Low-Energy Behavior of Gluons and Gravitons from Gauge Invariance

Paolo Di Vecchia

Niels Bohr Institute, Copenhagen and Nordita, Stockholm
Schloss Ringberg, 01.08.2014

Foreword

- This talk is based on the work done together with Zvi Bern, Scott Davies and Josh Nohle
䍰 "Low-Energy Behavior of Gluons and Gravitons: from Gauge Invariance", arXiv:1406:6987 [hep-th].

围 See also the related work by
J. Broedel, M. de Leeuw, J. Plefka and M. Rosso
"Constraining subleading soft gluon and graviton theorems", arXiv:1406.6574 [hep-th]

Plan of the talk

1 Introduction
2 Scattering of a photon and n scalar particles
3 Scattering of a graviton and n scalar particles
4 Soft limit of n-gluon amplitude
5 Soft limit of n-graviton amplitude
6 Comments on loop corrections: gauge theory
7 Comments on loop corrections: gravity
8 What about soft theorems in string theory?
9 Conclusions
10 Outlook

Introduction

- Three kinds of symmetries with different physical consequences.
- Global unbroken symmetries as isotopic spin or $S U(3)_{v}$ in three-flavor QCD.
- Unique vacuum annihilated by the symmetry gener.: $Q_{a}|0\rangle=0$
- Particles are classified according to multiplets of this symmetry and all particles of a multiplet have the same mass.
- If isotopic spin were an exact symmetry, the proton and the neutron would have the same mass.
- This would have happened in QCD if the lowest two quarks would have had the same mass.
- This is not the case because the mass matrix of the quarks breaks explicitly $S U(2)$ and even more $S U(3)$ flavor symmetry.
- Then, we have the global spontaneously broken symmetries as $S U(3)_{L} \times S U(3)_{R}$ (broken to $\left.S U(3)_{v}\right)$ symmetry in QCD for zero mass quarks.
- Degenerate vacua: $Q_{a}|0\rangle=\left|0^{\prime}\right\rangle$.
- Not realized in the spectrum, but it implies the presence of massless particles, called Goldstone bosons.
- They are the pions in QCD with 2 flavors.
- This is one physical consequence of the spontaneous breaking.
- Another one is the existence of low-energy theorems.
- The $\pi \pi$ scattering amplitude is fixed at low energy.
- One gets the two scattering lengths:

$$
a_{0}=\frac{7 m_{\pi}}{32 \pi F_{\pi}^{2}} ; \quad a_{2}=-\frac{m_{\pi}}{16 \pi F_{\pi}^{2}}
$$

explicit breaking by a mass term.

- Scattering amplitude is zero for massless pions at low energy because Goldstone bosons interact with derivative coupling implying a shift symmetry.
- Finally, we have the local gauge symmetries for massless spin 1 and spin 2 particles.
- Local gauge invariance is necessary to reconcile the theory of relativity with quantum mechanics.
- It allows a fully relativistic description, but eliminating, at the same time, the presence of negative norm states in the spectrum of physical states.
- Although described by A_{μ} and $G_{\mu \nu}$, both photons and gravitons have only two physical degrees of freedom in $\mathrm{d}=4$.
- and respectively

$$
d-2 \text { and } \frac{(d-2)(d-1)}{2}-1
$$

in d space-time dimensions.

- Another consequence of gauge invariance is charge conservation that, however, follows from the global part of the gauge group.
- Yet another physical consequence of local gauge invariance is the existence of low-energy theorems for photons and gravitons: [F. Low, 1958; S. Weinberg, 1964]
- Let us consider Compton scattering on spinless particles.
- The scattering amplitude $M_{\mu \nu}$ is gauge invariant:

$$
k_{1}^{\mu} M_{\mu \nu}=k_{2}^{\nu} M_{\mu \nu}=0
$$

- The previous conditions determine the scattering amplitude for zero frequency photons and one gets the Thompson cross-section:

$$
\begin{equation*}
\sigma_{T}=\frac{8 \pi}{3}\left(\frac{e^{2}}{m c^{2}}\right)^{2}=\frac{8 \pi}{3} r_{c l} \tag{1}
\end{equation*}
$$

where $r_{c l}$ is the classical radius of a point particle of mass m and charge e.

- The interest on the soft theorems was recently revived by [Cachazo and Strominger, arXiv:1404.1491[hep-th]].
- They study the behavior of the n-graviton amplitude when the momentum q of one graviton becomes soft ($q \sim 0$).
- They suggest a universal formula for the subleading term $O\left(q^{0}\right)$.
- The leading term $O\left(q^{-1}\right)$ was shown to be universal by Weinberg in the sixties.
- In a previous paper Strominger et al derived the Weinberg universal behavior from the Ward identities of the BMS transformations.
- They speculate that also the next to the leading term follows from the BMS transformations.
- In the following we show that the first three leading terms are a direct consequence of gauge invariance.

One photon and n scalar particles

- The scattering amplitude $M_{\mu}\left(q ; k_{1} \ldots k_{n}\right)$, involving one photon and n scalar particles, consists of two pieces:

$$
\begin{aligned}
A_{n}^{\mu}\left(q ; k_{1}, \ldots, k_{n}\right) & =\sum_{i=1}^{n} e_{i} \frac{k_{i}^{\mu}}{k_{i} \cdot q} T_{n}\left(k_{1}, \ldots, k_{i}+q, \ldots, k_{n}\right) \\
& +N_{n}^{\mu}\left(q ; k_{1}, \ldots, k_{n}\right)
\end{aligned}
$$

- and must be gauge invariant for any value of q :

$$
q_{\mu} A_{n}^{\mu}=\sum^{n} e_{i} T_{n}\left(k_{1}, \ldots, k_{i}+q, \ldots, k_{n}\right)+q_{\mu} N_{n}^{\mu}\left(q ; k_{1}, \ldots, k_{n}\right) \equiv 0
$$

- Expanding around $q=0$, we have

$$
\begin{gathered}
0=\sum_{i=1}^{n} e_{i}\left[T_{n}\left(k_{1}, \ldots, k_{i}, \ldots, k_{n}\right)+q_{\mu} \frac{\partial}{\partial k_{i \mu}} T_{n}\left(k_{1}, \ldots, k_{i}, \ldots, k_{n}\right)\right] \\
+q_{\mu} N_{n}^{\mu}\left(q=0 ; k_{1}, \ldots, k_{n}\right)+\mathcal{O}\left(q^{2}\right) .
\end{gathered}
$$

