Massive Gauge Symmetries and Open/Closed Axion Mixing

Gabriele Honecker

Cluster of Excellence PRISMA & Institut für Physik, JG|U Mainz

based on JHEP 1310(2013)146, PoS Corfu2012(2013)107, Fortsch.Phys. 62(2014)115-151 with Wieland Staessens & 1403.2394 (\leadsto JHEP) with Michael Blaszczyk, Isabel Koltermann

Frontiers in String Phenomenology, Ringberg, 28 July 2014

Motivation: Gauge Symmetries & Axions

- ► Type II string theory: a U(1) per D-brane $\longrightarrow \sum_a U(1)_a$
 - few massless in 4D: Y, B L
 - most massive in 4D: $U(1)_{PQ}$...
- ► U(1)_{massive} remains as *perturbative* global symmetry

- ▶ non-pert: U(1)_{massive}
- $\mathbb{Z}_n \subset U(1)_{\text{massive}}$ survives
- \rightsquigarrow ultimate selection rules on matter couplings in 4D
- Two kinds of axions:
 - Closed partner of (complex structure/Kähler) modulus & dilaton
 - Open: scalar matter with U(1)_{massive} charge
 - \rightsquigarrow mixing via Green-Schwarz coupling

- explicit breaking by $\langle \phi_{\rm matter} \rangle$
- $\rightsquigarrow \underbrace{U(1)_{PQ}}_{PQ}$ as solution to strong CP problem

Motivation: D-Brane Model Building

'Standard' realisation:

$$Y = \frac{Q_a}{6} + \frac{Q_c + Q_d}{2} \qquad B - L = \frac{Q_a}{3} + Q_d$$

Z₃ ⊂ U(1)_a automatic, but selection rules agree with SU(3)_a
 non-trivial Z_n ⊂ ∑_{x∈{a,b,c,d}} k_xU(1)_x possible

- generation dependent \mathbb{Z}_2 found in extension: $U(4) \times U(2)^4$
- Natural candidate for U(1)_{PQ} and axion σ:

$$P_{Q_L, L, (H_u, H_d), \sigma \text{ charged}}$$
$$U(1)_{PQ} = U(1)_b \& \sigma = (\text{Anti}_b)$$
$$(u_R, d_R), (e_R, \nu_R) \text{ neutral}$$

Content

Massive & discrete gauge symmetries

- Reminder of the Green Schwarz mechanism
- \mathbb{Z}_n symmetries in global D-brane models

Axions, strong CP problem & the dark sector

- Open & closed string sector
- $U(1)_{PQ}$ & Higgs-axion potential in the DFSZ model
- ► soft SUSY terms in D-brane models
- Lower bounds on M_{string} in global D-brane models
- Intermezzo: SUSY by deformations

Conclusions

Massive & Discrete Gauge Symmetries

Massive & Discrete Gauge Symmetries - Type IIA Notation

• Mixed anomalies cancel by the Green-Schwarz mechanism:

- $U(1)_X = \sum_a q_a U(1)_a$ massless if $\sum_a N_a q_a B_a^i = 0 \ \forall i$
- Z_n ⊂ U(1)^k_{massive} for suitable Bⁱ_a ('mod n') due to shift symmetry of ξ_i

Axionic Shift Symmetry - Type IIA Notation

• **Closed string axions** within $\mathcal{N} = 1$ chiral multiplets:

- axion-dilaton: $S = \phi + i \xi_0$
- complex structure: $U_i = c_i + i \xi_i$ $\frac{\boldsymbol{\xi}_i \subset C_3^{RR}}{\boldsymbol{b}_k \subset B_2^{NSNS}}$
- Kähler: $T_k = v_k + i \frac{b_k}{b_k}$
- $\mathcal{N} = 1$ SUGRA action independent of $\xi_i \rightarrow \xi_i + 1$

$$\mathcal{K}_{\mathsf{closed}} = -\ln \Re(S) - \sum_{i} \ln \Re(U_i) - \sum_{k} \ln \Re(T_k)$$

- perturbatively: only couplings to $(\partial_{\mu}\xi_i)$
- **non-perturbative** couplings via D-brane instantons: $e^{-S_{inst}}$ with $S_{inst} \supset 2\pi i \xi_i$ in IIB: $U_i \leftrightarrow T_k$
- **Discrete** \mathbb{Z}_n symmetry preserved if

$$A^{\mu} \to A^{\mu} + \partial^{\mu}\lambda \qquad \xi_i \to \xi_i + \overline{c_i(B_a^i)} \lambda$$

0 mod n

 \rightarrow need to determine $\overline{c}_i(B_i^i)!$

∀i

Green-Schwarz Couplings & \mathbb{Z}_n Symmetries - Type IIA

$$\begin{split} \mathcal{S}_{CS} \supset \int_{\mathbb{R}^{1,3}} \sum_{i=0}^{h_{21}} \left(\mathcal{B}_{a}^{i} \ \mathcal{B}_{2}^{(i)} \wedge \mathrm{tr} \mathcal{F}_{a} + \mathcal{A}_{b}^{i} \ \boldsymbol{\xi}_{i} \ \mathrm{tr} \mathcal{F}_{b} \wedge \mathcal{F}_{b} \right) \\ \text{with} \ \overline{\mathcal{B}_{2}^{(i)} \propto \int_{\Pi_{i}^{\mathrm{odd}}} \mathcal{C}_{5}^{RR}} \ ; \ \overline{\boldsymbol{\xi}_{i} \propto \int_{\Pi_{i}^{\mathrm{even}}} \mathcal{C}_{3}^{RR}} \end{split}$$

