Motivation and Outline	Conditions for Non-associativity	Open String 00000 000	Closed String
			00

Non-associative Deformations of Geometry in Double Field Theory

Michael Fuchs

Workshop "Frontiers in String Phenomenology"

based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D. Lüst, R. Sun

July 31, 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation and Outline	Conditions for Non-associativity	Open String	Closed String	Conclusion
•00	00000	00000	0000	000
		000	0000	

Motivation

The Jacobi identity of three QM operators reads

 $\mathsf{Jac}_{[,]}(F,G,H) = [F,[G,H]] + [H,[F,G]] + [G,[H,F]]$

 $= [F(GH) - (FG)H] - [F(HG) - (FH)G] + \dots$

 \Rightarrow Algebraically zero for associative operators!

The Jacobi identity is directly connected to associativity

Canonical quantization:

$$\{ \ , \ \} \longrightarrow \frac{1}{i\hbar} [\ , \]$$

Look at the Poisson bracket in classical mechanics!

Motivation and Outline	Conditions for Non-associativity	Open String	Closed String	Conclusion
000	00000	00000	0000	000

$$\{f,g\} := \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q^i}$$

The Poisson bracket defined in this way obeys the Jacobi identity by construction

$$\mathsf{Jac}_{\{,\}}(f,g,h) := \{f, \{g,h\}\} + \{g, \{h,f\}\} + \{h, \{f,g\}\} = 0.$$

 \Rightarrow QM operators associate/obey the Jacobi identity!

But there are hints for non-associative target spaces in ST! [Blumenhagen, Lüst, Plauschinn, ...]

This talk: Resolve this contradiction!

Motivation	and	Outline
000		

Conditions for Non-associativity

Open String 00000 000 Closed String

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Outline

- Conditions for non-associativity in the Hamiltonian formalism
- Open string
 - 1. Review of the known deformation
 - 2. open string deformation in DFT
- Closed string
 - 1. Review of the known deformation
 - 2. Closed string deformation in DFT
 - 3. Possible origin of this deformation

Conditions for Non-associativity ${\scriptstyle \bullet \circ \circ \circ \circ}$

Open String

Closed String

Conclusion

Mathematics of the Hamiltonian Formalism The Hamiltonian formalism describes dynamics on an even dimensional symplectic manifold equipped with a closed degenerate two form

$$\omega = \omega_{ij} \, dx^i \wedge dx^j$$
, det $\omega_{ij} \neq 0$ and d $\omega = 0$.

Define the Poisson bracket as

$$\{f,g\} = \omega^{ij} \partial_i f \partial_j g$$
 with $\omega^{ij} \omega_{jk} = \delta^i{}_j$ and $i,j,k \in 1,\ldots,2D$

and introduce an evolution parameter t "time" and a real energy function H "Hamiltonian". Postulate the time evolution by

$$\frac{df}{dt} = \{f, H\}.$$

Motivation and Outline	Conditions for Non-associativity	Open String	Closed String	Conclusion
000	0000	00000	0000 000 00	000

Jacobi identity of this bracket is

$$\operatorname{Jac}_{\{,\}}(f,g,h) = \omega^{[\underline{k}I} \partial_I \omega^{\underline{i}\underline{j}]} \partial_i f \partial_j g \partial_k h.$$

Zero by assumption $d\omega = 0$ and

$$\omega^{[\underline{k}^{I}}\partial_{I}\omega^{\underline{j}\underline{j}]} = \omega^{ii'}\omega^{jj'}\omega^{kk'} (\mathsf{d}\omega)_{i'j'k'}.$$

Or clear from Darboux's theorem: It is possible to choose local coordinates (q, p) such that

$$\omega = dq^i \wedge dp_i$$
 or $\omega = \begin{pmatrix} 0 & 1_D \\ -1_D & 0 \end{pmatrix}$.

Intivation and Outline	Conditions for Non-associativity	Open String	Closed String	Conclusion
000	00000	00000	0000	000
			00	

Why $d\omega = 0$?

Hamiltonian mechanics is usually defined on the cotangent bundle T^*M which defines a 2D-dim manifold

$$(\underbrace{q_1,\ldots,q_n}_{\in M}, \underbrace{p_1,\ldots,p_n}_{\in T_q^*M})$$

The "tautological one-form" connects the coordinates and their conjugate as

$$\theta = p_i dq^i$$
.