- At leading order, this equation is

$$
\sum_{i=1}^{n} e_{i}=0
$$

which is simply a statement of charge conservation [Weinberg, 1964]

- At the next order, we have

$$
q_{\mu} N_{n}^{\mu}\left(0 ; k_{1}, \ldots, k_{n}\right)=-\sum_{i=1}^{n} e_{i} q_{\mu} \frac{\partial}{\partial k_{i \mu}} T_{n}\left(k_{1}, \ldots, k_{n}\right)
$$

- This equation tells us that $N_{n}^{\mu}\left(0 ; k_{1}, \ldots, k_{n}\right)$ is entirely determined in terms of T_{n} up to potential pieces that are separately gauge invariant.
- However, it is easy to see that the only expressions local in q that vanish under the gauge-invariance condition $q_{\mu} E^{\mu}=0$ are of the form,

$$
E^{\mu}=\left(B_{1} \cdot q\right) B_{2}^{\mu}-\left(B_{2} \cdot q\right) B_{1}^{\mu}
$$

where B_{1}^{μ} and B_{2}^{μ} are arbitrary vectors (local in q) constructed with the momenta of the scalar particles.

- The explicit factor of the soft momentum q in each term means that they are suppressed in the soft limit and do not contribute to $N_{n}^{\mu}\left(0 ; k_{1}, \ldots, k_{n}\right)$.
- We can therefore remove the q_{μ} leaving

$$
N_{n}^{\mu}\left(0 ; k_{1}, \ldots, k_{n}\right)=-\sum_{i=1}^{n} e_{i} \frac{\partial}{\partial k_{i \mu}} T_{n}\left(k_{1}, \ldots, k_{n}\right)
$$

thereby determining $N_{n}^{\mu}\left(0 ; k_{1}, \ldots, k_{n}\right)$ as a function of the amplitude without the photon.

- Inserting this into the original expression yields

$$
A_{n}^{\mu}\left(q ; k_{1}, \ldots, k_{n}\right)=\sum_{i=1}^{n} \frac{e_{i}}{k_{i} \cdot q}\left[k_{i}^{\mu}-i q_{\nu} J_{i}^{\mu \nu}\right] T_{n}\left(k_{1}, \ldots, k_{n}\right)+\mathcal{O}(q)
$$

where

$$
J_{i}^{\mu \nu} \equiv i\left(k_{i}^{\mu} \frac{\partial}{\partial k_{i \nu}}-k_{i}^{\nu} \frac{\partial}{\partial k_{i \mu}}\right)
$$

is the orbital angular-momentum operator and $T_{n}\left(k_{1}, \ldots, k_{n}\right)$ is the scattering amplitude involving n scalar particles (and no photon).

- The amplitude with a soft photon with momentum q is entirely determined in terms of the amplitude without the photon up to $\mathcal{O}\left(q^{0}\right)$.
- This goes under the name of F. Low's low-energy theorem.
- Low's theorem is unchanged at loop level for the simple reason that even at loop level, all diagrams containing a pole in the soft momentum are of the form shown, with loops appearing only in the blob and not correcting the external vertex.
- Can we get any further information at higher orders in the soft expansion?
- One order further in the expansion, we find the extra condition,

$$
\frac{1}{2} \sum_{i=1}^{n} e_{i} q_{\mu} q_{\nu} \frac{\partial^{2}}{\partial k_{i \mu} \partial k_{i \nu}} T_{n}\left(k_{1}, \ldots, k_{n}\right)+q_{\mu} q_{\nu} \frac{\partial N_{n}^{\mu}}{\partial q_{\nu}}\left(0 ; k_{1}, \ldots, k_{n}\right)=0
$$

- This implies

$$
\sum_{i=1}^{n} e_{i} \frac{\partial^{2}}{\partial k_{i \mu} \partial k_{i \nu}} T_{n}\left(k_{1}, \ldots, k_{n}\right)+\left[\frac{\partial N_{n}^{\mu}}{\partial q_{\nu}}+\frac{\partial N_{n}^{\nu}}{\partial q_{\mu}}\right]\left(0 ; k_{1}, \ldots, k_{n}\right)=0
$$

- Gauge invariance determines only the symmetric part of the quantity $\frac{\partial N_{n}^{\nu}}{\partial q_{\mu}}\left(0 ; k_{1}, \ldots, k_{n}\right)$.
- The antisymmetric part is not fixed by gauge invariance.
- Indeed, this corresponds exactly to the gauge invariant terms considered above.
- Then, up to this order, we have

$$
\begin{aligned}
& A_{n}^{\mu}\left(q_{i} k_{1}, \ldots, k_{n}\right) \\
& =\sum_{i=1}^{n} \frac{e_{i}}{k_{i} \cdot q}\left[k_{i}^{\mu}-i q_{\nu} J_{i}^{\mu \nu}\left(1+\frac{1}{2} q_{\rho} \frac{\partial}{\partial k_{i \rho}}\right)\right] T_{n}\left(k_{1}, \ldots, k_{n}\right) \\
& +\frac{1}{2} q_{\nu}\left[\frac{\partial N_{n}^{\mu}}{\partial q_{\nu}}-\frac{\partial N_{n}^{\nu}}{\partial q_{\mu}}\right]\left(0 ; k_{1}, \ldots, k_{n}\right)+O\left(q^{2}\right)
\end{aligned}
$$

- It is straightforward to see that one gets zero by saturating the previous expression with q_{μ}.
- In order to write our universal expression in terms of the amplitude, we contract $A_{n}^{\mu}\left(q ; k_{1}, \ldots, k_{n}\right)$ with the photon polarization $\varepsilon_{q \mu}$.
- Finally, we have the soft-photon limit of the single-photon, n-scalar amplitude:

$$
A_{n}\left(q ; k_{1}, \ldots, k_{n}\right) \rightarrow\left[S^{(0)}+S^{(1)}\right] T_{n}\left(k_{1}, \ldots, k_{n}\right)+\mathcal{O}(q)
$$

where

$$
\begin{aligned}
S^{(0)} & \equiv \sum_{i=1}^{n} e_{i} \frac{k_{i} \cdot \varepsilon_{q}}{k_{i} \cdot q} \\
S^{(1)} & \equiv-i \sum_{i=1}^{n} e_{i} \frac{\varepsilon_{q \mu} q_{\nu} J_{i}^{\mu \nu}}{k_{i} \cdot q}
\end{aligned}
$$

where $J_{i}^{\mu \nu}$ is the angular momentum.