Expand 3-cycles and Ω*R*-images as:

\mathbb{Z}_n Symmetries in Terms of Intersection Numbers - Type IIA

• ambiguities of normalisation factors m_i in B_a^i and Π_i^{odd} cancel

$U(1)_{ m massless} = \sum_a q_a U(1)_a$	$\mathbb{Z}_{n} \subset U(1)_{massive} = \sum_{a} k_{a} U(1)_{a}$
$\prod_{i}^{even} \circ \sum_{a} N_{a} q_{a} \Pi_{a} = 0 \ \forall i$	$\prod_{i}^{even} \circ \sum_{a} N_{a} k_{a} \Pi_{a} = 0 \mod n \; \forall i$
$\Leftrightarrow \qquad \sum_{a} N_{a} q_{a} B_{a}^{i} = 0 \ \forall i$	$\Leftrightarrow m_i \sum_a N_a k_a B_a^i = 0 \mod n \; \forall i$
$q_a \in \mathbb{Q}$	$k_a \in \mathbb{Z}$, $0 \leqslant k_a < n$, $\gcd(k_a, n) = 1$

- ► derivation of m_i, Bⁱ_a for all orbifolds with particle physics models √
 - basis of $\{\prod_{i}^{\text{even}}\}$ needed
- $\rightsquigarrow \mathbb{Z}_n$ symmetries in any *global* model \checkmark
 - **Cross-check**: K-theory constraint can be written as $\mathbb{Z}_2 \checkmark$

GH, Staessens '13

- **Bottom-up models**: $\{\Pi_i^{\text{even}}\}$ not known
 - ► use $(\Pi_x + \Pi'_x)_{x \in \{b,c,d\}} \circ \Pi_a = \Pi_x \circ (\Pi_a \Pi'_a)$
 - ▶ 4 necessary conditions (at most) \Leftrightarrow (h_{21} + 1) nec. + suff. conditions in global models
- ▶ Redundant Z_N symmetries:
 ▶ Z_N ⊂ U(1)_{massive} ⊂ U(N) ≃ SU(N)_{U(1)} automatic & trivial:
 (N)₁ (Adj)₀ + (1)₀ (Sym)₂ + (Anti)₂
- But: non-trivial sums of Z_{N_a} ⊂ U(N_a) charges can arise
 → generation dependent Z_n symmetries

example of generation dependent \mathbb{Z}_2 later

Related Works on Abelian Discrete Symmetries

SUSY field theory:

- Discrete gauge symmetries and the origin of baryon and lepton number conservation in supersymmetric versions of the standard model L.E.Ibáñez, G.G.Ross: Nucl.Phys.B368(1992)3-37
- What is the discrete gauge symmetry of the MSSM?
 H.K.Dreiner, C.Luhn, M.Thormeier: Phys.Rev.D73(2006)075007
- \rightsquigarrow R-parity (Z₂), baryon triality (Z₃), proton hexality (Z₆) for e.g.

proton stability

D-brane models:

- Discrete gauge symmetries in D-brane models M.Berasaluce-Gonzalez, L.E.Ibáñez, P.Soler, A.M.Uranga: JHEP1112(2011)113
- Discrete Gauge Symmetries in Discrete MSSM-like Orientifolds L.E.Ibáñez, A.N.Schellekens, A.M.Uranga: Nucl.Phys.B865(2012)509-540
- String Constraints on Discrete Symmetries in MSSM Type II Quivers P.Anastasopoulos, M.Cvetič, R.Richter, P.K.S.Vaudrevange: JHEP1303(2013)011
- Zp charged branes in flux compactifications M.Berasaluce-Gonzalez, P.G.Camara, F.Marchesano, A.M.Uranga: JHEP1304(2013)138

GH, W. Staessens '13

\mathbb{Z}_n Symmetries in Global Models on Orbifolds of IIA/ $\Omega \mathcal{R}$

- dim $(\Lambda_3^{\text{even}}) = h_{21} + 1$ conditions
- phenomenologically interesting:

$$T^{6}/\mathbb{Z}_{6} : h_{21} = 5$$

$$T^{6}/\mathbb{Z}_{6}' : h_{21} = 5 (+6)^{*}$$

$$T^{6}/\mathbb{Z}_{2} \times \mathbb{Z}_{6} : h_{21} = 15 (+4)^{*}$$

$$T^{6}/\mathbb{Z}_{2} \times \mathbb{Z}_{6} : h_{21} = 15$$

* D-branes wrap only untwisted & \mathbb{Z}_2 twisted cycles

- shape of Λ_3^{even} depends on lattice orientations under $\Omega \mathcal{R}$
- ▶ L-R symmetric & Pati-Salam models 'natural' on D-branes → U(1)_Y (SM) & U(1)_{B-L} (L-R) to rotate charges to 0

