Machine learning in string theory

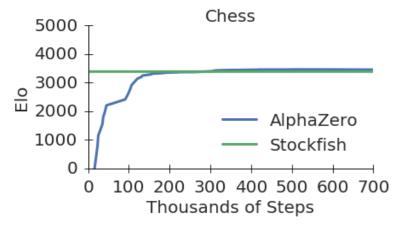
FABIAN RUEHLE (UNIVERSITY OF OXFORD)

Geometry and Strings 23/07/2018

Based on:

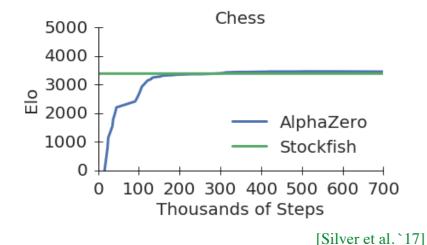
[Brent Nelson, Jim Halverson, Fabian Ruehle]
[Brent Nelson, Jim Halverson, Cody Long, Fabian Ruehle]

Motivation - ML in Science and Society



[Silver et al. 17]

Motivation - ML in Science and Society



GOOGLE AI CAN PREDICT WHEN PEOPLE WILL DIE WITH '95 PER CENT ACCURACY'

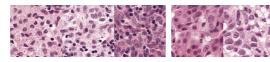


Fig. 1. Left: three tumor patches and right: three challenging normal patches

 ${\bf Fig.\,2.}$ Difficulty of pixel-accurate annotations for scattered tumor cells. Ground truth annotation is overlaid with a lighter shade. Note that the tumor annotations include both tumor cells and normal cells e.g., white space representing adipose tissue (fat).

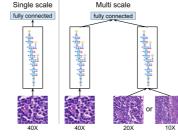


Fig. 3. The three colorful blocks represent Inception (V3) towers up to the second-last layer (PreLogit), Single scale utilizes one tower with input images at 40X magnification; multi-scale utilizes multiple (e.g.,2) input magnifications that are input to separate towers and merged.

[Liu et al. `17]

Motivation - ML in Science and Society



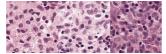


Fig. 1. Left: three tumor patches and right: three challenging normal patches

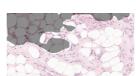


Fig. 2. Difficulty of pixel-accurate annotations for scattered tumor cells. Ground truth annotation is overlaid with a lighter shade. Note that the tumor annotations include both tumor cells and normal cells e.g., white space representing adipose tissue (fat).

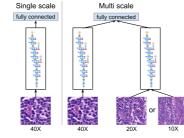
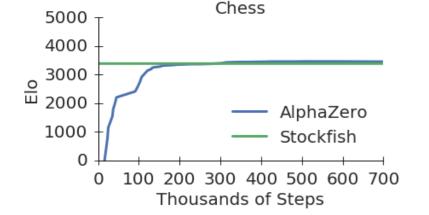
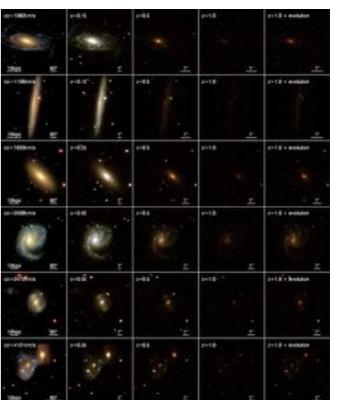


Fig. 3. The three colorful blocks represent Inception (V3) towers up to the second-last layer (PreLogit). Single scale utilizes one tower with input images at 40X magnification; multi-scale utilizes multiple (e.g.,2) input magnifications that are input to separate towers and merged.



[Liu et al. `17]

[Silver et al. `17]



[Zooniverse `18; picture from Barden et al `08]

- Possible applications of ML in string theory
 - Find string models in the landscape
 - Find generic / common features of string-derived model and extract string theory predictions from the landscape
 - Find patterns in mathematics of string theory
 - Use machine learning / Al to perform computation intensive work [FR'17]
 - •
- Can we use machine learning to study the landscape? [He'17; Krefl, Seong'17; FR'17; Carifio, Halverson, Krioukov, Nelson'17]

- Possible applications of ML in string theory
 - Find string models in the landscape [Halverson, Nelson, FR] [Carifio, Cunningham, Halverson, Krioukov, Long, Nelson][Halverson, Nilles, FR, Vaudrevange] [Faraggi et al] [Sven's talk]
 - Find generic / common features of string-derived model and extract string theory predictions from the landscape [He] [Vaudrevange et al] [Bull, He, Jejjala, Mishra]
 - Find patterns in mathematics of string theory [Krefl, Song] [Cole, Shiu] [Taylor, Wang] [Halverson, Long, FR, Tian] [Halverson, Long, FR, Nelson] [Liu] [You, Yang, Qi] [Hashimoto, Sugishita, Tanaka, Tomiya] [Jinno]
 - Use machine learning / Al to perform computation intensive work [FR'17] [Sven's talk]
 - •
- Can we use machine learning to study the landscape? [He'17; Krefl, Seong'17; FR'17; Carifio, Halverson, Krioukov, Nelson'17]

- Possible applications of ML in string theory
 - Find string models in the landscape [Halverson, Nelson, FR] [Carifio, Cunningham, Halverson, Krieukov, Long, Nelson][Halverson, Nilles, FR, Vaudrevange] [Faraggi et ai] [Sven's talk]
 - Find generic / common features of string-derived model and extract string theory predictions from the landscape [He] [Vaudrevange et al] [Bull, He, Jeijala, Mishra]
 - Find patterns in mathematics of string theory [Kirefl, Song] [Cole. Shiu] [Taylor, Wang] [Halverson, Long. FR, Tian] [Halverson, Long, FR, Nelson] [Liu] [You, Yang, Qi] [Hashimoto, Sugishita, Tanaka, Tomiya] [Jinno]
 - Use machine learning / AI to perform computation intensive work [FR'17] [Sven's talk]

•

Can we use machine learning to study the landscape? [He'17; Krefl, Seong'17; FR'17; Carifio, Halverson, Krioukov, Nelson'17]

4D string theories highly non-unique

- Different choices lead to 10^{755} or more string vacua (Go has 10^{172} states) [Douglas `03; Douglas, Sen `04; Halverson, Long, Sung `17; Taylor, Wang `15-`17]
- Number huge but seems finite
 [Reid `87; Douglas, Taylor `07; Buchbinder, Constantin, Lukas `14;
 Groot Nibbelink, Loukas, FR, Vaudrevange `15; Di Cerbo, Svaldi `16]
- Most of these vacua do not correspond to our universe
- Problem: We know the phenomenological properties a string theory that describes our universe has to have, but we lack a vacuum selection mechanism

When choosing a string background (geometry, flux):

- Need to ensure mathematical/physical consistency
 - Tadpole and anomaly cancellation
 - Solution is actual vacuum (D- and F-flat)
- Need to ensure physically desirable features
 - Gauge algebra of the SM: $SU(3) \times SU(2) \times U(1)_Y$
 - Three families of quarks and leptons, one Higgs pair
 - Absence of exotics, realistic Yukawas
 - Realistic cosmological constant

- Mathematical constraints: Often collection of nonlinear, coupled Diophantic equations
- Physical constraints: Further constrains Diophantic solutions in non-obvious way
- Upshot:
 - For a given configuration we can check its viability easily, but we have no idea how to find a good configuration in the first place
- To traverse vacua: Use Reinforcement Learning, a semi-supervised approach to Machine Learning