One graviton and n scalar particles

- In the case of a graviton scattering on n scalar particles, one can write

$$
\begin{aligned}
M_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right) & =\sum_{i=1}^{n} \frac{k_{i}^{\mu} k_{i}^{\nu}}{k_{i} \cdot q} T_{n}\left(k_{1}, \ldots, k_{i}+q, \ldots, k_{n}\right) \\
& +N_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right)
\end{aligned}
$$

- $N_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right)$ is symmetric under the exchange of μ and ν.
- For simplicity, we have set the gravitational coupling constant to unity.
- On-shell gauge invariance implies

$$
\begin{aligned}
0 & =q_{\mu} M_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right) \\
& =\sum_{i=1}^{n} k_{i}^{\nu} T_{n}\left(k_{1}, \ldots, k_{i}+q, \ldots, k_{n}\right)+q_{\mu} N_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right) .
\end{aligned}
$$

- At leading order in q, we then have

$$
\sum_{i=1}^{n} k_{i}^{\mu}=0
$$

- It is satisfied due to momentum conservation.
- If there had been different couplings to the different particles, it would have prevented this from vanishing in general.
- This shows that gravitons have universal coupling [Weinberg, 1964]).
- At first order in q, one gets

$$
\sum_{i=1}^{n} k_{i}^{\nu} \frac{\partial}{\partial k_{i \mu}} T_{n}\left(k_{1}, \ldots, k_{n}\right)+N_{n}^{\mu \nu}\left(0 ; k_{1}, \ldots, k_{n}\right)=0
$$

- while at second order in q, it gives

$$
\sum_{i=1}^{n} k_{i}^{\nu} \frac{\partial^{2}}{\partial k_{i \mu} \partial k_{i \rho}} T_{n}\left(k_{1}, \ldots, k_{n}\right)+\left[\frac{\partial N_{n}^{\mu \nu}}{\partial q_{\rho}}+\frac{\partial N_{n}^{\rho \nu}}{\partial q_{\mu}}\right]\left(0 ; k_{1}, \ldots, k_{n}\right)=0 .
$$

- As for the photon, this is true up to gauge-invariant contributions to $N_{n}^{\mu \nu}$.
- However, the requirement of locality prevents us from writing any expression that is local in q and not sufficiently suppressed in q.
- Using the previous equations, we write the expression for a soft graviton as

$$
\begin{aligned}
& M_{n}^{\mu \nu}\left(q ; k_{1} \ldots k_{n}\right) \\
& =\sum_{i=1}^{n} \frac{k_{i}^{\nu}}{k_{i} \cdot q}\left[k_{i}^{\mu}-i q_{\rho} J_{i}^{\mu \rho}\left(1+\frac{1}{2} q_{\sigma} \frac{\partial}{\partial k_{i \sigma}}\right)\right] T_{n}\left(k_{1}, \ldots, k_{n}\right) \\
& +\frac{1}{2} q_{\rho}\left[\frac{\partial N_{n}^{\mu \nu}}{\partial q_{\rho}}-\frac{\partial N_{n}^{\rho \nu}}{\partial q_{\mu}}\right]\left(0 ; k_{1}, \ldots, k_{n}\right)+\mathcal{O}\left(q^{2}\right) .
\end{aligned}
$$

- This is essentially the same as for the photon except that there is a second Lorentz index in the graviton case.
- Unlike the case of the photon, the antisymmetric quantity in the second line of the previous equation can also be determined from the amplitude $T_{n}\left(k_{1}, \ldots, k_{n}\right)$ without the graviton.
- Saturating the previous expression with q^{μ} we get of course zero.
- If we instead saturate it with q^{ν}, we get

$$
\begin{aligned}
& q_{\nu} M_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right) \\
& =\frac{1}{2} q_{\rho} q_{\sigma}\left\{\sum_{i=1}^{n}\left(k_{i}^{\mu} \frac{\partial}{\partial k_{i \rho}}-k_{i}^{\rho} \frac{\partial}{\partial k_{i \mu}}\right) \frac{\partial}{\partial k_{i \sigma}} T_{n}\left(k_{1}, \ldots, k_{n}\right)\right. \\
& \left.+\left[\frac{\partial N_{n}^{\mu \sigma}}{\partial q_{\rho}}-\frac{\partial N_{n}^{\rho \sigma}}{\partial q_{\mu}}\right]\left(0 ; k_{1}, \ldots, k_{n}\right)\right\}=0,
\end{aligned}
$$

- The vanishing follows from the equation above (implied by gauge invariance), remembering that $N_{n}^{\mu \nu}$ is a symmetric matrix.
- Therefore the amplitude is gauge invariant.
- The same equation allows us to write the relation,

$$
-i \sum_{i=1}^{n} J_{i}^{\mu \rho} \frac{\partial}{\partial k_{i \sigma}} T_{n}\left(k_{1}, \ldots, k_{n}\right)=\left[\frac{\partial N_{n}^{\rho \sigma}}{\partial q_{\mu}}-\frac{\partial N_{n}^{\mu \sigma}}{\partial q_{\rho}}\right]\left(0 ; k_{1}, \ldots, k_{n}\right)
$$

which fixes the antisymmetric part of the derivative of $N_{n}^{\mu \nu}$ in terms of the amplitude $T_{n}\left(k_{1}, \ldots, k_{n}\right)$ without the graviton.

- Using the previous equation, we can then rewrite the terms of $\mathcal{O}(q)$ as follows:

$$
\begin{aligned}
& \left.M_{n}^{\mu \nu}\left(q ; k_{1}, \ldots, k_{n}\right)\right|_{\mathcal{O}(q)} \\
& =-\frac{i}{2} \sum_{i=1}^{n} \frac{q_{\rho} q_{\sigma}}{k_{i} \cdot q}\left[k_{i}^{\nu} J_{i}^{\mu \rho} \frac{\partial}{\partial k_{i \sigma}}-k_{i}^{\sigma} J_{i}^{\mu \rho} \frac{\partial}{\partial k_{i \nu}}\right] T_{n}\left(k_{1}, \ldots, k_{n}\right) \\
& =-\frac{i}{2} \sum_{i=1}^{n} \frac{q_{\rho} q_{\sigma}}{k_{i} \cdot q}\left[J_{i}^{\mu \rho} k_{i}^{\nu} \frac{\partial}{\partial k_{i \sigma}}-\left(J_{i}^{\mu \rho} k_{i \nu}\right) \frac{\partial}{\partial k_{i \sigma}}\right. \\
& \left.-J_{i}^{\mu \rho} k_{i}^{\sigma} \frac{\partial}{\partial k_{i \nu}}+\left(J_{i}^{\mu \rho} k_{i}^{\sigma}\right) \frac{\partial}{\partial k_{i \nu}}\right] T_{n}\left(k_{1}, \ldots, k_{n}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \frac{1}{k_{i} \cdot q}\left[\left(\left(k_{i} \cdot q\right)\left(\eta^{\mu \nu} q^{\sigma}-q^{\mu} \eta^{\nu \sigma}\right)-k_{i}^{\mu} q^{\nu} q^{\sigma}\right) \frac{\partial}{\partial k_{i}^{\sigma}}\right. \\
& \left.-q_{\rho} J_{i}^{\mu \rho} q_{\sigma} J_{i}^{\nu \sigma}\right] T_{n}\left(k_{1}, \ldots, k_{n}\right) .
\end{aligned}
$$

