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Fibrations and Calabi-Yau Manifolds

1. Calabi-Yau manifolds and fibrations

Calabi-Yau threefolds:

physically:

e Ricci flat: R;,,, = 0 (solve vacuum Einstein equations)

e Kihler manifolds (complex structure compatible with SUSY)

mathematically: trivial canonical class K = 0 (up to torsion)

Long studied by mathematicians and physicists
— Used in compactification of heterotic, Il — 4D, F-theory — 6D (+ M — 5D)
Largest class of known Calabi-Yau threefolds:

Kreuzer/Skarke:
Classified 473.8M reflexive 4D polytopes — toric hypersurface CY3’s

Also: CICY’s (80’s), gCICY’s [Anderson/Apruzzi/Gao/Gray/Lee *15]

Open Question:
Are there a finite number of topological types of Calabi-Yau threefolds?

W. Taylor Elliptic and genus one fibers in Calabi-Yau threefolds



Fibrations and Calabi-Yau Manifolds

Elliptic and genus one-fibered CY threefolds

An elliptic or genus one fibered CY3 X:
w:X — B,
7~ !(p) = T? at a generic point p

Elliptic: 3 section o : B, — X, o =1d

Elliptic Calabi-Yau threefold has Weierstrass model

Y =x +fi+g feT(O(—4Kg)),g € I(O(—6Kg))

Finite number of topological types of elliptic Calabi-Yau threefolds
[Grassi, Gross]

Constructive proof [Kumar/Morrison/WT]: (using principles of F-theory)
Bases blow-ups of [, (Grassi);
Finite number of distinct strata in space of B, W. models (Hilbert basis thm)
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Fibrations and Calabi-Yau Manifolds

Upshot of recent work:
Can construct elliptic Calabi-Yau threefolds by:

1. Classify allowed bases B
(Morrison/WT: 65k toric bases; Wang/WT: non-toric bases)

2. “Tune” Weierstrass model [Johnson/WT, .. .]

Tuning gives increased singularities (Kodaira, etc.) and Mordell-Weil group
Physics interpretation via F-theory: gauge groups and matter

In principle gives all elliptic Calabi-Yau manifolds
Various technical challenges, particularly for CY4’s

Growing evidence: most known Calabi-Yau threefolds are elliptic or g1 fibered!
[Candelas/Constantin/Skarke, Gray/Haupt/Lukas, AGGL, ... ]

This talk: explicitly explore KS database
1) directly analyze fiber structure
ii) construct simple fibrations, seive — more exotic fibrations
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Yau Manifolds

Toric hypersurface construction [Batyrev, Kreuzer/Skarke]

Toric geometry: simple combinatoric version of algebraic geometry

A =
(blow up point)

P2 Fy = dP,
Toric variety: characterized by toric divisors D; < rays v; € Z¢

Anti-canonical class —K = Zi D; (never compact CY)

Anti-canonical hypersurface = CY by adjunction

A polytope: convex hull of v;

{monomials} < lattice points in dual polytope A* = {w :w-v > —1}

Batyrev: A = A** reflexive < 1 interior point
> hypersurface CY generically smooth (avoids singularities)
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Fibrations and Calabi-Yau Manifolds

Simple toric fibrations:
A, C A, A, reflexive

Only 16 reflexive A;’s (e.g. F-theory fibers:
[Braun, Braun/Grimm/Keitel, Klevers/Mayorga Pena/Oehlmann/Piragua/Reuter])

N <> e

F3 F4

-1 curveC:Dl@: satisfies — K - C=C-C+2=1

Allbut F; = P2, F, =Fy = P! x P!, F, = F, have —1 curves = toric sections
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2. Results

First approach: look at KS database, directly identify polytope fibers
(paper w/Huang to appear)

Basic algorithm:

o Identify v,w € A :span v, w) NA = A, =F;i=1,...,16

e Some algorithmic efficiency implemented
(e.g. v,w C S w/limited v - u,u € A*)

o Currently in mathematica (faster implementation possible)

Finding F;,i € {1,...,16} = 3 gl/elliptic toric fibration
If only F'; 5 4: genus one, not necessarily section.

Any other F; = elliptic

W. Taylor Elliptic and genus one fibers in Calabi-Yau threefolds



Results I: all KS polytopes giving CY w/ h'"! > 140 or h>! > 140

300
%
20

(1145 {0
7,143

140,62}

Only 4 (of 495515) lack genus one fibers:
(KB RPY) = (1,149), (1,145), (7,143), (140,62)
When h'! = 1, clearly no fiber (Shioda-Tate-Wazir)

e Only 384 (of 495515) have only genus one fibers
Do the others really have non-toric elliptic/g1 fibers?
h'! = 140(194) largest known value w/o explicit g1 (elliptic) fiber
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Results II: Small 2!