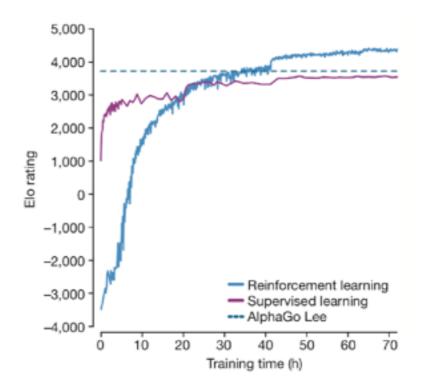
Outline

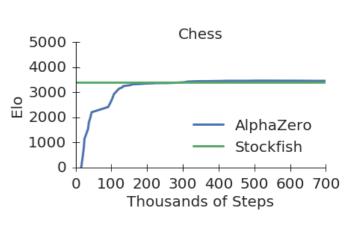
- Reinforcement Learning (RL)
 - Introduction to RL
 - Interlude: NNs + Tree searches
 - Implementation
- Example applications
 - Finding vacua in Type IIA/B intersecting brane models
 - Finding weak coupling limits in the F-Theory landscape
- Conclusion

Reinforcement learning

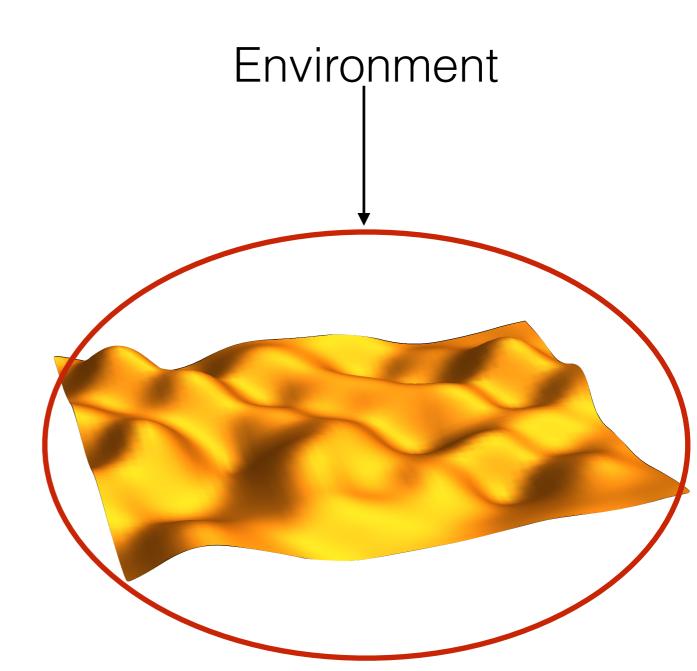
Reinforcement Learning - Idea

- ▶ Basic textbooks/literature [Barton, Sutton '98 '17]
- Based on behavioural psychology: train individual by
 - Rewarding "good" behavior
 - Punishing "bad" behavior
- ▶ Used e.g. in Go [Silver et. al. '16 '17]

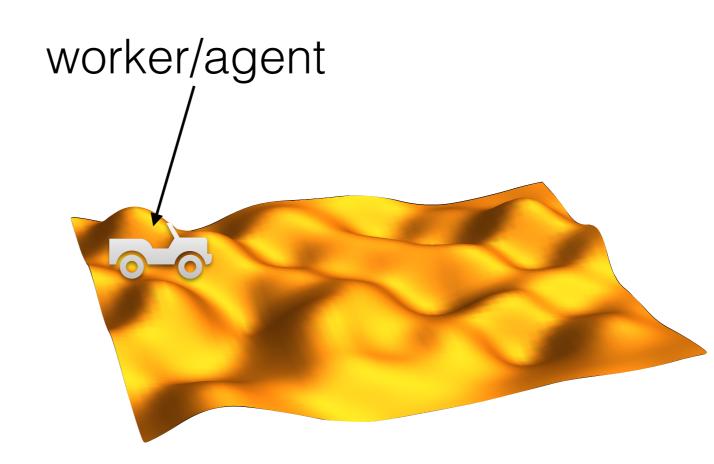




 Want to explore the string landscape ("environment")

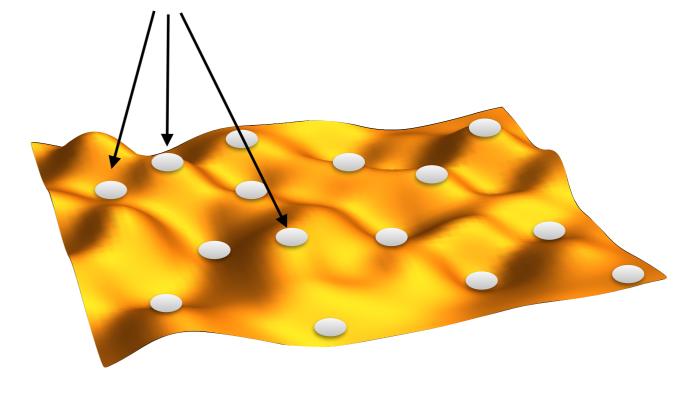


- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned

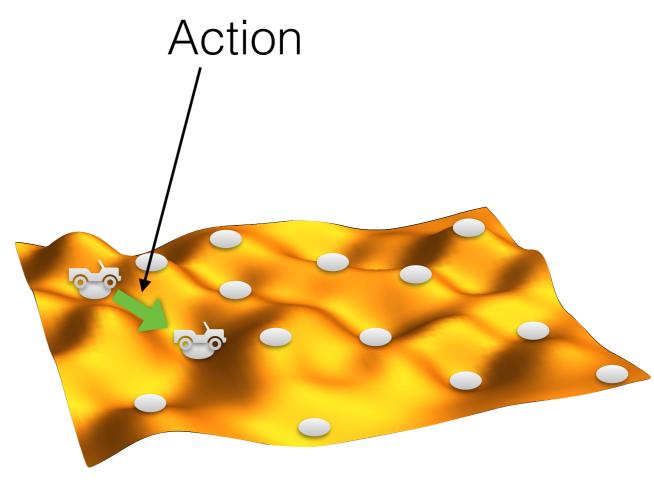


- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)

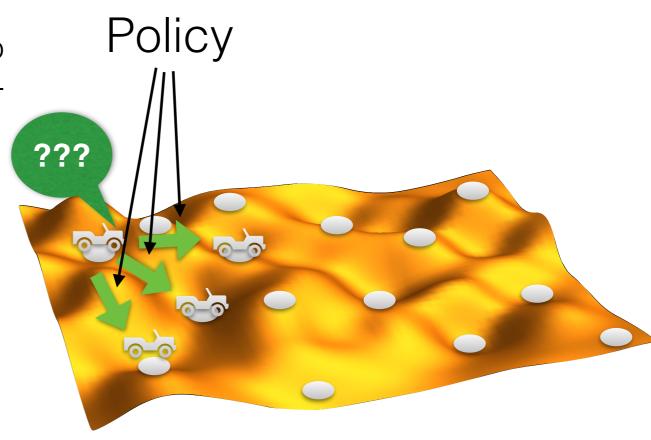
states (string configuration)