Example I: L-R Symmetric Model on T^6/\mathbb{Z}_6

GH, Ott '04; see also Gmeiner, GH '09

- $\blacktriangleright U(3)_a \times U(2)_b \times USp(2)_c \times U(1)_d \times USp(2)_e$
- ► $U(1)_{B-L} = (\frac{Q_a}{3} + Q_d)_{\text{massless}} \& U(1)^2_{\text{massive}}$
- ▶ $USp(2)_{x \in \{c,e\}} \rightarrow U(1)_{x, massless}$ by brane displacement
- only $x \in \{a, b, d\}$ contribute to \mathbb{Z}_n conditions
- ▶ after B − L rotation:

```
GH, Staessens '13
```

Di	screte sym.	Charge assignment for the MSSM states									
\mathbb{Z}_n	$\left \subset \sum_{x} k_{x} U(1)_{x} \right $	Q_L	\overline{U}_R	\overline{D}_R	L	\overline{E}_R	\overline{N}_R	$H_{u}^{(1)}$	$H_{u}^{(2)}$	$H_{d}^{(1)}$	$H_{d}^{(2)}$
\mathbb{Z}_2	$Q_a + Q_d$	0	0	0	0	0	0	0	0	0	0
\mathbb{Z}_2	Q_b	0	1	1	0	1	1	1	1	1	1
\mathbb{Z}_3	Q _a	0	0	0	0	0	0	0	0	0	0

not listed: mild amount of vector-like exotics

- ▶ $(k_a, k_b, k_d) = (1, 1, 1) \simeq \mathbb{Z}_2$ of K-theory constraint
- ▶ $\mathbb{Z}_2^{(b)}$ gives no extra constraints beyond $SU(2)_b$ charges
 - \rightsquigarrow all \mathbb{Z}_n appear trivial from 4D perspective

Example II: L-R Symmetric Model on T^6/\mathbb{Z}_6'

Gmeiner, GH '07-'08

- $\blacktriangleright U(3)_a \times U(2)_b \times USp(2)_c \times U(1)_d (\times USp(6)_{\text{hidden}})$
- $U(1)_{B-L} = (\frac{Q_a}{3} + Q_d)_{\text{massless}} \& U(1)^2_{\text{massive}}$
- $USp(2)_c \rightarrow U(1)_{c,\text{massless}}$ by brane displacement σ
- $USp(6)_{hidden}$ cannot be broken by σ or τ (SUSY)
- ▶ after B − L rotation:

GH, Staessens '13

	Discrete sym.		Charge assignment for the chiral states								
\mathbb{Z}_n	$\subset \sum_{x} k_{x} U(1)_{x}$	Q_L	\overline{U}_R	\overline{D}_R	L	Ī	\overline{E}_R	\overline{N}_R	H _u	H _d	Σ_b
\mathbb{Z}_2	Q_a+Q_d	0	0	0	0	0	0	0	0	0	0
\mathbb{Z}_3	Q _a	0	0	0	0	0	0	0	0	0	0
\mathbb{Z}_6	Q_b	0	1	1	4	4	3	3	5	5	4
	$\xrightarrow{U(1)_c}$	0	0	2	4	4	4	2	0	4	4

open string axion: $\Sigma_b \simeq (\mathbf{1}_{\overline{\mathtt{Anti}}_b})_{-2_b}$

not listed: mild amount of vector-like exotics

• non-trivial: $\mathbb{Z}_3 \subset U(1)_b$

Example III: A Pati-Salam Model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}_6'$

• $\mathbb{Z}_2 \times \mathbb{Z}'_6$ shifts: $\vec{v} = (\frac{1}{2}, \frac{-1}{2}, 0), \ \vec{w}' = (\frac{-1}{3}, \frac{1}{6}, \frac{1}{6})$ on $SU(3)^3$

$$\Pi_{a}^{\text{frac}} = \frac{1}{4} \left(X_{a} \rho_{1} + Y_{a} \rho_{2} + \sum_{k=1}^{3} \sum_{\alpha=1}^{5} \left[x_{a,\alpha}^{(k)} \varepsilon_{\alpha}^{(k)} + y_{a,\alpha}^{(k)} \tilde{\varepsilon}_{\alpha}^{(k)} \right] \right)$$

with $\rho_{1} \circ \rho_{2} = -\varepsilon_{\alpha}^{(k)} \circ \tilde{\varepsilon}_{\alpha}^{(k)} = 4$
 $\Omega \mathcal{R}$ -even & odd 3-cycles: GH, Staesens '13

