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1. Calabi-Yau manifolds and fibrations

Calabi-Yau threefolds:

physically:

• Ricci flat: Rµν = 0 (solve vacuum Einstein equations)

• Kähler manifolds (complex structure compatible with SUSY)

mathematically: trivial canonical class K = 0 (up to torsion)

Long studied by mathematicians and physicists

— Used in compactification of heterotic, II→ 4D, F-theory→ 6D (+ M→ 5D)

Largest class of known Calabi-Yau threefolds:

Kreuzer/Skarke:
Classified 473.8M reflexive 4D polytopes→ toric hypersurface CY3’s

Also: CICY’s (80’s), gCICY’s [Anderson/Apruzzi/Gao/Gray/Lee ’15]

Open Question:
Are there a finite number of topological types of Calabi-Yau threefolds?
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Elliptic and genus one-fibered CY threefolds

An elliptic or genus one fibered CY3 X:
π : X → B2,
π−1(p) ∼= T2 at a generic point p

Elliptic: ∃ section σ : B2 → X, πσ = Id

Elliptic Calabi-Yau threefold has Weierstrass model

y2 = x3 + fx + g, f ∈ Γ(O(−4KB)), g ∈ Γ(O(−6KB))

Finite number of topological types of elliptic Calabi-Yau threefolds
[Grassi, Gross]

Constructive proof [Kumar/Morrison/WT]: (using principles of F-theory)
Bases blow-ups of Fm (Grassi);
Finite number of distinct strata in space of B2 W. models (Hilbert basis thm)
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Upshot of recent work:

Can construct elliptic Calabi-Yau threefolds by:

1. Classify allowed bases B
(Morrison/WT: 65k toric bases; Wang/WT: non-toric bases)

2. “Tune” Weierstrass model [Johnson/WT, . . .]

Tuning gives increased singularities (Kodaira, etc.) and Mordell-Weil group
Physics interpretation via F-theory: gauge groups and matter

In principle gives all elliptic Calabi-Yau manifolds
Various technical challenges, particularly for CY4’s

Growing evidence: most known Calabi-Yau threefolds are elliptic or g1 fibered!
[Candelas/Constantin/Skarke, Gray/Haupt/Lukas, AGGL, . . . ]

This talk: explicitly explore KS database
i) directly analyze fiber structure
ii) construct simple fibrations, seive→ more exotic fibrations
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Toric hypersurface construction [Batyrev, Kreuzer/Skarke]

Toric geometry: simple combinatoric version of algebraic geometry
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Toric variety: characterized by toric divisors Di ↔ rays vi ∈ Zd

Anti-canonical class −K =
∑

i Di (never compact CY)

Anti-canonical hypersurface⇒ CY by adjunction

∆ polytope: convex hull of vi

{monomials} ↔ lattice points in dual polytope ∆∗ = {w : w · v ≥ −1}

Batyrev: ∆ = ∆∗∗ reflexive↔ 1 interior point
↔ hypersurface CY generically smooth (avoids singularities)
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Simple toric fibrations:

∆2 ⊂ ∆, ∆2 reflexive

Only 16 reflexive ∆2’s (e.g. F-theory fibers:
[Braun, Braun/Grimm/Keitel, Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

F1 F2 F3 F4

· · ·

F10

· · ·

F16

−1 curve C = D(2)
i : satisfies −K · C = C · C + 2 = 1

All but F1 = P2,F2 = F0 = P1 × P1,F4 = F2 have −1 curves⇒ toric sections
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2. Results

First approach: look at KS database, directly identify polytope fibers
(paper w/Huang to appear)

Basic algorithm:

• Identify v,w ∈ ∆ : span (v,w) ∩∆ = ∆2 = Fi, i = 1, . . . , 16

• Some algorithmic efficiency implemented
(e.g. v,w ⊂ S w/limited v · u, u ∈ ∆∗)

• Currently in mathematica (faster implementation possible)

Finding Fi, i ∈ {1, . . . , 16} ⇒ ∃ g1/elliptic toric fibration

If only F1,2,4: genus one, not necessarily section.

Any other Fi ⇒ elliptic
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Results I: all KS polytopes giving CY w/ h1,1 ≥ 140 or h2,1 ≥ 140

{1, 149}
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{1,145}

0 100 200 300 400 500
0

100

200

300

400

500

h1,1

h2
,1

Only 4 (of 495515) lack genus one fibers:

(h1,1, h2,1) = (1, 149), (1, 145), (7, 143), (140, 62)

When h1,1 = 1, clearly no fiber (Shioda-Tate-Wazir)

• Only 384 (of 495515) have only genus one fibers
Do the others really have non-toric elliptic/g1 fibers?
h1,1 = 140(194) largest known value w/o explicit g1 (elliptic) fiber
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Results II: Small h1,1

Probability that a CY3 is not g1/elliptic fibered decreases
as 2−h1,1

for h1,1 > 1

h1,1 2 3 4 5 6 7
# without fiber ∆2 23 91 256 562 872 1202

Total # 36 244 1197 4990 17101 50376
% 0.639 0.373 0.214 0.113 0.051 0.024
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Why exponentially unlikely to not have fiber?

