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Motivation

Motivation

One way of looking at Double Field theory is of a lift of the NS-NS
sector of supergravity to a purely geometric theory. That is, it is a
sort of Kaluza Klein theory that gives ordinary gravity and 2-form
gauge theory under reduction. Its local symmetries must be a
combination of diffeomorphisms with the gauge tranformations of
the 2-form potentials and its action and equations of motion must
contain the usual SUGRA ones once one removes dependences on
any extra dimensions we have added.
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Motivation

Kaluza Klein modes

I Start with massless, thus null states in the full theory, with
momentum directed in the extra dimensions

I These states from the perspective of the reduced theory have
mass and charge

I The mass will be given by momentum in KK direction

M-theory Example

I Null wave solution in M-theory gives D0-brane

I D0-brane is momentum mode in 11th direction

I Mass and charge given by momentum - BPS state
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Standard Solutions

Standard Solutions

I wave D0-Brane

ds2 = −H−1dt2 +H
[
dz − (H−1 − 1)dt

]2
+ d~y2(D−2)

Bµν = 0, e−2φ = e−2φ0

I F1-string

ds2 = −H−1
[
dt2 − dz2

]
+ d~y2(D−2)

Btz = −(H−1 − 1), e−2φ = He−2φ0

I Harmonic Function

H = 1 +
h

|~y(D−2)|D−4
, ∇2H = 0
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Double Field Theory

Introduction

Introduction to Double Field Theory

Novel formulation of string theory

I Bosonic NS-NS sector: gµν , Bµν and φ

I Makes O(D,D;R) a manifest symmetry of the action

I Metric and B-field on equal footing - geometric unification

Double the dimension of space but require a global O(D,D)
structure

I O(D,D) structure η =

(
0 1
1 0

)
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Double Field Theory

Introduction

Geometric Framework

Doubling the dimension of space to 2D

I Introduce new coordinates x̃µ
I Need section condition to pick D dimensions

Unification of two concepts

I Metric and B-field → generalized metric

I Diffeos and gauge transformations → generalized diffeos

I Generated by generalized Lie derivative
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Double Field Theory

The Doubled Formalism

The Doubled Formalism

Generalized coordinates

I Combine xµ and x̃µ into

XM = (xµ, x̃µ)

I µ = 1, . . . , D and M = 1, . . . , 2D

Generalized metric

I Combine metric gµν and Kalb-Ramond field Bµν into

HMN =

(
gµν −BµρgρσBσν Bµρg

ρν

−gµσBσν gµν

)
I Rescale the dilaton e−2d =

√
ge−2φ
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Double Field Theory

The Doubled Formalism

The DFT Action

The action integral

S =

∫
d2DXe−2dR

The generalized Ricci scalar

R =
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN

− 4HMN∂Md∂Nd+ 4∂MHMN∂Nd
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Double Field Theory

The Doubled Formalism

Equations of Motion

Since H is constrained, get projected EoMs

PMN
KLKKL = 0

where
KMN = δR/δHMN

PMN
KL =

1

2
(δM

(KδN
L) −HMP η

P (KηNQHL)Q)

Dilaton equation

R = 0
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The Wave in DFT

The Solution

The DFT Wave Solution

XM = (t, z, ym, t̃, z̃, ỹm)

Generalized metric

ds2 = HMNdXMdXN

= (H − 2)
[
dt2 − dz2

]
−H

[
dt̃2 − dz̃2

]
+ 2(H − 1)

[
dtdz̃ + dt̃dz

]
+ δmndymdyn + δmndỹmdỹn

Rescaled dilaton

d = const.
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The Wave in DFT

The Solution

The DFT Wave Solution

Properties

I Null

I Carries momentum in z̃ direction

I Interprete as null wave in DFT

I Smeared over dual directions → obeys section condition
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The Wave in DFT

Recovering the String

Reducing the Solution

Examine from the point of view of the reduced theory

I Get fundamental string solution

I Extended along z

I Mass and charge given by momentum in z̃

If z and z̃ are exchanged

I Get pp-wave in z direction

I Expected as wave and string are T-dual
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The Wave in DFT

Recovering the String

Key Result

The fundamental string is a massless wave in
doubled space with momentum in a dual direction.
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The Wave in DFT

Goldstone Mode Analysis

Goldstone Mode Analysis

Zero modes

I Symmetry breaking

I Moduli → collective coordinates

I Generated by large gauge transformations / diffeos

I Make local on worldvolume → get zero modes

Number of modes

I String: D − 2 modes

I Doubled wave / string: ???
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The Wave in DFT

Goldstone Mode Analysis

Constructing the Zero Modes

Transformations of H and d

hMN = LξHMN λ = Lξd

I gauge parameter ξM = (0, Hαφ̂m, 0, Hβ ˆ̃
φm)

I φ̂m and ˆ̃
φm are constant moduli

Allow dependece on xa = (t, z) to get zero modes

φ̂m → φm(x)
ˆ̃
φm → φ̃m(x)
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The Wave in DFT

Goldstone Mode Analysis

Equations of motion

I Insert into DFT EoMs (two derivatives, first order)

I Find �φ = 0 and �φ̃ = 0

I Also get self-duality relation for ΦM = (0, φm, 0, φ̃m)

HMNdΦN = ηMN ? dΦN

Duality symmetric string in doubled space (Tseytlin)