GH. Staessens '13

 $\Pi_0^{\text{even},\mathbf{1}} = \rho_1,$ $\Pi_0^{\text{odd},1} = -\rho_1 + 2\,\rho_2,$ $\begin{aligned} \Pi^{\text{even},\mathbb{Z}_{2}^{(k)}}_{\alpha\in\{1,2,3\}} &= \varepsilon_{\alpha}^{(k)}, \\ \Pi^{\text{even},\mathbb{Z}_{2}^{(k)}}_{4} &= \varepsilon_{4}^{(k)} + \varepsilon_{5}^{(k)}, \end{aligned}$ $egin{aligned} & \Pi^{\mathrm{odd},\mathbb{Z}_2^{(k)}}_{lpha\in\{1,2,3\}} = -arepsilon_lpha^{(k)} + 2\, ilde{arepsilon}_lpha^{(k)}, \ & \Pi^{\mathrm{odd},\mathbb{Z}_2^{(k)}}_4 = 2\, (ilde{arepsilon}_4^{(k)} + ilde{arepsilon}_5^{(k)}) - (arepsilon_4^{(k)} + arepsilon_5^{(k)}), \end{aligned}$ $\Pi_{\varepsilon}^{\text{even},\mathbb{Z}_{2}^{(k)}} = 2\left(\tilde{\varepsilon}_{4}^{(k)} - \tilde{\varepsilon}_{\varepsilon}^{(k)}\right) - \left(\varepsilon_{4}^{(k)} - \varepsilon_{\varepsilon}^{(k)}\right), \quad \Pi_{\varepsilon}^{\text{odd},\mathbb{Z}_{2}^{(k)}} = \varepsilon_{4}^{(k)} - \varepsilon_{\varepsilon}^{(k)}.$ $\begin{array}{c|c} \bullet & \text{Intersection numbers} \\ \Pi^{\text{even}, \mathbb{Z}_2^{(k)}}_{\tilde{\alpha}} \circ \Pi^{\text{odd}, \mathbb{Z}_2^{(l)}}_{\tilde{\beta}} = \delta^{kl} \delta_{\tilde{\alpha}\tilde{\beta}} \times \begin{cases} 8 & \tilde{\alpha} = 0 \\ -8 & 1 \dots 3 \\ -16 & 4 \\ 16 & 5 \end{cases} & \text{with } \mathbb{Z}_2^{(0)} \equiv \mathbf{1} \end{aligned}$

• wrapping numbers a priori $A_a^i, B_a^i \in \frac{1}{8} \mathbb{Z}$

A Pati-Salam Model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$: \mathbb{Z}_n Conditions

$$\sum_{a} k_{a} N_{a} \frac{\begin{pmatrix} Y_{a} \\ -y_{a1}^{(1)} \\ -y_{a2}^{(1)} \\ -y_{a2}^{(1)} \\ -y_{a3}^{(1)} \\ -(y_{a4}^{(1)} + y_{a5}^{(1)}) \\ 2(x_{a4}^{(1)} - x_{a5}^{(1)}) + (y_{a4}^{(1)} - y_{a5}^{(1)}) \\ \frac{-y_{a2}^{(2)} \\ -y_{a2}^{(2)} \\ -y_{a2}^{(2)} \\ -y_{a3}^{(2)} \\ 2(x_{a4}^{(2)} - x_{a5}^{(2)}) + (y_{a4}^{(2)} - y_{a5}^{(2)}) \\ \frac{-(y_{a4}^{(2)} + y_{a5}^{(2)}) \\ 2(x_{a4}^{(2)} - x_{a5}^{(2)}) + (y_{a4}^{(2)} - y_{a5}^{(2)}) \\ \frac{-y_{a3}^{(1)} \\ -y_{a3}^{(2)} \\ -y_{a3}^{(2)} \\ -y_{a3}^{(3)} \\ -(y_{a4}^{(3)} + y_{a5}^{(3)}) \\ 2(x_{a4}^{(3)} - x_{a5}^{(3)}) + (y_{a4}^{(3)} - y_{a5}^{(3)}) \end{pmatrix} = 0 \mod n \stackrel{!}{=} 0 \mod n \stackrel{!}{=} \sum_{a} k_{a} N_{a}$$

$$\frac{\frac{Y_a - \sum_{i=1}^{3} [y_{a,1}^{(i)} + y_{a,2}^{(i)} + y_{a,3}^{(i)}]}{\frac{Y_a - [y_{a,1}^{(1)} + y_{a,2}^{(1)} + y_{a,3}^{(1)}]}{\frac{Y_a - [y_{a,1}^{(1)} + y_{a,2}^{(1)} + y_{a,3}^{(1)}]}{\frac{Y_a - [y_{a,1}^{(2)} + y_{a,2}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_a - [y_{a,1}^{(2)} + y_{a,2}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_a - [y_{a,1}^{(2)} + y_{a,2}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_a - [y_{a,1}^{(1)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_a - [y_{a,1}^{(1)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_{a,1}^{(1)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_{a,1}^{(1)} + y_{a,3}^{(1)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_{a,2}^{(1)} + y_{a,3}^{(1)} + y_{a,3}^{(1)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}{\frac{Y_{a} + \sum_{j=1,2} [y_{a,1}^{(j)} - x_{a,4}^{(j)} + x_{a,4}^{(j)} + y_{a,3}^{(j)}] + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}}{\frac{Y_{a} + [y_{a,1}^{(1)} - x_{a,4}^{(1)} + x_{a,4}^{(1)} + y_{a,5}^{(1)}]}{\frac{Y_{a} + [y_{a,1}^{(1)} - x_{a,4}^{(1)} + y_{a,3}^{(1)} + y_{a,5}^{(1)}]}{\frac{Y_{a} + [y_{a,1}^{(1)} - x_{a,4}^{(1)} + y_{a,3}^{(1)} + y_{a,5}^{(1)}]}{\frac{Y_{a,4} + y_{a,5}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)} + y_{a,3}^{(2)}]}}{\frac{Y_{a} + y_{a,5}^{(1)} + y_{a,5}^{(1)} + y_{a,5}^{(1)} + y_{a,5}^{(1)} + y_{a,5}^{(1)}]}{\frac{Y_{a} + y_{a,3}^{(1)} + y_{a,3}^{(1)} + y_{a,4}^{(1)} + y_{a,3}^{(1)} + y_{a,4}^{(1)} + y_{a,5}^{(1)} + y_{a,4}^{(1)} + y_{a,4}^{(1)} + y_{a,5}^{(1)} + y_{a,5$$