- Finally, we wish to write our soft-limit expression in terms of the amplitude, so we contract with the physical polarization tensor of the soft graviton, $\varepsilon_{q \mu \nu}$.
- We see that the physical-state conditions set to zero the terms that are proportional to $\eta^{\mu \nu}, q^{\mu}$ and q^{ν}.
- We are then left with the following expression for the graviton soft limit of a single-graviton, n-scalar amplitude:

$$
M_{n}\left(q ; k_{1}, \ldots, k_{n}\right) \rightarrow\left[S^{(0)}+S^{(1)}+S^{(2)}\right] T_{n}\left(k_{1}, \ldots, k_{n}\right)+\mathcal{O}\left(q^{2}\right)
$$

- where

$$
\begin{aligned}
S^{(0)} & \equiv \sum_{i=1}^{n} \frac{\varepsilon_{\mu \nu} k_{i}^{\mu} k_{i}^{\nu}}{k_{i} \cdot q} \\
S^{(1)} & \equiv-i \sum_{i=1}^{n} \frac{\varepsilon_{\mu \nu} k_{i}^{\mu} q_{\rho} J_{i}^{\nu \rho}}{k_{i} \cdot q} \\
S^{(2)} & \equiv-\frac{1}{2} \sum_{i=1}^{n} \frac{\varepsilon_{\mu \nu} q_{\rho} J_{i}^{\mu \rho} q_{\sigma} J_{i}^{\nu \sigma}}{k_{i} \cdot q}
\end{aligned}
$$

- These soft factors follow from gauge invariance and agree with those computed by Cachazo and Strominger.
- We have also looked at higher-order terms and found that gauge invariance does not fully determine them in terms of derivatives acting on $T_{n}\left(k_{1}, \ldots, k_{n}\right)$.

Soft limit of n-gluon amplitude

(a)

(b)

(c)

- We consider a tree-level color-ordered amplitude where gluon n becomes soft with $q \equiv k_{n}$.
- Being the amplitude color-ordered, we have to consider only two poles.
- We get

$$
\begin{aligned}
& A_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) \\
& \quad=\frac{\delta_{\rho}^{\mu_{1}} k_{1}^{\mu}+\eta^{\mu \mu_{1}} q_{\rho}-\delta_{\rho}^{\mu} q^{\mu_{1}}}{\sqrt{2}\left(k_{1} \cdot q\right)} A_{n-1}^{\rho \mu_{2} \cdots \mu_{n-1}}\left(k_{1}+q, k_{2}, \ldots, k_{n-1}\right) \\
& -\frac{\delta_{\rho}^{\mu_{n-1}} k_{n-1}^{\mu}+\eta^{\mu_{n-1} \mu} q_{\rho}-\delta_{\rho}^{\mu} q^{\mu_{n-1}}}{\sqrt{2}\left(k_{n-1} \cdot q\right)} A_{n-1}^{\mu_{1} \cdots \mu_{n-2} \rho}\left(k_{1}, \ldots, k_{n-2}, k_{n-1}+q\right) \\
& \quad+N_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) .
\end{aligned}
$$

- We have dropped terms from the three-gluon vertex that vanish when saturated with the external-gluon polarization vectors in addition to using the current-conservation conditions,

$$
\begin{aligned}
& \left(k_{1}+q\right)_{\rho} A_{n-1}^{\rho \mu_{2} \cdots \mu_{n-1}}\left(k_{1}+q, k_{2}, \ldots, k_{n-1}\right)=0 \\
& \left(k_{n-1}+q\right)_{\rho} A_{n-1}^{\mu_{1} \cdots \mu_{n-2} \rho}\left(k_{1}, \ldots, k_{n-2}, k_{n-1}+q\right)=0
\end{aligned}
$$

which are valid once we contract with the polarization vectors carrying the μ_{j} indices.

- By introducing the spin-one angular-momentum operator,

$$
\left(\Sigma_{i}^{\mu \sigma}\right)^{\mu_{i} \rho} \equiv i\left(\eta^{\mu \mu_{i}} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\mu_{i} \sigma}\right)
$$

we can write the total amplitude as

$$
\begin{aligned}
& A_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) \\
& \quad=\frac{\delta_{\rho}^{\mu_{1}} k_{1}^{\mu}-i q_{\sigma}\left(\sum_{1}^{\mu \sigma}\right)^{\mu_{1}} \rho}{\sqrt{2}\left(k_{1} \cdot q\right)} A_{n-1}^{\rho \mu_{2} \cdots \mu_{n-1}}\left(k_{1}+q, k_{2}, \ldots, k_{n-1}\right) \\
& \quad-\frac{\delta_{\rho}^{\mu_{n-1}} k_{n-1}^{\mu}-i q_{\sigma}\left(\sum_{n-1}^{\mu \sigma}\right)^{\mu_{n-1}} \rho}{\sqrt{2}\left(k_{n-1} \cdot q\right)} A_{n-1}^{\mu_{1} \cdots \mu_{n-2} \rho}\left(k_{1}, \ldots, k_{n-2}, k_{n-1}+q\right) \\
& \quad \quad+N_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right)
\end{aligned}
$$