I Can be written as (anti-)chiral equation for ψ± = φ± φ̃

dψ± = ± ? dψ±
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Summary

Summary

Wave solution in DFT

I Solution unifies pp-wave and F1-string (T-duals)

I Momentum mode in dual direction gives fundamental string

Goldstone modes

I Find chiral zero modes of the wave solution

I Gives the correct degrees of freedom for the string in doubled
space with manifest O(d, d)
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Extension to M-Theory

Extension to M-Theory

Extended theories

I Make U-duality manifest

I Include brane wrapping directions

I Geometrically unify metric and C-field(s)

Example: SL(5)

I Duality group for M-theory in 4 dimensions xµ

I Combine with 6 wrapping directions yµν
I Wave in extended space gives M2-brane
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Extension to M-Theory

Extend space to include dual membrane winding modes, yµν along
with usual xµ coordinates. No longer a simple doubling. Now the
generalised tangent space is:

Λ1(M)⊕ Λ∗2(M) . (1)

The metric for the Sl5 case is given by:

MIJ =
( gab + 1

2Ca
efCbef

1√
2
Ca

kl

1√
2
Cmnb gmn,kl

)
, (2)

where gmn,kl = 1
2(gmkgnl − gmlgnk) and has the effect of raising

an antisymmetric pair of indices.
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Extension to M-Theory

We can construct the Lagrangian with all the right properties:

L =

(
1

12
MMN (∂MM

KL)(∂NMKL)− 1

2
MMN (∂NM

KL)(∂LMMK)

+
1

12
MMN (MKL∂MMKL)(MRS∂NMRS)

+
1

4
MMNMPQ(MRS∂PMRS)(∂MMNQ)

)
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Extension to M-Theory

The SL5 Wave Solution

Properties

I Wave solution as before with:

I momentum in yzw direction

I this is a null wave in extended geometry

I Smeared over dual direction obeying section condition

I Interpretation in reduced theory is as a membrane stretched
over the zw directions!
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Extension to M-Theory

Other duality groups. eg SO(5, 5)

Λ1(M)→ Λ∗2(M)⊕ Λ∗5(M) (3)

So we have coordinates

ZI = (xa, yab, yabcde) (4)

with a = 1..5, ab = 6..15, abcde = 16. Thus the space is 16
dimensional corresponding to the 16 of SO(5,5). The yabcde
correspond to fivebrane winding mode.
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Extension to M-Theory

The SO(5,5) generalized metric is (upper case latin indices run
from 1 to 16):

MIJ =

gab + 1
2Ca

efCbef + 1
16XaXb

1√
2
Ca

mn + 1
4
√
2
XaV

mn 1
4Xa

1√
2
Cklb + 1

4
√
2
V klXb gkl,mn + 1

2V
klV mn 1√

2
V kl

1
4Xb

1√
2
V mn 1


(5)

where we have defined:

V ab =
1

6
ηabcdeCcde , (6)

with ηabcde being the totally antisymmetric permutation symbol (it
is only a tensor density and thus distinguished from the usual εabcde

symbol) and
Xa = V deCdea . (7)
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Extension to M-Theory

We can attempt to reconstruct the dynamical theory out of this
generalized metric. We have the following Lagrangian with
manifest SO(5, 5),

L =
1

16
MMN (∂MM

KL)(∂NMKL)−1

2
MMN (∂NM

KL)(∂LMMK)

+
3

128
MMN (MKL∂MMKL)(MRS∂NMRS)

− 1

8
MMNMPQ(MRS∂PMRS)(∂MMNQ) (8)

where ∂M =
(
∂
∂xa ,

∂
∂yab

, ∂∂z
)
.
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Extension to M-Theory

By now it is no surprise that a null wave in the yabcde direction is
an M5-brane stretched in the abcde directions.
But is there another way to view this?
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Extension to M-Theory

Fivebranes and monopoles

In Kaluza-Klein theory, once we have waves along the KK
directions and see that these allow electric charges we can ask how
to produce a monopoles. The gives us the Kaluza-Klein monopole,
essentially a nontrivial bundle that is an S1 over S2 with total
space S3.
In terms of M-theory, this is the D6 brane.
Can we do the same trick for DFT or other extended geometries
and find monopole like solutions?
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Extension to M-Theory

Yes:
in DFT the monopole whose KK circle is z̃ is an NS5-brane from
the reduced perspetive.
In exceptional case, the monopole whose KK circle is in the yab
direction is an M5-brane.
The monopole whose KK circle is in the yabcde direction is the
M2-brane.
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Extension to M-Theory

Summary

In DFT and other extended exceptional geometries, waves with
momentum along the novel directions are strings or branes.
A monopoles whose KK direction is along one of those novel
directions is also a brane but S-dual to the one given by a wave
with monentum in those directions.
Thus all branes in excpetional geomerties are simulataneously
waves and monopoles.
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Appendix

Other Solutions

I D0-brane Back to Standard Solutions

ds2 = −H−1dt2 + d~y2(d−1), At = −(H−1 − 1)

I KK-monopole Back to Other Solutions

ds2 = −dt2 + d~x2(d−5) +H−1
[
dz +Aidy

i
]2

+Hd~y2(3)

∂[iAj] =
1

2
εij

k∂kH, e−2φ = e−2φ

I NS5-brane

ds2 = −dt2+d~x2(d−5)+Hd~y2(4), Bzi = Ai, e−2φ = H−1e−2φ0
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