Theorem (Oguiso/Wilson):
A Calabi-Yau 3-fold X, X is genus one (or elliptically) fibered iff there exists a
divisor D ∈ H2(X,Q) that satisfies D3 = 0,D2 6= 0, and D · C ≥ 0 for all
algebraic curves C ⊂ X.

Assuming “random” data for triple intersection form Cijk,
how likely is this to occur?

Possible obstructions:

A) Number theoretic (no solution to Cijkdidjdk = 0 over integers)

B) Cone obstruction, no solution over reals when D ⊂ positive cone

Consider each in turn
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Number theoretic obstructions

For example:
x3 + x2y + y3 + 2z3 + 4w3 = 0

has no solutions over the integers Z (or over Q); (Z2 obstruction)

Mordell (1937) identified homogeneous degree d polynomial in d2 variables
with obstruction

Subsequent conjectures: d2 is maximum number of variables with obstruction

Proven for d = 1, 2

Counterexample: quartic with 17 variables has obstruction!

Heath-Brown (1983): every non-singular cubic in ≥ 10 variables with rational
coefficients has nontrivial rational zero.

Also proven for general cubic in ≥ 16 variables

Upshot: no number-theoretic obstruction when h1,1(X) > 15 (likely 9)
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Cone obstructions: apparently exponentially suppressed

Simple heuristic argument:

Assume cone has D =
∑

i diDi, di ≥ 0

Look for positive solution of cubic
∑

i,j,k Cijkdidjdk = 0

Proceed by induction:

First, check M = 2,
∑M

i,j,k Cijkdidjdk = 0
∼ cubic in two variables, has ≥ 1 real solution; 50% chance in cone

Add one variable: pick random other numbers in cone; probability solution in
last variable is positive: 1/2, . . .

⇒ suggests probability ≤∼ 2−h1,1
that no fiber exists

Very heuristic argument, but matches data!
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Strong evidence: almost all known CY3’s have elliptic/g1 fibers

Supported by other recent work, particularly Anderson + Gray + collaborators

E.g. all CICY threefolds with h1,1 > 4 have g1/elliptic fibers
[Anderson, strings 2018 talk]

If most Calabi-Yau threefold are elliptic/g1 fibered
+ finite number of elliptic/g1 fibered CY threefolds
⇒ would prove finite number of CY threefolds!

Classification of elliptic/g1 CY threefolds⇒ CY3’s,
non-fibered threefolds ∼ special cases

Note: all elliptic CY’s connected by extremal transitions→∼ Reid’s fantasy?
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Structure of fibrations: investigate in more detail

Much recent work (see Huang/WT paper), only touch on some points here

Close connection between “Tate form” general Weierstrass model

y2 + a1yx + a3y = x3 + a2x2 + a4x + a6

and simple “standard stacking” P2,3,1 (F10) fibered polytopes

Research supported by

Most known Calabi-Yau threefolds are elliptic or genus one fibered
Yu-Chien Huang, Washington Taylor

Calabi-Yau threefold (CY3)
• Six-dimensional manifold (complex dimension three) with trivial

canonical bundle
• Ricci flat (solves vacuum Einstein equations)
• The extra dimensions of spacetime in superstring theory

compactification

Genus-one fibered CY3, Y

• fi : Y æ B, and fi≠1(b) is a genus one curve (a torus T 2) for a
generic point b in the base B of complex dimension two. (Elliptic
fibration: genus one fibration with a rational section ‡ : B æ Y .)

• Any elliptically fiberation or the Jacobian fibration of a genus one
fibration can be realized in the Weierstrass form
y2 = x3 + fxz4 + gz6, which is a section of the weighted projective
bundle fi : P = PP2,3,1[L2 ü L3 üOB] æ B, where
x œ OP (2) ¢ fiúL2, y œ OP (3) ¢ fiúL3, z œ OP (1), and f œ fiúL4

and g œ fiúL6. (Calabi-Yau condition requires L = O(≠KB).)
• Useful in F-theory compactification (the torus modulus describes

the axion-diloton transforming under the S-duality.)

Classify CY3s, elliptic/genus-one CY3s
Known: The number (compact?) elliptic CY3’s is finite (Gross)
Unknown: Is the number of (topological types of) CY3’s also finite?
Result: Most known CY3s are elliptic/genus-one fibered!

Batyrev’s construction and the KS database
• Batyrev constructs compact CYs as hypersurfaces in toric varieties

via reflexive polytopes (Gorenstein Fano toric varieties) Y µ XÒ4.

• Kreuzer and Skarke classified all 4D reflexive polytopes Ò4, which
represent the biggest set of CY3s and most known CY3s at large
Hodge numbers.