- Notice that the spin-one terms independently vanish when contracted with q_{μ}.
- On-shell gauge invariance requires

$$
\begin{gathered}
0=q_{\mu} A_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) \\
=\frac{1}{\sqrt{2}} A_{n-1}^{\mu_{1} \mu_{2} \cdots \mu_{n-1}}\left(k_{1}+q, k_{2}, \ldots, k_{n-1}\right) \\
-\frac{1}{\sqrt{2}} A_{n-1}^{\mu_{1} \cdots \mu_{n-2} \mu_{n-1}}\left(k_{1}, \ldots, k_{n-2}, k_{n-1}+q\right) \\
\quad+q_{\mu} N_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right)
\end{gathered}
$$

- For $q=0$, this is automatically satisfied.
- At the next order in q, we obtain

$$
\begin{aligned}
& -\frac{1}{\sqrt{2}}\left[\frac{\partial}{\partial k_{1 \mu}}-\frac{\partial}{\partial k_{n-1 \mu}}\right] A_{n-1}^{\mu_{1} \cdots \mu_{n-1}}\left(k_{1}, k_{2} \ldots k_{n-1}\right) \\
& =N_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(0 ; k_{1}, \ldots, k_{n-1}\right) .
\end{aligned}
$$

- Similar to the photon case, we ignore local gauge-invariant terms in $N_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}$ because they are necessarily of a higher order in q.
- Thus, $N_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}}\left(0 ; k_{1}, \ldots, k_{n-1}\right)$ is determined in terms of the amplitude without the soft gluon.
- With this, the total expression becomes

$$
\begin{aligned}
& A_{n}^{\mu ; \mu_{1} \cdots \mu_{n-1}\left(q ; k_{1} \ldots k_{n-1}\right)} \\
& =\left(\frac{k_{1}^{\mu}}{\sqrt{2}\left(k_{1} \cdot q\right)}-\frac{k_{n-1}^{\mu}}{\sqrt{2}\left(k_{n-1} \cdot q\right)}\right) A_{n-1}^{\mu_{1} \cdots \mu_{n-1}}\left(k_{1}, \ldots, k_{n-1}\right) \\
& \quad-i \frac{q_{\sigma}\left(J_{1}^{\mu \sigma}\right)^{\mu_{1}} \rho}{\sqrt{2}\left(k_{1} \cdot q\right)} A_{n-1}^{\rho \mu_{2} \cdots \mu_{n-1}}\left(k_{1}, \ldots, k_{n-1}\right) \\
& \quad+i \frac{q_{\sigma}\left(J_{n-1}^{\mu \sigma}\right)^{\mu_{n-1}} \rho}{\sqrt{2}\left(k_{n-1} \cdot q\right)} A_{n-1}^{\mu_{1} \cdots \mu_{n-2} \rho}\left(k_{1}, \ldots, k_{n-1}\right)+\mathcal{O}(q),
\end{aligned}
$$

where

$$
\left(J_{i}^{\mu \sigma}\right)^{\mu_{i} \rho} \equiv L_{i}^{\mu \sigma} \eta^{\mu_{i} \rho}+\left(\Sigma_{i}^{\mu \sigma}\right)^{\mu_{i} \rho},
$$

with

$$
L_{i}^{\mu \sigma} \equiv i\left(k_{i}^{\mu} \frac{\partial}{\partial k_{i \sigma}}-k_{i}^{\sigma} \frac{\partial}{\partial k_{i \mu}}\right) ;\left(\sum_{i}^{\mu \sigma}\right)^{\mu_{i} \rho} \equiv i\left(\eta^{\mu \mu_{i}} \eta^{\rho \sigma}-\eta^{\mu \rho} \eta^{\mu_{i} \sigma}\right)
$$

- In order to write the final result in terms of full amplitudes, we contract with external polarization vectors.
- We must pass polarization vectors $\varepsilon_{1 \mu_{1}}$ and $\varepsilon_{n-1 \mu_{n-1}}$ through the spin-one angular-momentum operator such that they will contract with the ρ index of, respectively, $A_{n-1}^{\rho \mu_{2} \cdots \mu_{n-1}}\left(k_{1}, \ldots, k_{n-1}\right)$ and $A_{n-1}^{\mu_{1} \cdots \mu_{n-2} \rho}\left(k_{1}, \ldots, k_{n-1}\right)$.
- It is convenient write the spin angular-momentum operator as

$$
\varepsilon_{i \mu_{i}}\left(\Sigma_{i}^{\mu \sigma}\right)^{\mu_{i}} A^{\rho}=i\left(\varepsilon_{i}^{\mu} \frac{\partial}{\partial \varepsilon_{i \sigma}}-\varepsilon_{i}^{\sigma} \frac{\partial}{\partial \varepsilon_{i \mu}}\right) \varepsilon_{i \rho} A^{\rho} .
$$

- We may therefore write

$$
A_{n}\left(q ; k_{1}, \ldots, k_{n-1}\right) \rightarrow\left[S_{n}^{(0)}+S_{n}^{(1)}\right] A_{n-1}\left(k_{1}, \ldots, k_{n-1}\right)+\mathcal{O}(q)
$$

where

$$
\begin{aligned}
S_{n}^{(0)} & \equiv \frac{k_{1} \cdot \varepsilon_{n}}{\sqrt{2}\left(k_{1} \cdot q\right)}-\frac{k_{n-1} \cdot \varepsilon_{n}}{\sqrt{2}\left(k_{n-1} \cdot q\right)} \\
S_{n}^{(1)} & \equiv-i \varepsilon_{n \mu} q_{\sigma}\left(\frac{J_{1}^{\mu \sigma}}{\sqrt{2}\left(k_{1} \cdot q\right)}-\frac{J_{n-1}^{\mu \sigma}}{\sqrt{2}\left(k_{n-1} \cdot q\right)}\right)
\end{aligned}
$$

- Here

$$
J_{i}^{\mu \sigma} \equiv L_{i}^{\mu \sigma}+\Sigma_{i}^{\mu \sigma}
$$

where

$$
L_{i}^{\mu \nu} \equiv i\left(k_{i}^{\mu} \frac{\partial}{\partial k_{i \nu}}-k_{i}^{\nu} \frac{\partial}{\partial k_{i \mu}}\right) \quad, \quad \Sigma_{i}^{\mu \sigma} \equiv i\left(\varepsilon_{i}^{\mu} \frac{\partial}{\partial \varepsilon_{i \sigma}}-\varepsilon_{i}^{\sigma} \frac{\partial}{\partial \varepsilon_{i \mu}}\right)
$$