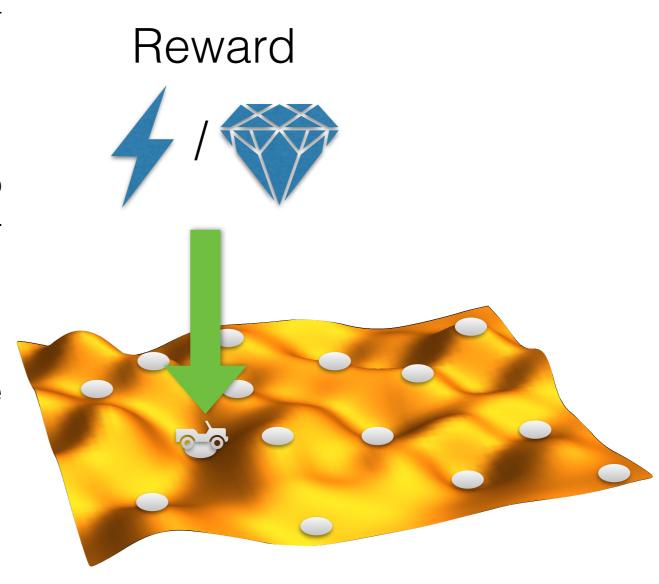
- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")



- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")
- They select these actions via some "policy"

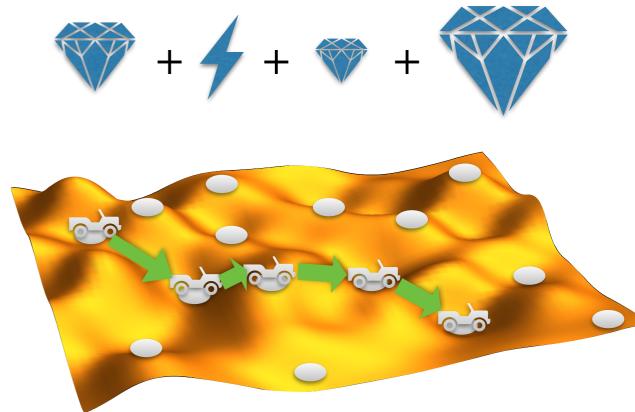


- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")
- They select these actions via some "policy"
- Depending on the chosen action they receive a pos/neg "reward"



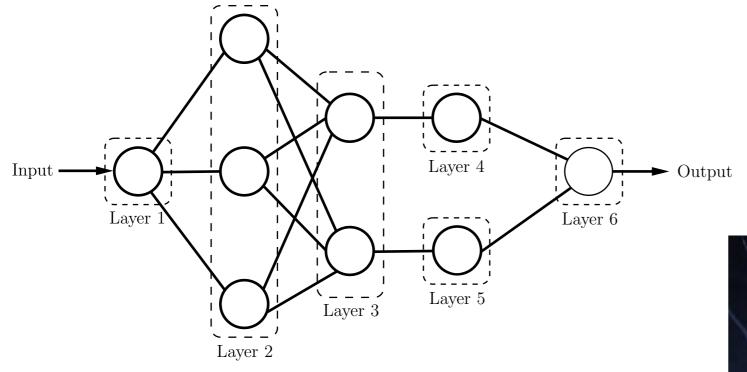
- Want to explore the string landscape ("environment")
- Done by "workers" that are conditioned
- At any given moment, a worker is in a specific string configuration ("state") defined by discrete topological data (branes, flux, cycles, ...)
- Workers change state by taking "actions" to reach new states ("elements of the environment")
- They select these actions via some "policy"
- Depending on the chosen action they receive a pos/neg "reward"
- Via this reinforcement, the agent learns a policy that, given a state, selects an action that maximises its "return" (accumulated long-term reward)

Return

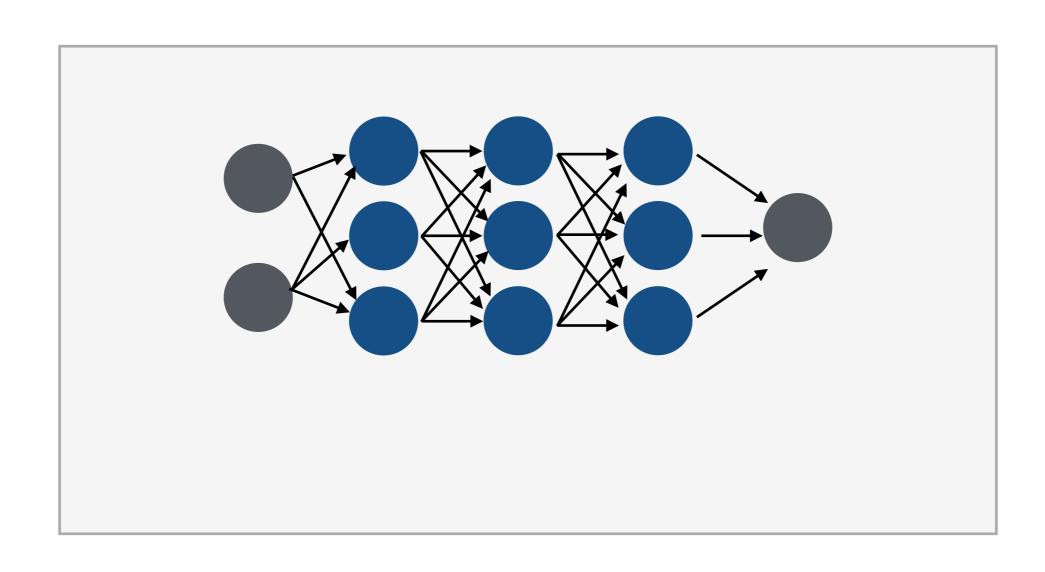


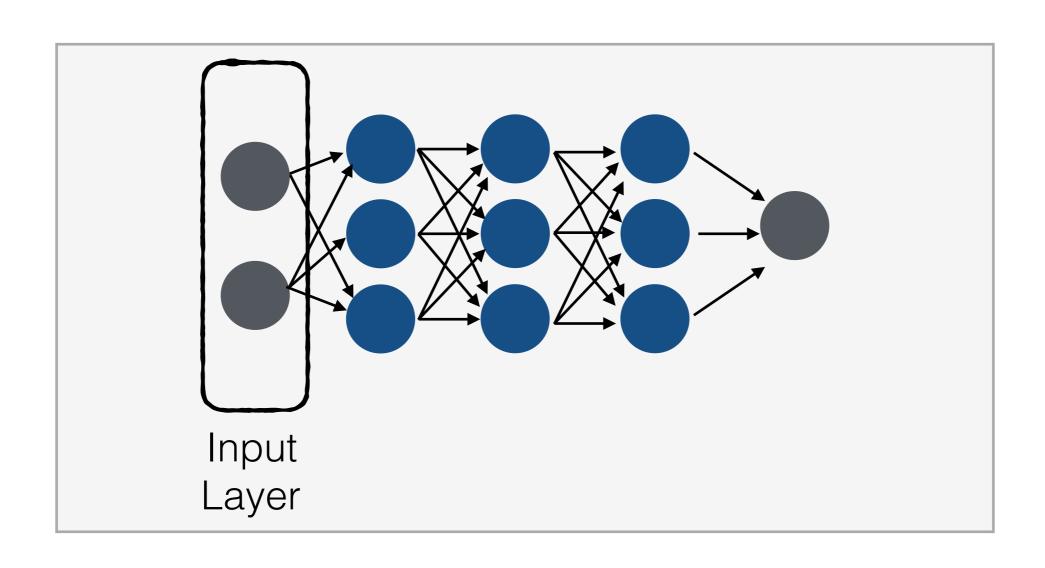
Reinforcement Learning - Prediction Problem