Probability that a CY3 is not gl/elliptic fibered decreases
as 27" for A1 > 1

Kbl 2 3 4 5 6 7
# without fiber A, 23 91 256 562 872 1202
Total # 36 244 1197 4990 17101 50376
% 0.639 0.373 0.214 0.113 0.051 0.024
0.35 o 35x107
0.30F ’ ..—3.0x107
025 12.5x107
0.20F 42.0x107
o5k e 115107 « No fiber polytope fraction
0.10F <. I1ox107  — 0.1-25"
0.05F K 150x10° o Polytope Number
0 ()oo .2 -..; - '10 1‘5' e 2‘0 3 06—‘;@7 éoo e Estimated no fiber polytope number
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Why exponentially unlikely to not have fiber?

Theorem (Oguiso/Wilson):

A Calabi-Yau 3-fold X, X is genus one (or elliptically) fibered iff there exists a
divisor D € H*(X, Q) that satisfies D> = 0,D* # 0, and D - C > 0 for all
algebraic curves C C X.

Assuming “random” data for triple intersection form Cy,
how likely is this to occur?

Possible obstructions:
A) Number theoretic (no solution to Cjd;d;d) = 0 over integers)
B) Cone obstruction, no solution over reals when D C positive cone

Consider each in turn
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Number theoretic obstructions

For example:
Py +y +22 + 4w =0

has no solutions over the integers Z (or over Q); (Z, obstruction)

Mordell (1937) identified homogeneous degree d polynomial in d* variables
with obstruction

Subsequent conjectures: d” is maximum number of variables with obstruction
Proven ford = 1,2

Counterexample: quartic with 17 variables has obstruction!

Heath-Brown (1983): every non-singular cubic in > 10 variables with rational
coefficients has nontrivial rational zero.

Also proven for general cubic in > 16 variables

Upshot: no number-theoretic obstruction when h'!(X) > 15 (likely 9)
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Cone obstructions: apparently exponentially suppressed

Simple heuristic argument:
Assume cone has D = )", d;D;,d; > 0

Look for positive solution of cubic Zi ik Cididid, = 0

Proceed by induction:
First, check M = 2, Y , Cidididy = 0
~ cubic in two variables, has > 1 real solution; 50% chance in cone

Add one variable: pick random other numbers in cone; probability solution in
last variable is positive: 1/2, ...

= suggests probability <~ 2~""" that no fiber exists

Very heuristic argument, but matches data!
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Strong evidence: almost all known CY3’s have elliptic/gl fibers

Supported by other recent work, particularly Anderson + Gray + collaborators

E.g. all CICY threefolds with 2! > 4 have gl/elliptic fibers
[Anderson, strings 2018 talk]

If most Calabi-Yau threefold are elliptic/gl fibered
+ finite number of elliptic/gl fibered CY threefolds
= would prove finite number of CY threefolds!

Classification of elliptic/gl CY threefolds = CY3’s,
non-fibered threefolds ~ special cases

Note: all elliptic CY’s connected by extremal transitions —~ Reid’s fantasy?
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Structure of fibrations: investigate in more detail

Much recent work (see Huang/WT paper), only touch on some points here

Close connection between “Tate form” general Weierstrass model
2 _ .3 2
Y-+ a1yx +azy = x + axx” + asx + ae

and simple “standard stacking” P?3! (F)) fibered polytopes
v =(0,0,1,0),v, = (0,0,0,1),v, = (0,0, -2, -3)

vfa) = (vfﬁ),v§g), —2,-3)

geometry = V = A* = {monomials in Tate} (~ “top” construction)
(some subtleties with non-Higgsable and tuned gauge groups, A = A**)

These constructions dominate at large Hodge numbers
(other fibers problematic when base contains —12 curve)
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Systematically implement Tate forms on toric bases [Huang/WT]

= All but 18 (of 1827) Hodge pairs with h!>! or h%! > 240 realized directly.

Looked at other examples: all elliptic fibrations with more subtle structure

e Exotic matter: usual SU(6) Tate tuning: ord (a;, az, as, a4, ag) = (0, 1, 3, 3, 6).
Gives generic (6, 15) SU(6) matter.
Exotic tuning: (0, 2, 2, 4, 6) gives 3-index antisymmetric (20) rep

e Large tunings:
e.g. (Wb h>1) = (135,15) — (261,9), w/ SO(20) on —4 curve

e Automatic U(1)’s on some examples

e Gauge groups on non-toric curves
(examples at lower Hodge numbers w/genus > 1)
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Cases with many fibers

Some polytopes give many distinct fibrations (see also AGGL, ...)
In some cases from symmetries of polytope

Polytopes with most fibrations: e.g.
(hB1 R = (149, 1)[58], (145, 1)[37], (144, 2)[37]
occur at small 4>!, large h'"!

Possibly related observation [WT/Wang]: dominant CY4’s after multiple
blow-ups are mirrors of known CY’s with small 21! (?)
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Further directions

e Genus one/multisection structure at small i!+! for F 1,2,4 fibers
o Similar fibration analysis for CY4’s

e Understand of structure of effective cone, triple intersection
Proof finite number CY3’s?

o Reid fantasy extended to non-elliptic CY3’s?

e Physics: use understanding of elliptic/g1 fibration structure to better
understand heterotic, II, F-theory compactifications
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