Soft limit of n-graviton amplitude

- As before the amplitude is the sum of two pieces:

$$
\begin{aligned}
& \quad M_{n}^{\mu \nu ; \mu_{1} \nu_{1} \cdots \mu_{n-1} \nu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) \\
& =\sum_{i=1}^{n-1} \frac{1}{k_{i} \cdot q}\left[k_{i}^{\mu} \eta^{\mu_{i} \alpha}-i q_{\rho}\left(\sum_{i}^{\mu \rho}\right)^{\mu_{i} \alpha}\right]\left[k_{i}^{\nu} \eta^{\nu_{i} \beta}-i q_{\sigma}\left(\sum_{i}^{\mu \sigma}\right)^{\nu_{i} \beta}\right] \\
& \\
& \times M_{n-1}^{\mu_{1} \nu_{1} \cdots}{ }_{\alpha \beta} \ldots \mu_{n-1} \nu_{n-1}\left(k_{1}, \ldots, k_{i}+q, \ldots, k_{n-1}\right) \\
& \quad+N_{n}^{\mu \nu ; \mu_{1} \nu_{1} \cdots \mu_{n-1} \nu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right),
\end{aligned}
$$

where

$$
\left(\Sigma_{i}^{\mu \rho}\right)^{\mu_{i} \alpha} \equiv i\left(\eta^{\mu \mu_{i}} \eta^{\alpha \rho}-\eta^{\mu \alpha} \eta^{\mu_{i} \rho}\right) .
$$

- On-shell gauge invariance implies

$$
\begin{aligned}
& 0=q_{\mu} M_{n}^{\mu \nu ; \mu_{1} \nu_{1} \cdots \mu_{n-1} \nu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) \\
& =\sum_{i=1}^{n-1}\left[k_{i}^{\nu} \eta^{\nu_{i} \beta}-i q_{\rho}\left(\sum_{i}^{\nu \rho}\right)^{\nu_{i} \beta}\right] M_{n-1}^{\mu_{1} \nu_{1} \cdots \mu_{i} \ldots \mu_{n-1} \nu_{n-1}}\left(k_{1}, \ldots, k_{i}+q, \ldots, k_{n-1}\right) \\
& \quad+q_{\mu} N_{n}^{\mu \nu ; \mu_{1} \nu_{1} \cdots \mu_{n-1} \nu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right) .
\end{aligned}
$$

- Proceeding as before we end up getting

$$
M_{n}^{\mu \nu ; \mu_{1} \nu_{1} \cdots \mu_{n-1} \nu_{n-1}}\left(q ; k_{1}, \ldots, k_{n-1}\right)
$$

$$
=\sum_{i=1}^{n-1} \frac{1}{k_{i} \cdot q}\left\{k_{i}^{\mu} k_{i}^{\nu} \eta^{\mu_{i} \alpha} \eta^{\nu_{i} \beta}\right.
$$

$$
-\frac{i}{2} q_{\rho}\left[k_{i}^{\mu} \eta^{\mu_{i} \alpha}\left[L_{i}^{\nu \rho} \eta^{\nu_{i} \beta}+2\left(\Sigma_{i}^{\nu \rho}\right)^{\nu_{i} \beta}\right]+k_{i}^{\nu} \eta^{\nu_{i} \beta}\left[L_{i}^{\mu \rho} \eta^{\mu_{i} \alpha}+2\left(\Sigma_{i}^{\mu \rho}\right)^{\mu_{i} \alpha}\right]\right]
$$

$$
\left.\frac{1}{2} q_{\rho} q_{\sigma}\left[\left[L_{i}^{\mu \rho} \eta^{\mu_{i} \alpha}+2\left(\Sigma_{i}^{\mu \rho}\right)^{\mu_{i} \alpha}\right]\left[L_{i}^{\nu \sigma} \eta^{\nu_{i} \beta}+2\left(\Sigma_{i}^{\nu \sigma}\right)^{\nu_{i} \beta}\right]-2\left(\Sigma_{i}^{\mu \rho}\right)^{\mu_{i} \alpha}\left(\Sigma_{i}^{\nu \sigma}\right)^{\nu_{i} \beta}\right]\right\}
$$

$$
\times M_{n-1}^{\mu_{1} \nu_{1} \cdots} \quad{ }_{\alpha \beta}^{\cdots \mu_{n-1} \nu_{n-1}}\left(k_{1}, \ldots, k_{i}, \ldots, k_{n-1}\right)+\mathcal{O}\left(q^{2}\right) .
$$

- In order to write our expression in terms of amplitudes, we saturate with graviton polarization tensors using $\varepsilon_{\mu \nu} \rightarrow \varepsilon_{\mu} \varepsilon_{\nu}$ where ε_{μ} are spin-one polarization vectors.
- As we did for the case with gluons, we must pass the polarization vectors through the spin-one operators.

$$
M_{n}\left(q ; k_{1}, \ldots, k_{n-1}\right)=\left[S_{n}^{(0)}+S_{n}^{(1)}+S_{n}^{(2)}\right] M_{n-1}\left(k_{1}, \ldots, k_{n-1}\right)+\mathcal{O}\left(q^{2}\right)
$$

where

$$
\begin{aligned}
& S_{n}^{(0)} \equiv \sum_{i=1}^{n-1} \frac{\varepsilon_{\mu \nu} k_{i}^{\mu} k_{i}^{\nu}}{k_{i} \cdot q} \\
& S_{n}^{(1)} \equiv-i \sum_{i=1}^{n-1} \frac{\varepsilon_{\mu \nu} k_{i}^{\mu} q_{\rho} J_{i}^{\nu \rho}}{k_{i} \cdot q} \\
& S_{n}^{(2)} \equiv-\frac{1}{2} \sum_{i=1}^{n-1} \frac{\varepsilon_{\mu \nu} q_{\rho} J_{i}^{\mu \rho} q_{\sigma} J_{i}^{\nu \sigma}}{k_{i} \cdot q}
\end{aligned}
$$

- Here

$$
J_{i}^{\mu \sigma} \equiv L_{i}^{\mu \sigma}+\Sigma_{i}^{\mu \sigma}
$$

with
$L_{i}^{\mu \sigma} \equiv i\left(k_{i}^{\mu} \frac{\partial}{\partial k_{i \sigma}}-k_{i}^{\sigma} \frac{\partial}{\partial k_{i \mu}}\right)$,

$$
\Sigma_{i}^{\mu \sigma} \equiv i\left(\varepsilon_{i}^{\mu} \frac{\partial}{\partial \varepsilon_{i \sigma}}-\varepsilon_{i}^{\sigma} \frac{\partial}{\partial \varepsilon_{i \mu}}\right)
$$

Comments on loop corrections: gauge theory

- At one-loop the amplitude will have in general IR and UV divergences.
- We are not giving here a complete study of them.
- The one-loop contributions have been classified into the factorizing ones and the non-factorizing ones.
- We will concentrate here to the factorizing ones.
- They modify the vertex present in the pole term.
- For the gauge theory they are of the type shown in the figure.