Gabriele Honecker Massive Gauge Symmetries and Open/Closed Axion Mixing

A Pati-Salam Model on $T^6/\mathbb{Z}_2 \times \mathbb{Z}'_6$: Spectrum

GH, Ripka, Staessens '12

 $SU(4)_a \times SU(2)_b \times SU(2)_c \times SU(2)_d \times SU(2)_e \times U(1)_{\text{massive}}^5$

Standard Model particles plus one Higgs

 $(4, \overline{2}, 1; 1, 1) + 2(4, 2, 1; 1, 1) + (\overline{4}, 1, 2; 1, 1) + 2(\overline{4}, 1, \overline{2}; 1, 1) + (1, 2, \overline{2}; 1, 1)$

 → one massive generation at leading order by charge selection rules

• chiral w.r.t. anomalous $U(1)_{\text{massive}}^5$

 $(1,2,1;\overline{2},1)+3(1,\overline{2},1;\overline{2},1)+(1,\overline{2},1;1,\overline{2})+(1,1,\overline{2};2,1)+3(1,1,2;2,1)+(1,1,2;1,2)$

but non-chiral w.r.t. $SU(4)_a \times SU(2)_b \times SU(2)_c$

▶ non-chiral w.r.t. to full $U(4)_a \times U(2)^4$ with **GUT Higgses**

 $2 \left[(4,1,1;\overline{2},1) + h.c. \right] + \left[(1,1,1;2,2) + h.c. \right] + (1,1,1;4_{Adj},1)$

+ 2 $[(1, 1, 1; 3_{S}, 1) + (1, 1, 1; 1_{A}, 1) + h.c.] + [(1, 1, 1; 1, 3_{S}) + (1, 1, 1; 1, 1_{A}) + h.c.]$

Pati-Salam model cont'd: \mathbb{Z}_n Symmetries in $U(1)_{\text{massive}}^5$

- ▶ 5 independent \mathbb{Z}_n symmetries $(h_{21} = 15)$ G.H., Staessens '13
- ▶ 4 family-independent & trivial: $\mathbb{Z}_N \subset U(N)$
- family-dependent:

▶ $\mathbb{Z}_4 \subset \frac{1}{2} \sum_{x \in \{b,c,d,e\}} U(1)_x \rightsquigarrow$ selection rule on Yukawas

	Discrete charges for the five-stack Pati-Salam model on $\mathcal{T}^6/(\mathbb{Z}_2 imes \mathbb{Z}_6' imes \Omega \mathcal{R})$												
D	iscrete symmetries		Charge assignment for the 'chiral' states										
\mathbb{Z}_n	$\mathbb{Z}_n \left U(1) = \sum_x k_x U(1)_x \right $		Q _L , L) ab'	$ \begin{array}{c c} ,L \\ ab' \end{array} & \begin{array}{c} (Q_R,R) \\ ac & ac' \end{array} $		(H_d, H_u)	X _{bd}	X _{bd'}	$X_{be'}$	X _{cd}	X _{cd'}	X _{ce'}	
\mathbb{Z}_2	$U(1)_e$	0	0	0	0	0	0	0	1	0	0	1	
	$U(1)_d$	0	0	0	0	0	1	1	0	1	1	0	
	$U(1)_c$	0	0	1	1	1	0	0	0	1	1	1	
	$U(1)_b$	1	1	0	0	1	1	1	1	0	0	0	
\mathbb{Z}_4	$U(1)_a$	1	1	3	3	0	0	0	0	0	0	0	
	$U(1)_b + U(1)_c + U(1)_d + U(1)_d + U(1)_e$	3	1	1	3	0	0	2	2	0	2	2	

Reduction of the Family Dependent Symmetry: $\mathbb{Z}_4 \rightarrow \mathbb{Z}_2$

- unwritten lore: **mod out centers** of SU(N): $((\mathbb{Z}_4)^2 \times (\mathbb{Z}_2)^3)/(\mathbb{Z}_4 \times (\mathbb{Z}_2)^4) \simeq \mathbb{Z}_2$
- search consistent charge assignment by hand:
 - $(4,\overline{2},1,1,1).(\overline{4},1,2,1,1).(1,2,\overline{2},1,1)$ perturbatively allowed
 - ► $(4,\overline{2},1,1,1).(\overline{4},1,1,2,1).(1,\overline{2},1,\overline{2},1)$ pert. forbidden by $U(1)_b$ - \mathbb{Z}_4 charge: 2 mod 4
 - ▶ $(4,\overline{2},1,1,1).(\overline{4},1,\overline{2},1,1).(1,2,\overline{2},1,1)$ pert. forbidden by $U(1)_c$

▶ ...