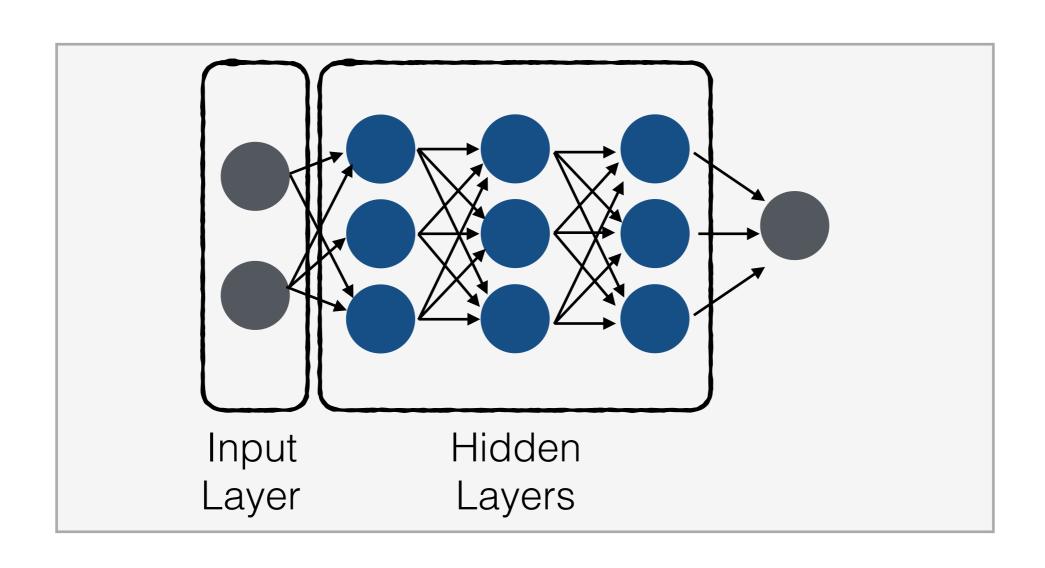
- In order to maximize long-term return, we need to predict:
 - 1. how beneficial is a given state
 - 2. how high will the reward of future actions be
- In order to predict this, we use neural networks that learn to make good predictions based on previous experience