- They have been computed in QCD and are given by:
$D^{\mu, \text { fact }}=\frac{i}{\sqrt{2}} \frac{1}{3} \frac{1}{(4 \pi)^{2}}\left(1-\frac{n_{f}}{N_{c}}+\frac{n_{s}}{N_{c}}\right)\left(q-k_{a}\right)^{\mu}\left[\left(\varepsilon_{n} \cdot \varepsilon_{a}\right)-\frac{\left(q \cdot \varepsilon_{a}\right)\left(k_{a} \cdot \varepsilon_{n}\right)}{\left(k_{a} \cdot q\right)}\right]$
[Z. Bern, V. Del Duca, C.R. Schmidt, 1998]
[Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, 1999]
- It is both IR and UV finite and the limit $\epsilon \rightarrow 0$ has been taken.
- It is non-local because of the pole in $\left(q k_{a}\right)$.
- It is gauge invariant under the substitution $\epsilon_{q} \rightarrow q$.
- It does not contribute to the leading soft behavior.
- Attaching to it the rest of the amplitude

$$
D_{\mu}^{\text {fact }} \frac{-i}{2 q \cdot k_{a}} \mathcal{J}^{\mu},
$$

- \mathcal{J}^{μ} is a conserved current:

$$
\left(q+k_{a}\right)_{\mu} \mathcal{J}^{\mu}=0,
$$

assuming that all the remaining legs are contracted with on-shell polarizations.

- We can trade k_{a} with q and we get immediately:

$$
D_{\mu}^{\text {fact }} \frac{-i}{2 q \cdot k_{a}} \mathcal{J}^{\mu}=\mathcal{O}\left(q^{0}\right)
$$

- No leading $\mathcal{O}\left(\frac{1}{q}\right)$ correction from the factorizing contribution to the one-loop soft functions.

Comments on loop corrections: gravity

- A similar calculation can be done for the gravity case.
- We consider only the case in which scalar fields circulate in the loop.
- The result of this calculation is:

$$
\begin{aligned}
\mathcal{D}^{\mu \nu, \text { fact,s }}=\frac{i}{(4 \pi)^{2}} & \left(\frac{\kappa}{2}\right)^{3} \frac{1}{30}\left[\left(\varepsilon_{n} \cdot \varepsilon_{a}\right)-\frac{\left(q \cdot \varepsilon_{a}\right)\left(k_{a} \cdot \varepsilon_{n}\right)}{\left(q \cdot k_{a}\right)}\right] \\
& \times\left(\left(q \cdot \varepsilon_{a}\right)\left(k_{a} \cdot \varepsilon_{n}\right)-\left(\varepsilon_{n} \cdot \varepsilon_{a}\right)\left(q \cdot k_{a}\right)\right) k_{a}^{\mu} k_{a}^{\nu}+\mathcal{O}\left(q^{2}\right)
\end{aligned}
$$

- As in the gauge-theory case, the diagrams $\mathcal{D}^{\mu \nu, f a c t, s}$ contract into a conserved current:

$$
\left(k_{a}+q\right)^{\mu} \mathcal{J}_{\mu \nu}=f\left(k_{i}, \epsilon_{i}\right)\left(k_{a}+q\right)_{\nu},\left(k_{a}+q\right)^{\nu} \mathcal{J}_{\mu \nu}=f\left(k_{i}, \epsilon_{i}\right)\left(k_{a}+q\right)_{\mu} .
$$

- This means

$$
\begin{aligned}
& k_{a}^{\mu} k_{a}^{\nu} \mathcal{J}_{\mu \nu}=\left(k_{a}+q\right)^{\mu}\left(k_{a}+q\right)^{\nu} \mathcal{J}_{\mu \nu}+\mathcal{O}(q) \\
& =f\left(k_{i}, \epsilon_{i}\right)\left(k_{a}+q\right)^{2}+\mathcal{O}(q)=2 f\left(k_{i}, \epsilon_{i}\right) q \cdot k_{a}+\mathcal{O}(q)=\mathcal{O}(q)
\end{aligned}
$$

- We therefore have

$$
\mathcal{D}^{\mu \nu, \text { fact }, \mathrm{s}} \frac{i}{2 q \cdot k_{a}} \mathcal{J}_{\mu \nu}=\mathcal{O}(q) .
$$

- No modification of the two first leading terms.
- As in QCD, we expect that the contribution of other particles circulating in the loop will not modify this result.

What about soft theorems in string theory?

- In superstring the soft theorems have been investigated by B.U.W. Schwab, arXiv:1406.4172 and M. Bianchi, Song He, Yu-tin Huang and Congkao Wen, arXiv:1406.5155.
- Here we give just few examples in the bosonic string.
- One gluon and three tachyons:

$$
\begin{aligned}
A_{\mu}\left(p_{1}, p_{2}, q, p_{3}\right) & \sim \sqrt{2 \alpha^{\prime}} \frac{\Gamma\left(1+2 \alpha^{\prime} p_{3} q\right) \Gamma\left(1+2 \alpha^{\prime} p_{2} q\right)}{\Gamma\left(1+2 \alpha^{\prime}\left(p_{2}+p_{3}\right) q\right)} \\
& \times\left(\frac{p_{2 \mu}}{2 \alpha^{\prime} p_{3} q}-\frac{p_{3 \mu}}{2 \alpha^{\prime} p_{3} q}\right)
\end{aligned}
$$

- One graviton(dilaton) and three tachyons $\left(p_{1}+p_{2}+p_{3}=-q\right)$:

$$
\begin{aligned}
A_{\mu \nu}\left(p_{1}, p_{2}, p_{3}, q\right) & \sim\left(\frac{p_{1 \mu} p_{1 \nu}}{p_{1} q}+\frac{p_{2 \mu} p_{2 \nu}}{p_{2} q}+\frac{p_{3 \mu} p_{3 \nu}}{p_{3} q}\right) \\
& \times \frac{\Gamma\left(1+\frac{\alpha^{\prime}}{2} p_{1} q\right) \Gamma\left(1+\frac{\alpha^{\prime}}{2} p_{2} q\right) \Gamma\left(1+\frac{\alpha^{\prime}}{2} p_{3} q\right)}{\Gamma\left(1-\frac{\alpha^{\prime}}{2} p_{1} q\right) \Gamma\left(1-\frac{\alpha^{\prime}}{2} p_{2} q\right) \Gamma\left(1-\frac{\alpha^{\prime}}{2} p_{3} q\right)}
\end{aligned}
$$