	(Q _L ab	., L) ab'	(Q _R ac	, R) ac'	(H_d, H_u)	X _{bd}	X _{bd'}	X _{be'}	X _{cd}	X _{cd'}	X _{ce'}
\mathbb{Z}_2	0	1	0	1	0	0	1	1	0	1	1

▶ Z₂ remains family-dependent

... very special D-brane configuration

► cannot be obtained from 'mod 2' on Z₄ charges → unwritten lore doesn't really help

Axions, Strong CP Problem, Dark Sector

Axions and the Strong CP Problem

Axions originally invoked to solve strong CP-problem

$$\mathcal{L}_lpha \supset rac{1}{2} \left(\partial_\mu lpha
ight) \left(\partial^\mu lpha
ight) - rac{1}{32 \pi^2} rac{lpha(x)}{f_lpha} \operatorname{Tr}(\mathcal{G}_{\mu
u} ilde{\mathcal{G}}^{\mu
u})$$

global Pecci-Quinn symmetry U(1)_{PQ}

Pecci, Quinn '77

- axion α arises from rewriting two Higgs doublets
- electro-weak & PQ scales identical
- axions ↔ photon conversion assumed (Primakoff effect)
 → astrophysical & lab searches (e.g. ALPs@DESY)
 experimentally excluded
- modified models contain SM singlet field σ
 - σ couples to Higgs doublets \rightsquigarrow new terms in V_{Higgs}
 - PQ by $\langle \sigma \rangle$ at higher energy than $SU(2)_{L} \times Y$

e.g. Zhitnitsky '80; Dine, Fischler, Srednicki '81; ...; Dreiner, Staub, Ubaldi '14

realisation in D-brane models

open string axions

cf. Berenstein, Perkins '12

- ▶ $U(1)_{PQ} \rightarrow U(1)_{\text{massive}}$
- 'exotic' scalars abundant adjustments to SUSY required
- suitable SUSY breaking minimum of V_{Higgs}?

GH, Staessens '13

Open String Axions & DFSZ Model

► U(1)_{PQ} must allow:

 $\mathcal{L}_{\mathsf{Yukawa}} = f_u \ Q_L \cdot H_u \ u_R + f_d \ Q_L \cdot H_d \ d_R + f_e \ L \cdot H_d \ e_R + f_\nu \ L \cdot H_u \ \nu_R$

- introduce SM singlet σ with $U(1)_{PQ} \simeq U(1)_{\text{massive}}$ charge
- ► (H_u, H_d) charged under $U(1)_{PQ}$ $\rightsquigarrow Q_L$ or (u_R, d_R) have $U(1)_{PQ}$ charge
- ► **Higgs potential** of the DFSZ model $V_{\text{DFSZ}}(H_u, H_d, \sigma) = \lambda_u (H_u^{\dagger} H_u - v_u^2)^2 + \lambda_d (H_d^{\dagger} H_d - v_d^2)^2 + \lambda_\sigma (\sigma^* \sigma - v_\sigma^2)^2 + (a H_u^{\dagger} H_u + b H_d^{\dagger} H_d) \sigma^* \sigma + c (H_u \cdot H_d \sigma^2 + h.c.) + d |H_u \cdot H_d|^2 + e |H_u^{\dagger} H_d|^2$

► **SUSY** version: $V = V_F + V_D + V_{soft}$ ► modify $c (H_u \cdot H_d \sigma^2 + h.c.) \longrightarrow c (H_u \cdot H_d \sigma + h.c.); \sigma \sim e^{ia}$

Matter	Q_L	ū _R	\overline{d}_R	Hu	H _d	L	\overline{e}_R	$\overline{\nu}_R$	Σ
$U(1)_{PQ}$	∓1	0	0	± 1	± 1	∓ 1	0	0	∓2

• identify $\Sigma = (Anti)_{U(2)_b}$ in global D-brane model

e.g. SM on T^6/\mathbb{Z}_6 : **GH**, Ott '04 & T^6/\mathbb{Z}_6' : Gmeiner, **GH** '08

