be described locally.

Abelian gauge groups in F-theory are intrinsically global objects.

This is reflected in their geometric realization: They correspond to
global sections of the elliptic fibration and generate the Mordell-Weil
group MW(E) of the elliptic fiber E .
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Embedding the elliptic fiber

Embedding the elliptic fiber

Let us now discuss Step I, choosing an
ambient space F for the elliptic fiber,
in more detail.
The relevant quantities depending on
the choice of F are:

Intersection numbers

Map of the elliptic curve E to
Weierstrass form

Mordell-Weil group law on E

Ambient fiber space

Toric U(1) symmetries

base independent 

Note: Complementary approaches to systematically study U(1)s by
[Morrison, Park], [Mayrhofer, Palti, Weigand] and [Cvetič,

Klevers, Piragua]
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Embedding the elliptic fiber

Example dP2, I

We begin with an example: E inside dP2.

5 homogeneous coordinates fi

V (fi ) ∩ E = 1 for i = 1, 2, 3
V (fi ) ∩ E = 2 for i = 4, 5
⇒ 3 toric sections V (f1), V (f2), V (f3)

Defining equation for E :
f0

f1

f2

f3

f4

dP2

p = a1f
2

0 f 3
1 f 2

2 + a2f0f
2

1 f 2
2 f3 + a3f

2
0 f 2

1 f2f4 + a4f1f
2

2 f 2
3 + a5f0f1f2f3f4 + a6f

2
0 f1f

2
4 + a7f2f

2
3 f4 + a8f0f3f

2
4 = 0

After blowing down dP2, p becomes a non-generic cubic inside P2

p
∣∣∣
f0=f2=1

= a1f
3

1 + a2f
2

1 f3 + a3f
2

1 f4 + a4f1f
2

3 + a5f1f3f4 + a6f1f
2

4 + a7f
2

3 f4 + a8f3f
2

4 = 0 ,

for which the map WF to Weierstrass form is known.
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Embedding the elliptic fiber

Example dP2, II

Given the map WF : (f1, f2, f3, f4, f5) 7→ (x , y , z) ∈ P231, one can determine
the toric Mordell-Weil group inside dP2.

Map V (fi )
WF−−→ qi to obtain the points qi on WF (E) ⊂ P231.

Check their relations under the usual group law to find MWT .

In this case take V (f0) as neutral element. Then V (f1)− V (f0) and
V (f2)− V (f0) are independent with respect to the group law.

⇒ MWT (E ⊂ dP2) = Z⊕ Z
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Embedding the elliptic fiber

Results for two-dimensional ambient spaces

The same procedure can be repeated for all other 15 toric varieties
corresponding to reflexive polygons. One finds:

All elliptic curve equations can be mapped into non-generic equations
inside P1 × P1, P112 or P2. [V. Braun ‘11]

For all of these one knows the map to Weierstrass form.

If non-trivial, MWT is one of {Z,Z⊕ Z,Z⊕ Z⊕ Z,Z2,Z⊕ Z2,Z3}.
Non-trivial torsion in MWT has recently been studied by
[Mayrhofer, Morrison, Till, Weigand ‘14.05].

Three elliptic fibers do not have toric sections (see recent papers
[Braun, Morrison ‘14.01], [Morrison, Taylor ‘14.04],
[Anderson, Garcı́a-Etxebarria, Grimm, JK ‘14.06]).
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Embedding the elliptic fiber

Results for two-dimensional ambient spaces, II

One can now construct all tops for a given gauge group and compute the
matter charges of the fundamental and antisymmetric representations with
respect to the toric U(1) gauge fields.

More importantly, one can generally show that in compactifications where
the elliptic fiber is a hypersurface in some toric space, all antisymmetric
representations have the same U(1) charges in a given compactification.

⇒ Let’s look at complete intersection elliptic fibers!

To my knowledge, there only a single example in the literature by
[Mayrhofer, Palti, Weigand] so far.
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Embedding the elliptic fiber

Complete intersection fibers

Instead of reflexive polygons, consider nef partitions of reflexive polytopes
that define a torus.

Three dimensions

There are 4, 319 reflexive three-dimensional polytopes. After modding out
automorphisms, these have 3, 134 nef partitions.