- One gluon and 4 tachyons With [R. Marotta]

$$
\begin{aligned}
A_{\mu}\left(p_{1}, p_{2}, p_{3}, q, p_{4}\right) & \sim \int_{0}^{1} d z_{3}\left(1-z_{3}\right)^{2 \alpha^{\prime} p_{2} p_{3}} z_{3}^{2 \alpha^{\prime} p_{3} p_{4}} \\
& \times \int_{0}^{z_{3}} d z_{4}\left(1-z_{4}\right)^{2 \alpha^{\prime} p_{2} q}\left(z_{3}-z_{4}\right)^{2 \alpha^{\prime} p_{3} q} z_{4}^{2 \alpha^{\prime} p_{4} q} \\
& \times\left[\frac{p_{2 \mu}}{1-z_{4}}+\frac{p_{3 \mu}}{z_{3}-z_{4}}-\frac{p_{4 \mu}}{z_{4}}\right]
\end{aligned}
$$

- It is gauge invariant: $q^{\mu} A_{\mu}=0$.
- The last two lines are equal to $\left(z_{4}=z_{3} t\right)$

$$
\begin{aligned}
& z_{3}^{2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q} \int_{0}^{1} d t(1-t)^{2 \alpha^{\prime} p_{3} q} t^{2 \alpha^{\prime} p_{4} q}\left(1-z_{3} t\right)^{2 \alpha^{\prime} p_{2} q} \\
& \times\left[\frac{z_{3} p_{2 \mu}}{1-z_{3} t}+\frac{p_{3 \mu}}{1-t}-\frac{p_{4 \mu}}{t}\right]
\end{aligned}
$$

- They are equal to

$$
\begin{aligned}
& z_{3}^{2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q}\left[\frac{\Gamma\left(1+2 \alpha^{\prime} p_{4} q\right) \Gamma\left(2 \alpha^{\prime} p_{3} q\right)}{\Gamma\left(2+2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q\right)} z_{3}\right. \\
& \times{ }_{2} F_{1}\left(1-2 \alpha^{\prime} p_{2} q, 1+2 \alpha^{\prime} p_{4} q ; 2+2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q ; z_{3}\right) \\
& +\frac{\Gamma\left(2 \alpha^{\prime} p_{4} q+1\right) \Gamma\left(1+2 \alpha^{\prime} p_{3} q\right)}{\Gamma\left(1+2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q\right)}\left(-\frac{p_{4 \mu}}{2 \alpha^{\prime} p_{4} q}\right. \\
& \times{ }_{2} F_{1}\left(-2 \alpha^{\prime} p_{2} q, 2 \alpha^{\prime} p_{4} q ; 1+2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q ; z_{3}\right) \\
& +\frac{p_{3 \mu}}{2 \alpha^{\prime} p_{3} q}\left(1-z_{3}\right)^{2 \alpha^{\prime} p_{2} q} \\
& \left.\times{ }_{2} F_{1}\left(-2 \alpha^{\prime} p_{2} q, 2 \alpha^{\prime} p_{3} q ; 2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q+1 ;-\frac{z_{3}}{1-z_{3}}\right)\right)
\end{aligned}
$$

- In the soft limit up to the order q^{0} we can forget the ratio of Γ-functions, we can approximate the last two ${ }_{2} F_{1}$ with 1 and the first one with: ${ }_{2} F_{1}\left(1,1 ; 2 ; z_{3}\right) z_{3}=-\log \left(1-z_{3}\right)$.
- In this way we get:

$$
\begin{aligned}
& \int_{0}^{1} d z_{3}\left(1-z_{3}\right)^{2 \alpha^{\prime} p_{2} p_{3}} z_{3}^{2 \alpha^{\prime} p_{3} p_{4}}\left[-\log \left(1-z_{3}\right) p_{2 \mu}\right. \\
& \left.+z_{3}^{2 \alpha^{\prime}\left(p_{3}+p_{4}\right) q}\left(\frac{p_{3 \mu}}{2 \alpha^{\prime} p_{3} q}\left(1-z_{3}\right)^{2 \alpha^{\prime} p_{2} q}-\frac{p_{4 \mu}}{2 \alpha^{\prime} p_{4} q}\right)\right]
\end{aligned}
$$

- It can be written as follows:

$$
\begin{aligned}
& \frac{1}{2 \alpha^{\prime}}\left[\frac{p_{3 \mu}}{p_{3} q}-\frac{p_{4 \mu}}{p_{4} q}+\frac{q^{\rho} J_{\mu \rho}^{(3)}}{p_{3} q}-\frac{q^{\rho} J_{\mu \rho}^{(4)}}{p_{4} q}\right] \\
& \times \int_{0}^{1} d z_{3}\left(1-z_{3}\right)^{\alpha^{\prime}\left(p_{2}+p_{3}\right)^{2}-2} z_{3}^{\alpha^{\prime}\left(p_{3}+p_{4}\right)^{2}-2}
\end{aligned}
$$

- The last integral is the amplitude for four tachyons and

$$
J_{\mu \rho}^{(3,4)}=p_{(3,4) \mu} \frac{\partial}{\partial p_{(3,4) \rho}}-p_{(3,4) \rho} \frac{\partial}{\partial p_{(3,4) \mu}}
$$

Conclusions

- We have extended Low's proof of the universality of sub-leading behavior of photons to non-abelian gauge theory and to gravity.
- On-shell gauge invariance can be used to fully determine the first sub-leading soft-gluon behavior at tree level.
- In gravity the first two subleading terms in the soft expansion can also be fully determined from on-shell gauge invariance.
- We have considered the factorizing contribution to both gauge theories and gravity.
- In non-abelian gauge theories the leading term is not affected by it, but the next to the leading is affected.
- Similarly in gravity the first two leading terms are not affected by the factorizing contribution, but the next term is affected.

Outlook

- It would be nice to have under control, together with the factorizing contribution, also the ones involving both the IR and the UV divergences at one loop.
- In gauge theory they are well established, but in gravity some more work has to be done.
- It would be very nice to extract everything from string theory in the limit of $\alpha^{\prime} \rightarrow 0$.