Mixing of Open and Closed String Axions

GH, Staessens '13

- open string axion a from $\sigma = \frac{v+s(x)}{\sqrt{2}}e^{i\frac{a(x)}{v}}$
- open axion a mixes with closed axion $\xi \ (\leftarrow U(1)_{\text{massive}})$

$$\zeta = \frac{M_{\text{string}}\,\xi + qv\,a}{\sqrt{M_{\text{string}}^2 + q^2v^2}}, \qquad \alpha = \frac{M_{\text{string}}\,a - qv\,\xi}{\sqrt{M_{\text{string}}^2 + q^2v^2}}$$

$$\Rightarrow \qquad \mathcal{L}_{\text{CP-odd}} = \frac{1}{2} \left(\partial_{\mu} \zeta + m_B B_{\mu} \right)^2 + \frac{1}{2} (\partial_{\mu} \alpha)^2$$

• axion decay constant f_{α} from dim. reduction: $\mathcal{L}_{anom} = \frac{1}{16\pi^2} \frac{\zeta(x)}{f_{\zeta}} \operatorname{Tr}(\mathcal{G}_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu}) + \frac{1}{32\pi^2} \frac{\alpha(x)}{f_{\alpha}} \operatorname{Tr}(\mathcal{G}_{\mu\nu} \tilde{\mathcal{G}}^{\mu\nu})$

with
$$f_{\zeta} = rac{\sqrt{M_{ ext{string}}^2 + (qv)^2}}{2}, \qquad f_{\alpha} = rac{M_{ ext{string}} \, qv \sqrt{M_{ ext{string}}^2 + (qv)^2}}{(M_{ ext{string}}^2 - (qv)^2)}$$

• For
$$M_{\text{string}} \gg v$$
 : $\zeta \simeq \xi_{\text{closed}}$, $lpha \simeq a_{\text{open}}$

Soft SUSY Terms

Origin of
$$V = V_F + V_D + V_{soft}$$

$$V_{\text{DFSZ}}(H_u, H_d, \sigma) = \lambda_u (H_u^{\dagger} H_u - v_u^2)^2 + \lambda_d (H_d^{\dagger} H_d - v_d^2)^2 + \lambda_\sigma (\sigma^* \sigma - v_\sigma^2)^2 + (a H_u^{\dagger} H_u + b H_d^{\dagger} H_d) \sigma^* \sigma + c (H_u \cdot H_d \sigma + h.c.) + d |H_u \cdot H_d|^2 + e |H_u^{\dagger} H_d|^2$$

in SUSY field theory

$$\blacktriangleright \mathcal{W} = \mu \Sigma H_d \cdot H_u$$

•
$$K^{\text{SUSY}}(\Phi^{\dagger}e^{2gV}\Phi) = \Phi^{\dagger}e^{2gV}\Phi$$

$$\blacktriangleright \mathcal{W}_{soft} = \eta \, cH_u \cdot H_d \, \Sigma \rightsquigarrow \mathcal{A}\text{-terms}$$

$$\blacktriangleright K_{\rm soft} = \eta \overline{\eta} \ m_{\Phi}^2 \ \Phi^{\dagger} e^{2gV} \Phi \rightsquigarrow m_{\rm soft}$$

in Type II string models

- ► strongly coupled hidden group e.g. USp(6) in T^6/\mathbb{Z}'_6 model
- ► gaugino condensate: $\langle \lambda \lambda \rangle = \Lambda_c^3 \rightsquigarrow M_{SUSY}^2 = \langle F^H \rangle \sim \frac{\Lambda_c^3}{M_{Planck}}$
- gravity (+ gauge) mediation to SM sector

Lower Bounds on M_{string}

- typical phenomenological constraints from $f_{\zeta} \sim M_{\rm string}$, $f_{\alpha} \sim qv$: $M_{\rm string} \geq 10^9 {\rm ~GeV}$
- supplemented by constraints on gauge couplings

►
$$\frac{M_{\text{Planck}}^2}{M_{\text{string}}^2} = \stackrel{\text{examples}}{=} \frac{4\pi v_1 v_2 v_3}{g_{\text{string}}^2}$$

► @ tree-level: $\frac{4\pi}{g_{SU(N_a)}^2} = \frac{\sqrt{v_1 v_2 v_3}}{8\pi^3 3^{1/4} g_{\text{string}}} \times \mathcal{O}(1)_{\text{model}}$
► @ 1-loop: linear dep. on v_i , $\ln \frac{v_1 v_3}{v_2^2} \Leftarrow$ cancellations possible
 $\Rightarrow M_{\text{string}}$ can be lowered to intermediary scale by

 \rightsquigarrow *IVI*_{string} can be lowered to intermediary scale by exponentially large volumes:

GH, Staessens '13

	M_{string} as a function of v_i and g_{string}												
	<i>E</i> string	= 0.1		<i>B</i> string ⁼	= 0.01	$g_{ m string} = 0.001$							
v_1v_3	$v_{2,\text{max}}^2$	M _{string}	<i>v</i> ₁ <i>v</i> ₃	$v_{2,\text{max}}^2$	M _{string}	v_1v_3	$v_{2,\max}^2$	M _{string}					
10 ⁸	$9.7 imes 10^{9}$	$1.6 imes 10^{10}~{ m GeV}$	106	$1.5 imes 10^{10}$	$1.6 imes 10^{10}$ GeV	10 ²	$1.5 imes10^{6}$	$1.6 imes 10^{12}$ GeV					
10 ¹⁰	$1.5 imes10^{14}$	$2.8 imes 10^9 { m GeV}$	108	$1.6 imes10^{14}$	$1.5 imes 10^8 \text{ GeV}$	104	$1.6 imes10^{10}$	$1.5 imes 10^{10} \text{ GeV}$					
1012	$1.5 imes10^{18}$	$2.8\times 10^8~\text{GeV}$	1010	$1.6 imes10^{18}$	$1.5 imes 10^6 \ { m GeV}$	10 ⁶	$1.6 imes10^{14}$	$1.5 imes 10^8 \ { m GeV}$					

SUSY by Deformations

Blaszczyk, GH, Koltermann '14

- What happens to Vol_{brane}(Π) if Z₂ singularities are deformed?
- use product of \mathbb{P}_{112}^2 with coord. (x_i, v_i, y_i) and for square tori $F_i = x_i v_i (x_i^2 v_i^2)$

$$(T^2)^3/\mathbb{Z}_2 \times \mathbb{Z}_2 \simeq \{f = -y^2 + F_1 F_2 F_3 = 0\}$$
 with $y \equiv y_1 y_2 y_3$

- ► a single deformed fixed point: $f = -y^2 + F_1 F_2 F_3 + \varepsilon \delta F_1 \delta F_2 \cdot F_3 = 0 \rightsquigarrow y = y(x_1, x_2, x_3, \varepsilon)|_{v_i=1}$
- use $\Omega_3 = dz_1 dz_2 dz_3$ on $(T^2)^3$ with relation $dz_i = \frac{dx_i}{y_i}$
- compute $\int_{\Pi} \Omega_3 = \int_{\Pi} \frac{dx_1 dx_2 dx_3}{y}$ for deformed geometry:
 - decrease with $\sqrt{\varepsilon}$ if Π contains singularity
 - change linear in ε otherwise

Visualisation of Deformation of Singularity along $T_1^2 imes T_2^2$

• deformation of singularity at $x_1 = x_2 = 0$ along $T_1^2 \times T_2^2$

• $\varepsilon < 0$ $\Pi_a^{\mathbb{Z}_2} = -\Pi_{a'}^{\mathbb{Z}_2}$, SUSY on U(N) branes

i.e. orbifold point is only SUSY point of SM branes

Conclusions

Conclusions:

 \mathbb{Z}_n expressed via intersection numbers in Type IIA:

- $(h_{21} + 1)$ nec. + suf. conditions per orbifold
- ▶ many \mathbb{Z}_n trivial in 4D field theory (e.g. $\mathbb{Z}_N \subset U(N)$
- ▶ family-dependent Z₄ (Z₂) constrains Yukawas

 \ldots details in GH, Staessens '13

- $U(1)_{PQ} \simeq U(1)_{\text{massive}}$ and axions as $(Anti)_{U(2)}$
 - Mixing of axions from open/closed string sector
 - $U(1)_{PQ}$ and $SU(2) \times Y$ scales decouple
 - intermediary M_{string} and exponentially large volumes

... to be explored in greater detail

SUSY by deformation of 3-cycles

... how are SM fields affected?

... details in Blaszczyk, GH, Koltermann '14

 $[\]ldots$ details in GH, Staessens '13

Registration ends 31 July

The String Theory Universe 20th European Workshop on String Theory

2nd COST MP1210 Meeting

22–26 September 2014 Philosophicum, JGU Mainz

www.strings2014.uni-mainz.de

Organizers

Johanna Erdmenger | Munich Mirjam Cvetič | Philadelphia Fernando Marchesano | Madrid Carlos Núñez | Swansea Timo Weigand | Heideberg

Local Organizer Gabriele Honecker | Mainz

International Advisory Committee

Ana Achicarro Lusien Mathia's Biau Janeadan Jan de Boer Janeadan Anna Cerescle I toreo Roberto Emparan Janeada Jerome Gauntiett (Juskis Elios Kirksis Jesaiton Charltek Kristjansen (Copenkage María A. Ledd) Valencia Yolanda (Lozano Jonéo Dieter Lüst | Marca Silvia Fensti | Marca

Mainz Institute for

Theoretical Physics

The conference is dedicated to all aspects of superstring, supergravity and supersymmetric theories and is embedded in the MITP programme String Theory and its Applications.

Overview Talks

Paul Chesler | Harvard Fernando Marchesano | Madrid Dario Martelli | London Tadashi Takayanagi | Kyoto Ivonne Zavala | Gioningen

Special Interest Talks

Lutz Köpke | Maina IceCube Neutrino Observatory

Ana Achúcarro | Leider Strings and the Cosmic Microwave Background

MITP Public Lecture

Dieter Lüst Munich Strings im Multiversum Mainzer Wissenschaftsmanld Saturday, 13 September 2014 at 6pm.

Working Groups

Gauge/Gravity Duality String Phenomenology Cosmology and Quantum Gravity

Gabriele Honecker

Massive Gauge Symmetries and Open/Closed Axion Mixing