Use this to define the symplectic structure

$$\omega = \mathsf{d}\theta = \mathsf{d}q^i \wedge \mathsf{d}p_i.$$

The symplectic structure of T^*M is exact $\Rightarrow d\omega = d^2\theta = 0$

Conditions for Non-associativity 00000

Open String 00000 000 Closed String

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 000

Conclusion

A non-vanishing Jacobi identity is possible if

 $d\omega \neq 0.$

Beyond the scope of a Hamiltonian defined on T^*M ?

CFT

In general: CFT's are usual QFT's, therefore the CFT operator algebra must be associative (\Leftrightarrow crossing symmetry). But note: The coordinates are not well defined CFT operators (not even quasi primaries, h = 0)!

• The closed string worldsheet has an SL(2, \mathbb{C})/ \mathbb{Z}_2 symmetry Commutativity expected for vertex operators inserted at the bulk.

• The **open string** worldsheet has an SL(2, \mathbb{R})/ \mathbb{Z}_2 symmetry Vertex operators inserted at the boundary (D-brane) must be cyclic, but may be non-commutative, for instance

12 = 21 and 123 = 231 $123 \neq 132 \text{ or } 1234 \neq 1243.$

Motivation and Outline 000	Conditions for Non-associativity 00000	Open String •0000 000	Closed String 0000 000 00	Conclusion 000

Open Strings

in non-vanishing $\mathcal{F} = B + 2\pi \alpha' \, \mathrm{d}A$ background.

[Chu, Ho, Seiberg, Witten, Cornalba, Schiappa, Schomerus, Herbst, Kling, Kreuzer, ... \sim '98-'01]

For constant \mathcal{F} one gets on the D-brane $\partial \mathbb{H} = \mathbb{R}$

$$\langle X^{\mu}(\tau)X^{\nu}(\tau')\rangle_{\mathcal{F}} = -\alpha' \left[G^{\mu\nu} \log |\tau - \tau'|^2 + i\pi \,\Theta^{\mu\nu} \,\epsilon(\tau - \tau') \right]$$

where the open string metric G and the antisymmetric θ are

$$egin{array}{lll} G^{\mu
u} &=& \left[(g-\mathcal{F})^{-1}\,g\,(g+\mathcal{F})^{-1}
ight]^{\mu
u}, \ heta^{\mu
u} &=& -\left[(g-\mathcal{F})^{-1}\,\mathcal{F}\,(g+\mathcal{F})^{-1}
ight]^{\mu
u}. \end{array}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Conditions for Non-associativity

Open String

Closed String

Conclusion

Open String Product

$$\begin{cases} : e^{ipX(\tau)} :: e^{ip'X(\tau')} : \\ \\ = e^{-i\pi\alpha' \,\theta^{\mu\nu} \,p_{\mu}p'_{\nu} \,\epsilon(\tau-\tau')} \times \langle : e^{ipX(\tau)} :: e^{ip'X(\tau')} : \rangle_{0}. \\ \\ = \exp\left[i\pi\alpha' \,\theta^{\mu\nu} \,\frac{\partial}{\partial X_{1}^{\mu}} \,\frac{\partial}{\partial X_{2}^{\nu}}\right] \times \langle : e^{ipX(\tau)} :: e^{ip'X(\tau')} : \rangle_{0}. \end{cases}$$

The background field can be captured by changing the multiplication law to a Moyal-Weyl star-product

$$f \star g := \exp\left[i\pi lpha' \, heta^{\mu
u} \, rac{\partial}{\partial x_1^{\mu}} \, rac{\partial}{\partial x_2^{
u}}
ight] f(x_1) \, g(x_2) \, + \, \mathcal{O}(\partial heta).$$

then for instance $\langle V_1 V_2 \rangle_{\mathcal{F}} = \langle V_1 \star V_2 \rangle_{\mathcal{F}=0}$

Conditions for Non-associativity 00000

Open String

Closed String

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Higher Orders in $\partial \theta$

$$f \star g = f \cdot g + \frac{i}{2} \theta^{ij} \partial_i f \partial_j g - \frac{1}{8} \theta^{ij} \theta^{kl} \partial_i \partial_k f \partial_j \partial_l g - \frac{1}{12} (\theta^{im} \partial_m \theta^{jk}) (\partial_i \partial_j f \partial_k g - \partial_i \partial_j g \partial_k f) + \mathcal{O}((\partial \theta)^2, \partial^2 \theta, \theta^2)$$

[Cornalba, Schiappa and Herbst, Kling, Kreuzer '01]

Same as the Kontsevich deformation quantization formula but θ might be a quasi-Poisson $d\theta \neq 0$ tensor here \Rightarrow Non-associative!

$$(f \star g) \star h - f \star (g \star h) \propto \theta^{[\mu\rho} \partial_{\rho} \theta^{\nu\sigma]} \partial_{\mu} f \partial_{\nu} g \partial_{\sigma} h \neq 0!$$

Remember: $Jac \propto \theta^{[\underline{\mu}\rho} \partial_{\rho} \theta^{\underline{\nu}\sigma]}$ as well.