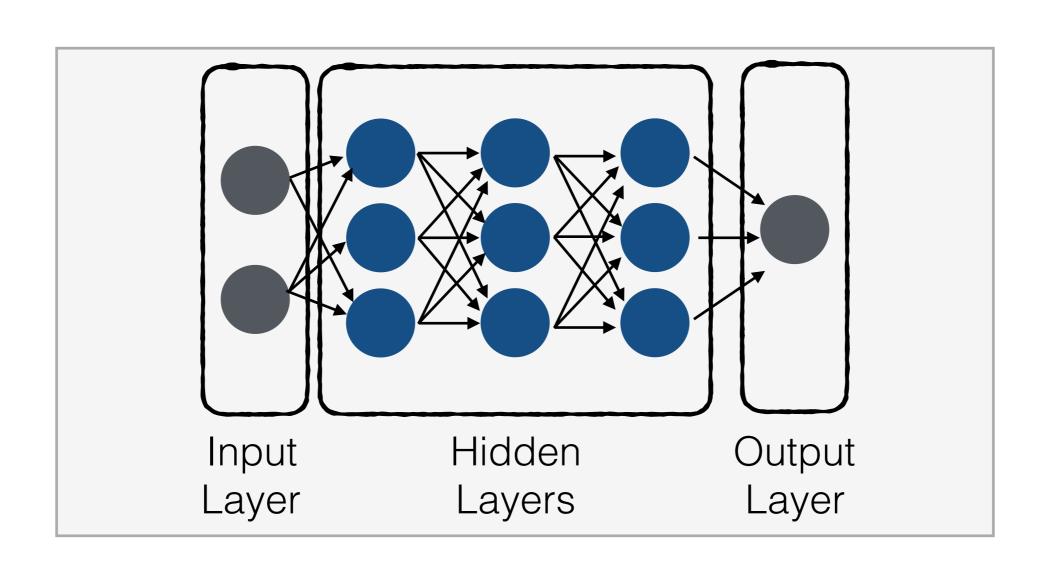


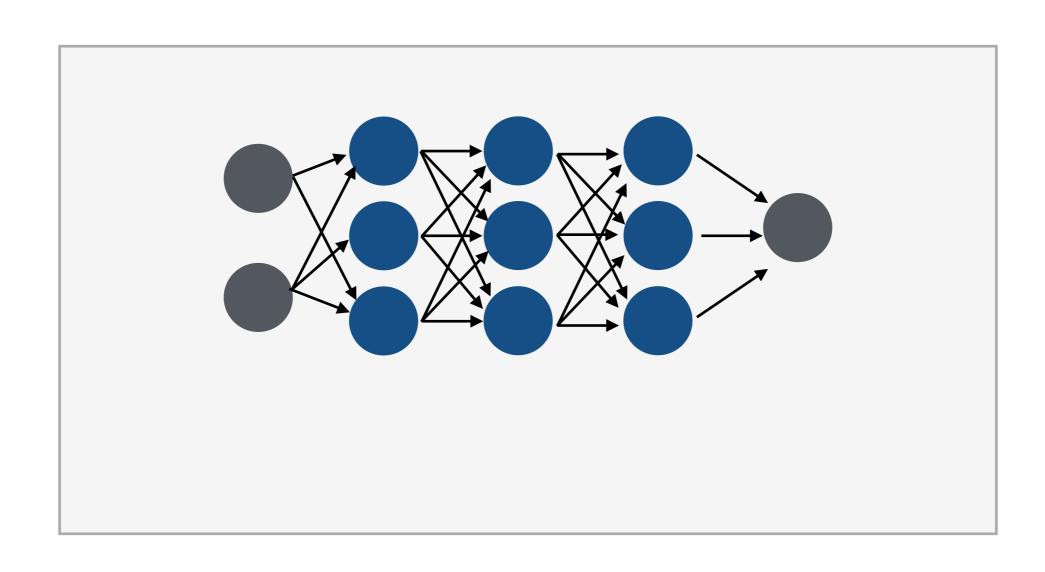
Interlude: Neural Networks

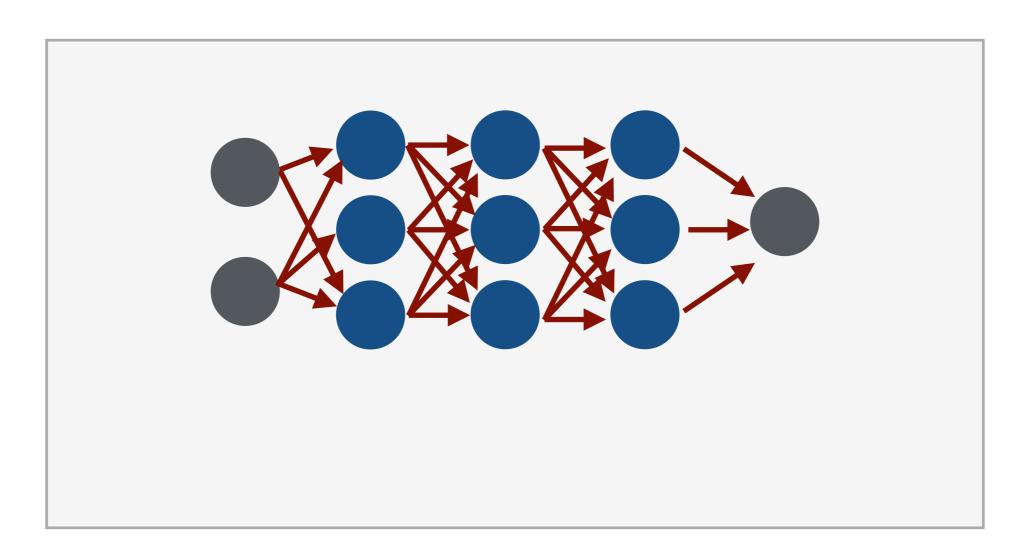




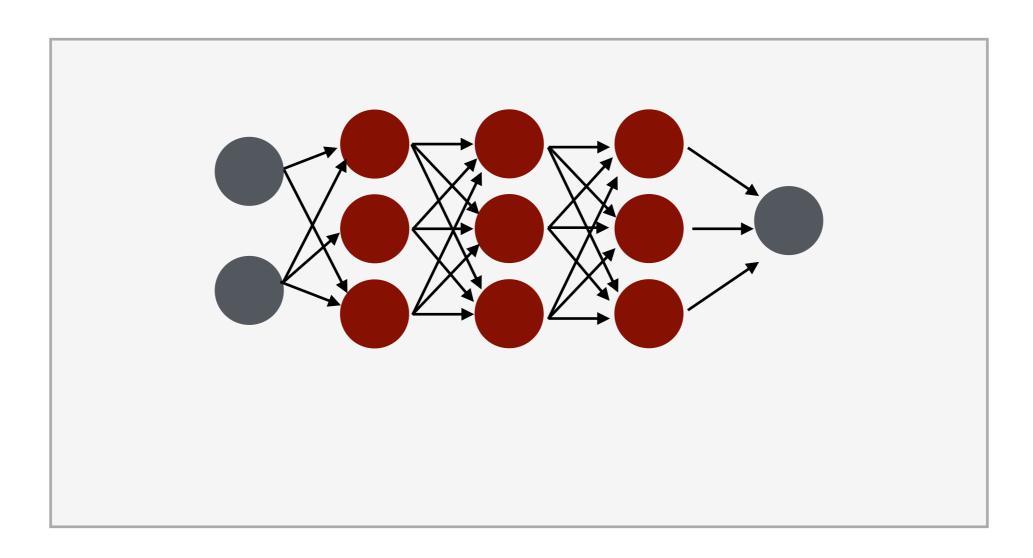






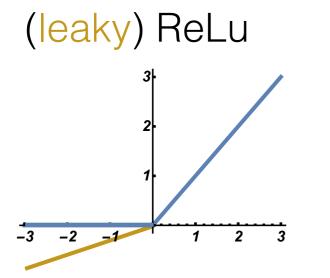


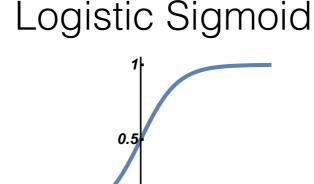
- Connections: Matrix Multiplication
- ▶ Nodes: Apply some activation function f

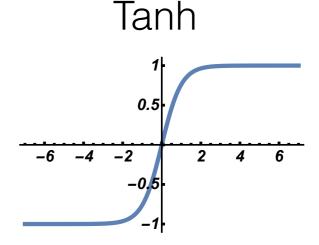


- Connections: Matrix Multiplication
- ▶ Nodes: Apply some activation function f

- Connection between layers : Linear transformations L_i : Matrix multiplication $v_{\text{out}}^i = A^i v_{\text{in}}^i + b^i$
- Each layer applies a function (activation function) to its input to compute its output. Common choices are

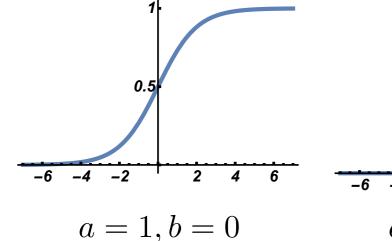


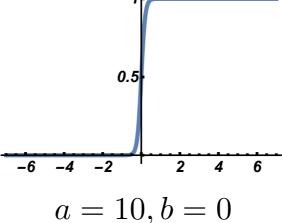


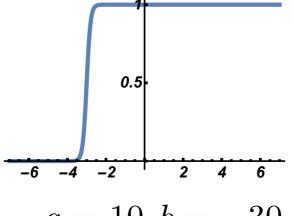


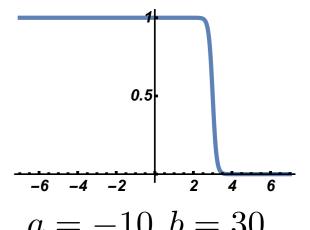
extstyle ext

- Look at simplest case: 1 layer, 1 node, logistic sigma function $x_{\rm out} = (1 + \exp(ax_{\rm in} + b))^{-1}$
 - a: Steepness of step (step function for $a \to \infty$)
 - b: Position of step: (intersects y-axis at y = 1/2 for b = 0)