Explicit genus-one fibration in the KS database
• The existence of a 2D reflexive subpolytope Ò2 µ Ò4 through the

origin. (While Y µ XÒ4, T 2 µ XÒ2.)
• Total 16 types of 2D reflexive polytopes F1,...,16:

•F1 = P2, F2 = P1 ◊ P1, F4 = P[1, 1, 2] ∆ explicit genus-one fibered
•F3, F5,...,16 ∆ explicit elliptic fibered

W
e systematically scan through all 4D polytopes in the Kreuzer-Skarke
database that are associated with CYs with the Hodge numbers h1,1 Ø
140 or h2,1 Ø 140, and obtain all Ò2’s, if any, in a Ò4 to determine
the existence of genus one fibrations.

(Part II.) In [1], we systematically construct flat Weierstrass fibra-
tion models over 2D toric bases through Tate tunings of fibers of
Kodaira types over toric curves in the base, and compare the tuned
models with polytope models at the level of Hodge numbers in the
region h1,1 Ø 240 or h2,1 Ø 240.

Conclusions

In part I we find that every known Calabi-Yau threefold with either
Hodge number exceeding 150 is genus one or elliptically fibered; more-
over, we find that for small h1,1 the fraction of polytopes in the KS
database without a 2D subpolytope drops exponentially. In part II the
tuned models we obtained recover all but a few Hodge pairs. Explicity
fibration analysis of the polytope models of the remaining Hodge pairs
shows that these models are involved with tunings on non-toric curve,
which can be of higher genus, or non-flat elliptic fibration that we can
alternatively treat as flat elliptic fibration over non-toric base.

Method

•Looking for the fiber subpolytopes of Ò4. Among the 16 subpolytopes,
F1 = P2, F2 = P1 ◊ P1, F4 = P[1, 1, 2] are minimal - any other 13
subpolytopes contains at least one of them, and they do not contain
each other. Therefore, we look for the minimal subpolytopes to identify
the 2D plans that contain a subpolytope, and then take the intersection
of Ò4 with the 2D plane to obtain the subpolytope Ò2.

Results

The Hodge numbers of the four Calabi-Yau threefolds without a manifest
genus one fiber are (h1,1, h2,1) = (1, 149), (1, 145), (7, 143), (140, 62).

P2,3,1

Estimation of polytope without explicit genus one fibration in the KS database

The numbers of polytopes without a 2D subpolytope, corresponding to
Calabi-Yau threefolds without a manifest genus one fibration, decrease
approximately as (0.1 ◊ 25≠h1,1), for small values of h1,1. Comaring to
the polytope number at each h1,1, if this fraction continues to exhibit
this pattern, the number of no fiber polytopes would peak at h1,1 = 9,
and the total number of no fiber polytopes out of the 400 million in the
full KS database would be around 14,000.

h1,1 2 3 4 5 6 7
Polytope number without Ò2 23 91 256 562 872 1202

Polytope number 36 244 1197 4990 17101 50376
Percentage rounded to
the 2nd decimal place 0.639 0.373 0.214 0.113 0.051 0.024

Distribution of polytopes for each of the 16 fiber types
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B	

fiber	

vx = (0, 0, 1, 0), vy = (0, 0, 0, 1), vz = (0, 0,−2,−3)

v(a)
i = (v(B)

i,1 , v
(B)
i,2 ,−2,−3)

geometry⇒ ∇ = ∆∗ = {monomials in Tate} (∼ “top” construction)

(some subtleties with non-Higgsable and tuned gauge groups, ∆ = ∆∗∗)

These constructions dominate at large Hodge numbers
(other fibers problematic when base contains −12 curve)
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Systematically implement Tate forms on toric bases [Huang/WT]

⇒ All but 18 (of 1827) Hodge pairs with h1,1 or h2,1 ≥ 240 realized directly.

Looked at other examples: all elliptic fibrations with more subtle structure

• Exotic matter: usual SU(6) Tate tuning: ord (a1, a2, a3, a4, a6) = (0, 1, 3, 3, 6).
Gives generic (6, 15) SU(6) matter.
Exotic tuning: (0, 2, 2, 4, 6) gives 3-index antisymmetric (20) rep

• Large tunings:
e.g. (h1,1, h2,1) = (135, 15)→ (261, 9), w/ SO(20) on −4 curve

• Automatic U(1)’s on some examples

• Gauge groups on non-toric curves
(examples at lower Hodge numbers w/genus ≥ 1)
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Cases with many fibers

Some polytopes give many distinct fibrations (see also AGGL, . . . )

In some cases from symmetries of polytope

Polytopes with most fibrations: e.g.
(h1,1, h2,1) = (149, 1)[58], (145, 1)[37], (144, 2)[37]
occur at small h2,1, large h1,1

Possibly related observation [WT/Wang]: dominant CY4’s after multiple
blow-ups are mirrors of known CY’s with small h1,1 (?)
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Further directions

• Genus one/multisection structure at small h1,1 for F1,2,4 fibers

• Similar fibration analysis for CY4’s

• Understand of structure of effective cone, triple intersection
Proof finite number CY3’s?

• Reid fantasy extended to non-elliptic CY3’s?

• Physics: use understanding of elliptic/g1 fibration structure to better
understand heterotic, II, F-theory compactifications
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