Motivation and Outline	Conditions for Non-associativi
000	00000

Open String

Closed String

Conclusion

Resolution

Integrate the deformation! Captures

- low-energy effective actions and
- COrrelators [Schomerus, Seiberg, Witten '98: Integration to implement momentum conservation and more general Herbst, Kling, Kreuzer '02]

$$\int d^{n}x \sqrt{g - \mathcal{F}} \left(f \star g - f \cdot g \right) \stackrel{PI}{=} - \int d^{n}x f \underbrace{\partial_{\mu} \left(\sqrt{g - \mathcal{F}} \theta^{\mu\nu} \right)}_{\text{DBI-eom} = 0} \partial_{\nu}g$$

•
$$\int f \star g \stackrel{eom}{=} \int f \cdot g$$

• But
$$\int f \star g \star h \neq \int f \cdot g \cdot h!$$

Also associative

$$\int d^n x \sqrt{g - \mathcal{F}}(f \star g) \star h - f \star (g \star h) \stackrel{eom}{=} 0.$$

Motivation and Outline	Conditions for Non-associativity 00000	Open String 0000● 000	Closed String 0000 000 00	Conclusion 000

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The open string product matches the expected properties

- 12 = 21
- 123 \neq 132, 1234 \neq 1243, ... \Rightarrow additional terms in low-energy effective action
- Cyclic [also in higher orders Herbst, Kling, Kreuzer '03]
- vanishing Jacobi identity

up to boundary terms.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 000

Open String Product in DFT

DFT $_{\mbox{[Hull, Zwiebach, Hohm, ...]}}$ has only closed string degrees of freedom. Therefore

- vertex operators are expected to commute,
- the gauge invariant object is H

We use the flux formulation of DFT $_{\mbox{[Aldazabal, Geissbuhler, Marques, Nunez, Penas]}.$ There the product reads

$$f \triangle g \triangle h := f g h + H^{abc} \partial_a f \partial_b g \partial_c h + R_{abc} \tilde{\partial}^a f \tilde{\partial}^b g \tilde{\partial}^c h + \dots$$

$$\stackrel{\mathsf{DFT}}{=} f g h + \breve{\mathcal{F}}_{ABC} \ \partial^A f \ \partial^B g \ \partial^C h.$$

Motivation and Outline Conditions for Non-associativity Open String Closed String 000 00000 0000 </th <th>Conclusion 000</th>	Conclusion 000
---	-------------------

Write this deformation under an integral

$$\int dX e^{-2d} \breve{\mathcal{F}}_{ABC} \partial^A f \partial^B g \partial^C h \stackrel{\text{PI}}{=} - \int dX e^{-2d} \underbrace{\mathcal{G}_{AB}}_{eom: \,\mathcal{G}_{AB}=0!} f \partial^A g \partial^B h.$$

The same mechanism is present here! Holds for product of n-functions as expected in a closed string setting!

Matter (e.g. RR fields) in form of an energy momentum tensor \mathcal{T}^{AB} changes the eom to

$$\mathcal{G}^{AB}=\mathcal{T}^{AB},$$

which breaks the associativity.

Conditions for Non-associativity

Open String

Closed String

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Matter Corrections

Associativity can be restored by adding a \mathcal{T}^{AB} term:

$$f \bigtriangleup g \bigtriangleup h = f g h + \mathcal{T}^{AB} \left(f \partial_A g \partial_B h + cycl. \right) + \breve{\mathcal{F}}^{ABC} \partial_A f \partial_B g \partial_C h$$

This term arises naturally, if the geometry is also deformed by \mathcal{T}^{AB}

$$f \bigtriangleup_2 g := f \cdot g + \mathcal{T}^{AB} \partial_A f \partial_B g$$

which vanishes by continuity equation under an integral!