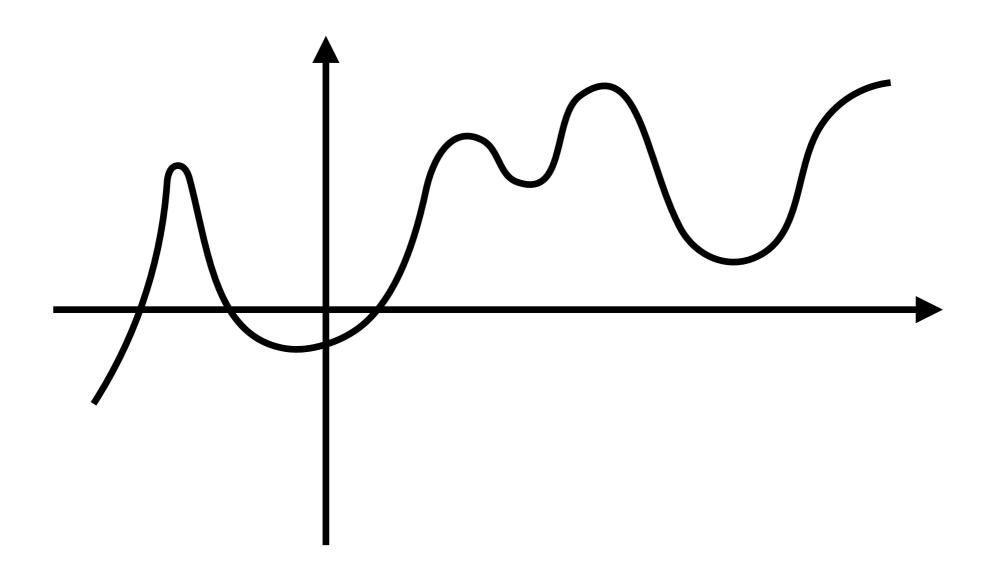




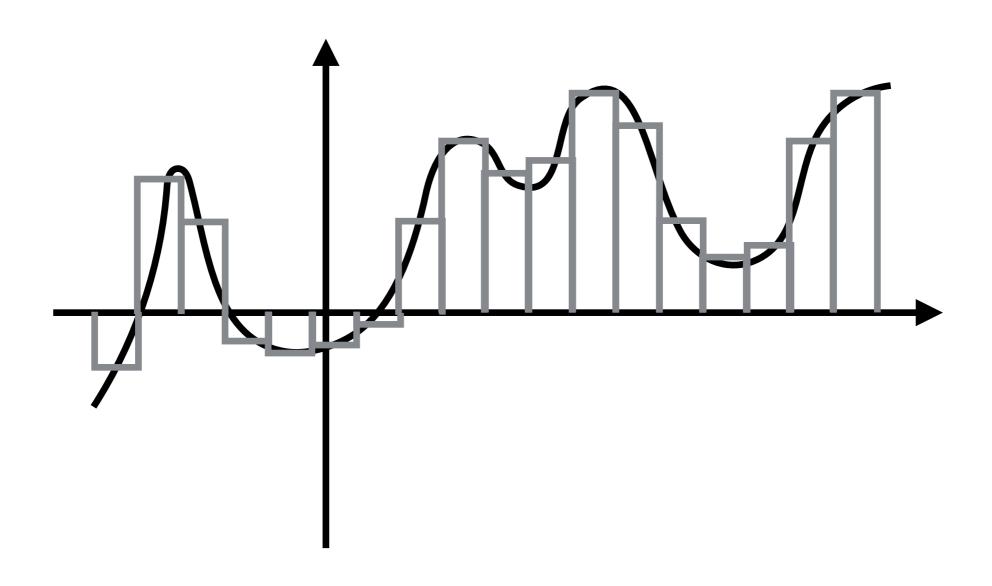




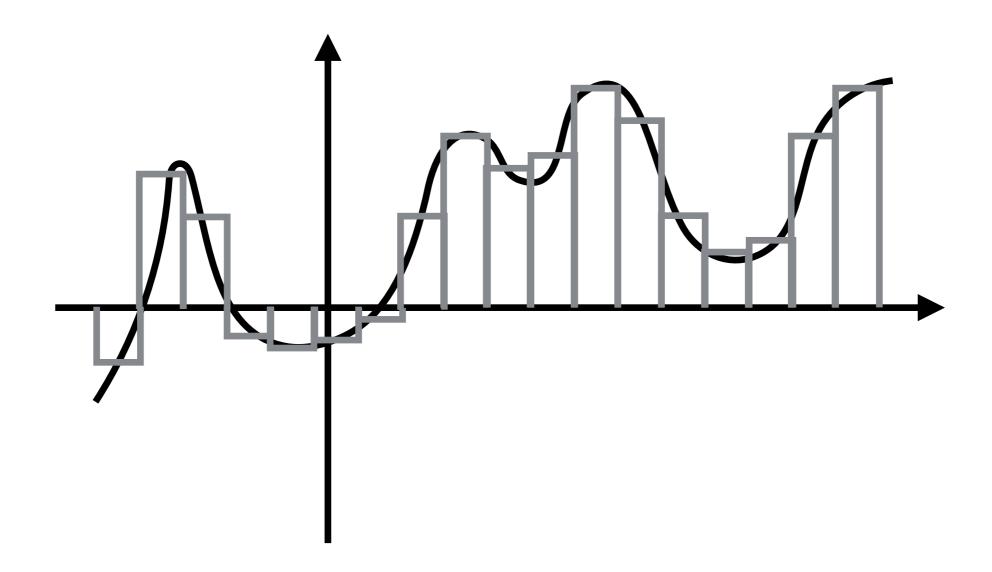
(B) Using NN to approximate functions



(B) Using NN to approximate functions



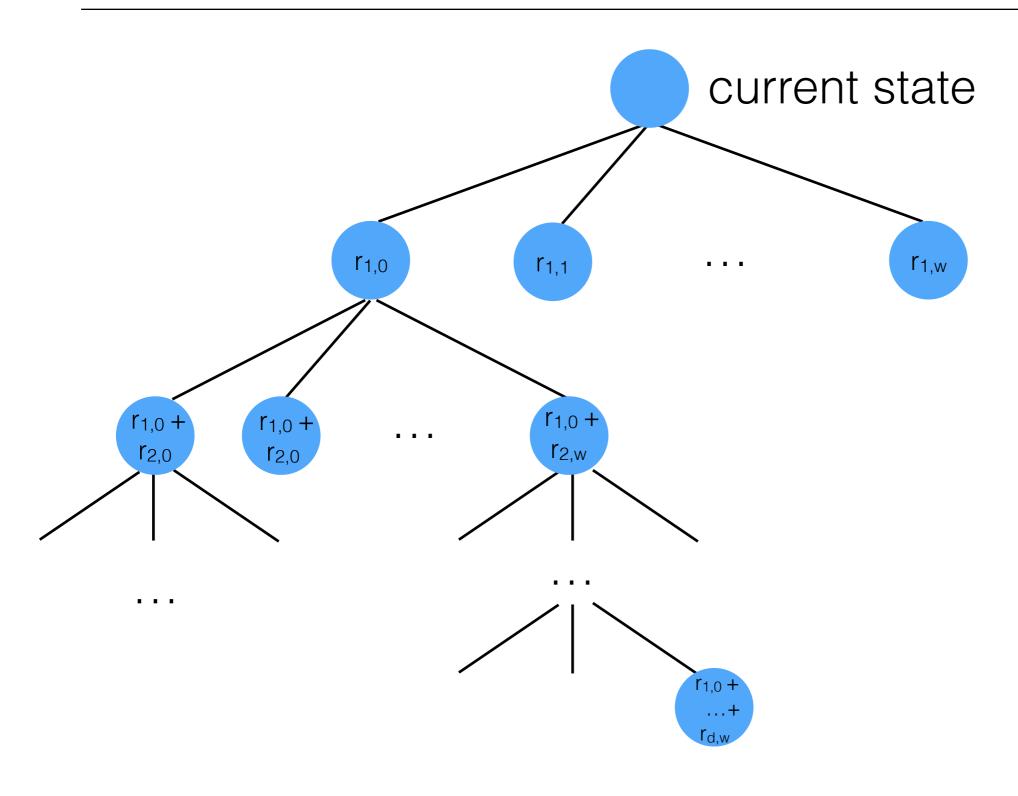
(B) Using NN to approximate functions



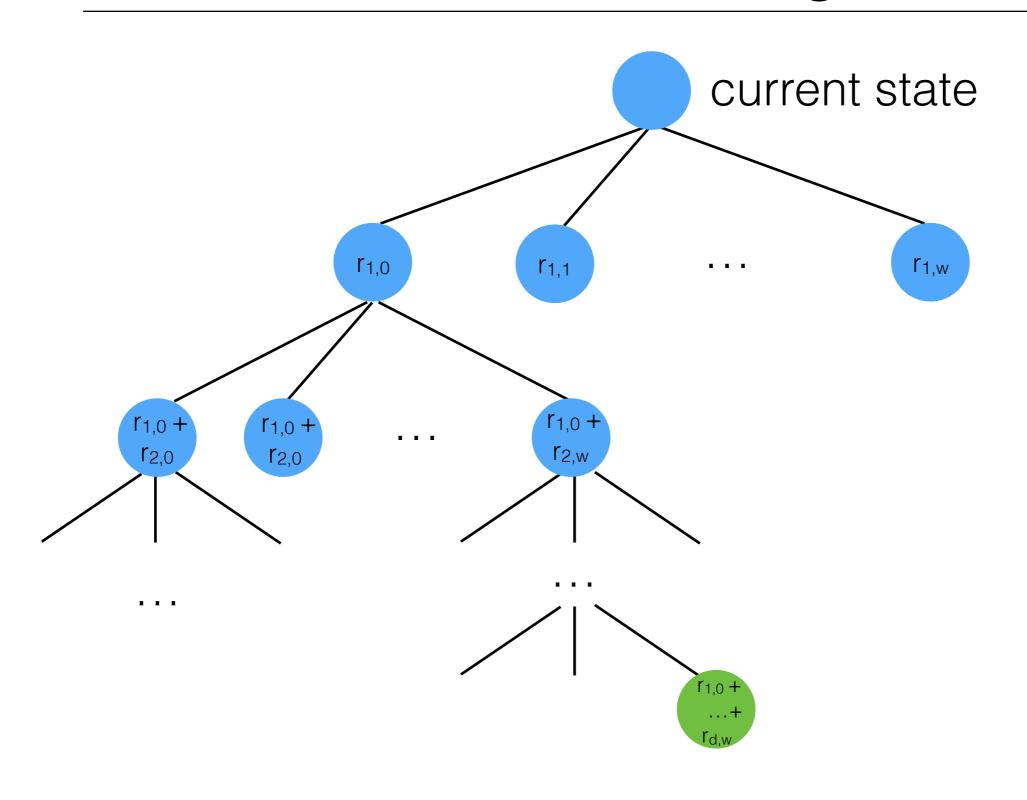
More nodes ⇒ more steps ⇒ approximate any function (with one layer) [Cybenko '89; Hornik '91; Nielsen'15]

Interlude: Tree Searches

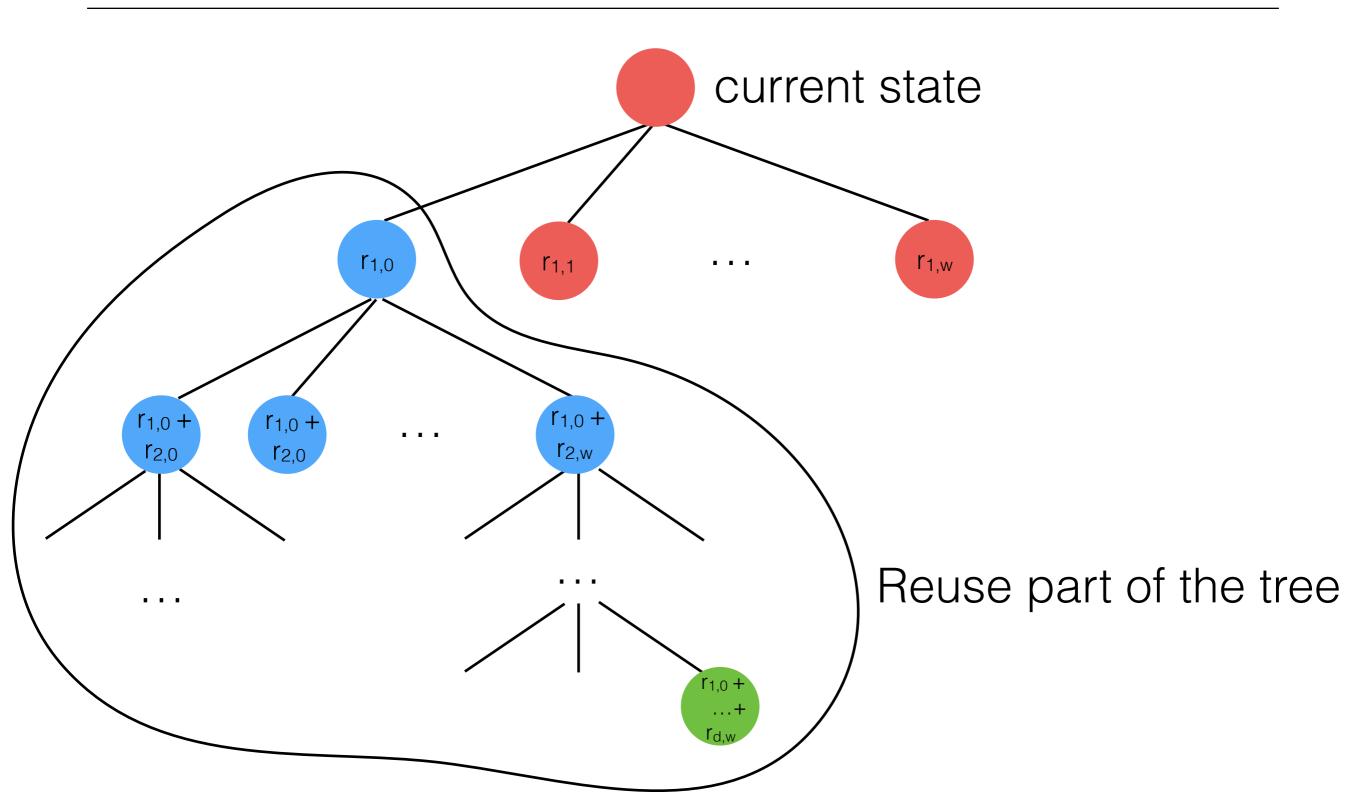
Reinforcement Learning - Tree search