Four dimensions

There are 473, 800, 776 reflexive four-dimensional polytopes with an
unknown number of nef partitions. [Kreuzer, Skarke]
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Embedding the elliptic fiber

Complete intersection fibers

Let us now try and repeat the same procedure as before. Naively, one
observes:

1 Find toric sections and multisections. X
2 Find map to Weierstrass equation. ?

3 Find MWT . ?

⇒ The difficult part is to find a map to Weierstrass form. For an arbitrary
elliptic curve such a map is guaranteed to exist, but finding it is in general
an open problem.

Exceptions: biquadric in P3, see for example [Esole, Fullwood, Yau

‘11] or biquadric inside P3 blown-up at three points in Cvetič,

Klevers, Piragua, Song ‘13.10].
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Embedding the elliptic fiber

Complete intersection fibers - Weierstrass form

1 In 2d, V. Braun simplified the problem by finding a minimal set of
equations into which all other could be mapped and found only 3
equations.

2 In 3d, finding the equations is computationally involved. After a few
weeks, computer cluster finds O(40) equations. However, we have no
Weierstrass maps for most of them. ⇒ discard this approach.

Found new algorithm [work in progress]:

1 In principle works independently of the ambient space dimension (may
take a while, though)

2 Embeds elliptic curves inside P231, P112, P2, P3.

3 Works for all but two examples in 3d.
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Embedding the elliptic fiber

Complete intersection fibers - Mordell-Weil groups

Given the Weierstrass map, one can determine all toric Mordell-Weil
groups. One finds:

MWT is one of
{Z⊕i

with i = 0, 1, 2, 3, 4, Z⊕i ⊕ Z2 with i = 0, 1, 2, 3, Z3,Z4}.
There are 310 nef partitions without sections.

The two pathological cases have trivial toric Mordell-Weil group.

In principle, the same could be attempted in higher-dimensions. A general
scan will probably take too long. However, we plan to implement the
algorithm in the general version of Sage.

Jan Keitel (MPI for Physics, Munich) Abelian F-theory constructions July 28th, 2014 24 / 30



Embedding the elliptic fiber

Complete intersection fibers - tops

Unfortunately, the results by Bouchard & Skarke apply to
two-dimensional fibers. In order to classify all toric non-Abelian gauge
group spectra one would need a similar list of tops. However, we do not
yet have a generalization of their results.

Nevertheless, one can easily construct some SU(5) tops. ⇒ Use these to
engineer models with differently charged 10 curves for model building
purposes.

Jan Keitel (MPI for Physics, Munich) Abelian F-theory constructions July 28th, 2014 25 / 30



Embedding the elliptic fiber

Complete intersection fibers - Summary

In summary, we find:

The transition from hypersurface fibers to complete intersection fibers
is a technical challenge

Complete intersection fibers allow more general toric gauge groups,
both with respect to the rank and the torsion part of the gauge group

Work needs to be done in order to classify higher-dimensional tops.

However, some SU(5) tops can easily be found and (hopefully) be
used to generate multiple 10 curves.
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Outlook

Outlook

Implement functionality in Sage for everybody to use

Use all of this machinery to do some concrete model building

Understand the role of massive U(1)s

Use these insights to (partially) classify toric elliptic Calabi-Yau
fourfolds
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Outlook

Thank you!
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Backup slides

Finding all fibrations

Let the fiber polygon have vertices f1, . . . , fr , denote the base rays by
v1, . . . , vs and place the non-Abelian singularity on v1. Take the top
vertices to be τj .
Embed into higher-dimensional polytope via

fi 7→ (fi , 0), v1 7→ (τj , v1), vi 7→ (ni , vi ) for i 6= 1 . (5)

The vectors ni specify the embedding and n − 2 of them can be set to
zero to eliminate freedom in GL(n − 1,Z) transformations.
The convex hull of all points must not add additional points to the fiber
polygon:
⇒ linear constraints for remaining ni
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Backup slides

Flatness of the Fibration

If the fiber dimension varies, the fibration is called non-flat.
Phenomenologically, one wants to avoid these cases, as they give rise to
infinite towers of fields.
Non-flat fibers have different origins depending on the codimension of the
singular locus in the base.

Codimension 2 (relevant for n ≥ 3): Base independent, occur when
top has interior facet points

Codimension > 2 (relevant for n ≥ 4): Base dependent.

Requiring flatness for n ≥ 4 imposes additional linear constraints on the ni
and is non-generic in this sense. In particular, certain combinations of top
and base are always non-flat.
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