Conditions for Non-associativity

Open String 00000 000 Closed String

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion

Closed Strings

in a constant H = dB background on T^3 . Fulfills eom in linear order \Rightarrow still a CFT. [Blumenhagen, Deser, Lüst, Plauschinn, Rennecke '11]

Correlator of the coordinates is corrected as

$$\langle X^{\mu}(z_1, \bar{z}_1) X^{\nu}(z_2, \bar{z}_2) X^{\sigma}(z_3, \bar{z}_3) \rangle_{H} \propto H^{\mu\nu\sigma} \left[\mathcal{L}\left(\frac{z_{12}}{z_{13}}\right) - \mathcal{L}\left(\frac{\bar{z}_{12}}{\bar{z}_{13}}\right) \right]$$

Using this the Jacobi identity at equal space and time is zero

$$\operatorname{Jac}(X^{\mu}(z,\bar{z}),X^{\nu}(z,\bar{z}),X^{\sigma}(z,\bar{z}))_{H}=0.$$

Motivation and Outline Conditions for Non-associativity 000	Open String 00000 000	Closed String	Conclusion 000
--	-----------------------------	---------------	-------------------

T-duality in all directions gives the winding coordinate $\tilde{X}.$ Their correlator has a crucial +

$$\langle \tilde{X}^{\mu}(z_1, \bar{z}_1) \tilde{X}^{\nu}(z_2, \bar{z}_2) \tilde{X}^{\sigma}(z_3, \bar{z}_3) \rangle_{H} = \theta^{\mu\nu\sigma} \left[\mathcal{L}\left(\frac{z_{12}}{z_{13}}\right) + \mathcal{L}\left(\frac{\bar{z}_{12}}{\bar{z}_{13}}\right) \right]$$

The contributions now add up in the Jacobi identity

$${\sf Jac}\,(ilde{X}^{\mu}(z,ar{z}), ilde{X}^{
u}(z,ar{z}), ilde{X}^{\sigma}(z,ar{z}))_{H} \propto H^{\mu
u\sigma}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Dualizing this gives normal coordinates in the T-dual to the H-flux, named R-flux

Motivation and Outline	Conditions for Non-associativity	Open String	Closed String	Conclusion
000	00000	00000	0000	000
		000	00	

 ${\sf Jac}\,(X^\mu(z,ar z),X^
u(z,ar z),X^\sigma(z,ar z))_R\propto R^{\mu
u\sigma}.$

 \Rightarrow Non-associative target space for non-vanishing *R*-flux!

How is this possible?

Normal coordinates in non-vanishing $R^{\mu\nu\sigma} = \tilde{\partial}^{[\mu}\beta^{\nu\sigma]}$ means coordinates and winding at the same time. The description needs

 $TM \oplus T^*M$.

A restriction to TM or T^*M is not possible. This is beyond usual Hamiltonian formalism on T^*M with $\omega = d\theta$. More concretely later!

Motivation and Outline	Conditions for Non-associativity	Open String 00000 000	Closed String 000● 000 00	Conclusion 000
------------------------	----------------------------------	-----------------------------	------------------------------------	-------------------

Correlator of vertex operators gives $\langle V_1 V_2 V_3 \rangle_H = \langle V_1 V_2 V_3 \rangle_0$ and

$$\langle V_1 V_2 V_3
angle_R \propto (1 + R^{\mu
u\sigma} p_{1,\mu} p_{2,\nu} p_{3,\sigma}) \times \langle V_1 V_2 V_3
angle_0$$

Capture the R-flux in a deformed tri-product

$$(f \bigtriangleup g \bigtriangleup h)(x) := f g h + R^{\mu\nu\sigma} \partial_{\mu} f \partial_{\nu} g \partial_{\sigma} h + \mathcal{O}(\theta^2).$$

whose totally antisymmetric tri-bracket of the coordinates reproduces the Jacobi identity.

The tri-product trivializes for tachyon vertex operators by momentum conservation.

Conditions for Non-associativity

Open Strin

Closed String

Conclusion 000

Closed String Product in DFT

Motivation: Need for simultaneous winding and momentum. In the flux formulation the product reads

$$f \triangle g \triangle h = f g h + \mathcal{F}_{ABC} \partial^A f \partial^B g \partial^C h$$

$$= f g h + R^{abc} \partial_a f \partial_b g \partial_c h + H_{abc} \tilde{\partial}^a f \tilde{\partial}^b g \tilde{\partial}^c h + \dots$$

Here the flux is $\mathcal{F}_{ABC} = \Omega_{[ABC]}$ with the Weitzenböck connection $\Omega_{ABC} = \partial_A E_B^M E_{CM}$

Conditions for Non-associativity

Open String 00000 000 Closed String

Conclusion

Constraints in DFT

The generalized Lie-derivative in DFT:

$$\mathcal{L}_{\xi}V^{M} = \xi^{N}\partial_{N}V^{M} + (\partial^{M}\xi_{N} - \partial_{N}\xi^{M})V^{N}$$

The gauge algebra does not close, constraints are needed for the fields and the gauge parameters of theory (not coordinates).