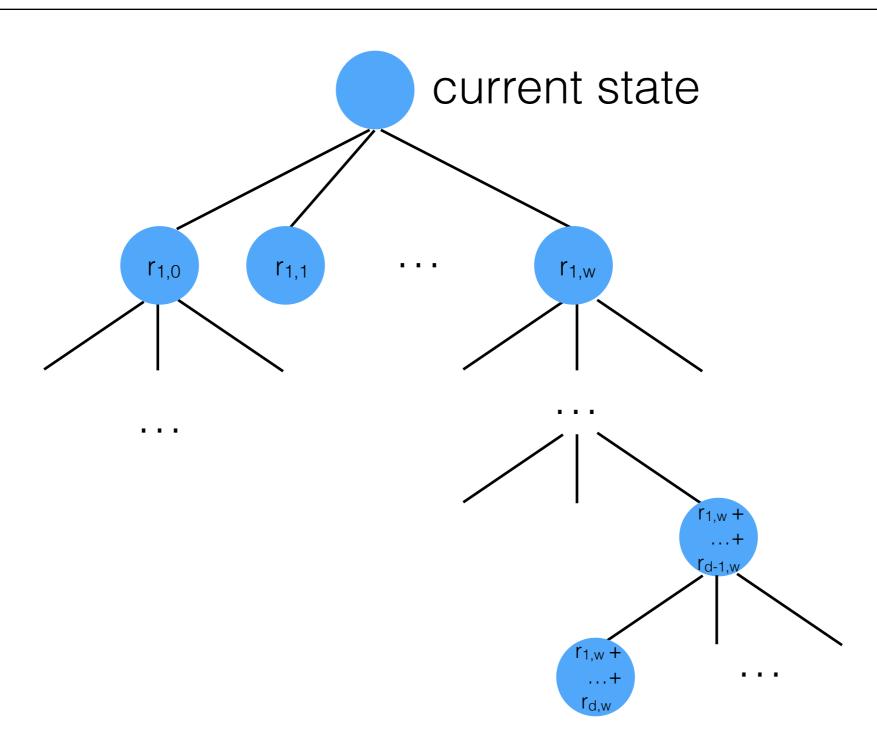
Reinforcement Learning - Tree search



Reinforcement Learning - Tree search



Reinforcement Learning - Tree search



Reinforcement Learning - Details

- Commonly used policies:
 - Greedy: Choose the action that maximizes the action value function: $\pi'(s) = \operatorname{argmax} q(s, a)$
 - ϵ greedy: Choose best action in $1-\epsilon$ cases and a random action in ϵ cases
 - Draw next action from probability distribution $\pi'(s) = \operatorname{argmax}[\log(q(s,a)) + \operatorname{gumbel}(q(s,a))]$
 - Perform tree search