For instance the generalized Lie derivative of a generalized scalar f is not a scalar anymore but must be enforced

$$\Delta_{\xi'} \mathcal{L}_{\xi} f := (\delta_{\xi'} - \mathcal{L}_{\xi'}) \mathcal{L}_{\xi} f = -\xi_M \partial_N \xi'^M \partial^N f \stackrel{!}{=} 0.$$

Choosing the vielbein as the parameters $\xi = E_B$ and $\xi' = E_A$ gives

$$\Omega_{CAB} \ \partial^C f \stackrel{!}{=} 0$$
 (note also $\partial_A f \ \partial^A g = 0$).

The deformation is zero by demanding closure since

$$\underbrace{\mathcal{F}_{ABC}}_{\Omega_{[ABC]}} \partial^A f \partial^B g \partial^C h \stackrel{!}{=} 0$$

Summary

As expected vertex operators commute and associate due to

- momentum conservation in CFT
- the consistency constraints and
- the Bianchi identity (after partial integration) in DFT.

We have a non-associative target space in CFT and DFT for a non-vanishing *R*-flux, thus for description on $TM \oplus T^*M$ (see also Blair '14).

Why?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

onditions for Non-associativity

Open String

Closed String

Conclusion 000

Hamiltonian Origin of the Non-associativity

The appearing Jacobi identity could also arise from the commutator algebra [Andriot, Larfors, Lüst, Patalong '13 and Blair '14]

$$[x^i, x^j] \propto R^{ijk} p_k$$
 and $[x^i, p_j] = i\delta^i_j$.

Underlying classical symplectic structure reads

[Mylonas, Schupp, Szabo '13,'14 and Bakas, Lüst '13]

$$\omega^{ij} = \begin{pmatrix} R^{ijk} p_k & \delta^i_k \\ -\delta_i^j & 0 \end{pmatrix}$$

Interpret this as a special case of the DFT generalization

$$\Omega^{\mathcal{I}\mathcal{J}} = \begin{pmatrix} \mathcal{F}^{IJK} \mathcal{P}_{K} & \delta^{I}_{K} \\ -\delta_{I}{}^{J} & 0 \end{pmatrix}.$$

Conditions for Non-associativity

Open String

Closed String

Conclusion 000

Speculative Origin of the Symplectic Structure

Similar to the symplectic structure of T^*M we start with the tautological one-form Θ whose exterior derivative is the symplectic structure Ω

$$\Theta = P_I dX^I$$

Inspired by generalized geometry ($TM \oplus T^*M$) use a twisted derivative d_{$\mathcal{F}^{(3)}$} = d + $\mathcal{F}^{(3)}$!

The symplectic structure

$$\Omega = \mathsf{d}_{\mathcal{F}}\Theta = dP_I \wedge dX^I + \mathcal{F}_{UK}^{(3)}P^K dX^I \wedge dX^J$$

is precisely the non-associative symplectic structure emerging in Hamiltonian formalism.

Conditions for Non-associativity

Open String 00000 000 Closed String

Conclusion

Conclusion

No contradiction between the non-vanishing Jacobi identity and the non-associative deformations in string theory and DFT

1. Closed string:

Vertex operators commute and associate due to

- momentum conservation in CFT
- consistency constraints and
- Bianchi identity (after partial integration) in DFT.

The **target space** is non-associative for non-zero *R*-flux due to $TM \oplus T^*M$ (see also talk by Erik: No non-geometry on the sphere)

Conditions for Non-associativity

Open String 00000 000 Closed String

Conclusion

Conclusion

2. Open string:

Vertex operators do not commute but are associative due to the

- equation of motion
- consistency constraints and
- continuity equation of energy-momentum tensor in DFT.

Although cured, why was there non-associativity at all (No $TM \oplus T^*M$ here)?

Freed-Witten anomaly: A D3 brane wrapping a T³ with a constant *H*-flux is anomalous, therefore a non-constant *B*-field is forbidden \Rightarrow no non-associativity at all. (Note: T-duality gives D0 brane (point particle) in *R*-flux)

Motivation and Outline	Conditions for Non-associativity	Open String 00000 000	Closed String 0000 000 00	Conclusion ○○●
			00	

Thank you!

◆□ > ◆個 > ◆臣 > ◆臣 > □ 臣