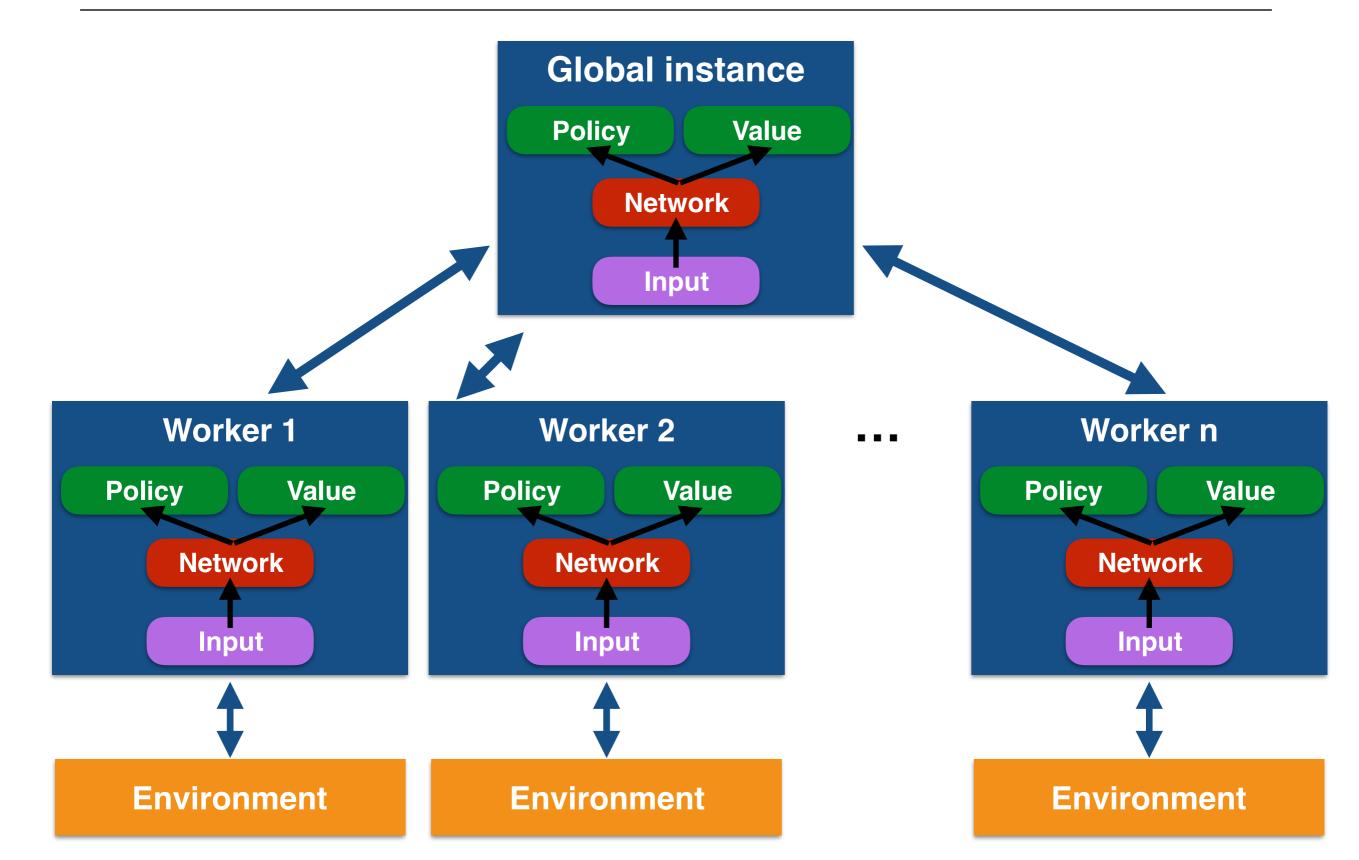
[Mnih et al '16]

 We use ChainerRL implementation of A3C (Asynchronous advantage actor-critic) possibly combined with tree search

Reinforcement Learning - A3C

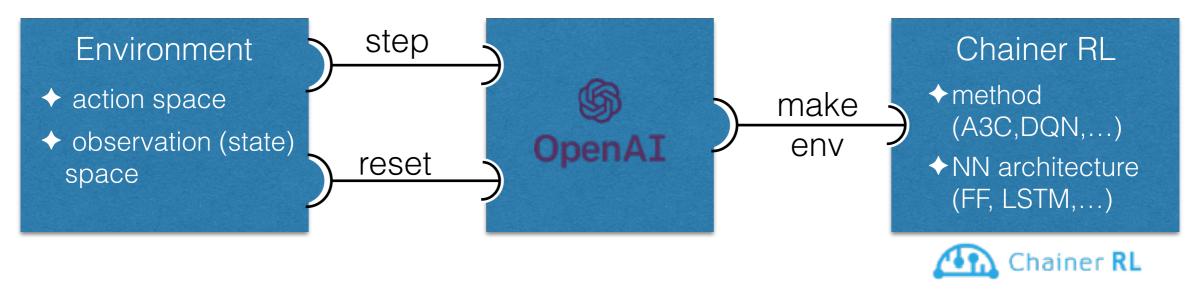
- Asynchronous: Have n workers explore the environment simultaneously and asynchronously, report back to overseer
 - improves training stability (experience of workers separated)
 - improves exploration
- Advantage: Use advantage to update policy
- ► Actor-critic: To maximize return we need to select the best next state (actor) based on an estimate of the value of the state (critic). Both is done using NNs.

Reinforcement Learning - A3C



Reinforcement Learning - Implementation

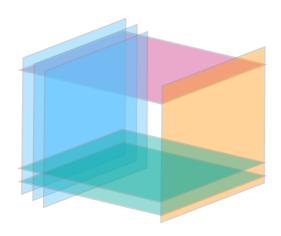
- Open Al Gym: Interface between agent (RL) and environment (string landscape) [Brockman et al '16]
 - We provide the environment
 - We use ChainerRL's implementation of A3C for the agent



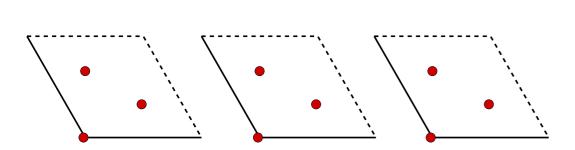
- step:
 - go to new state
 - return (new_state, reward, done, comment)
- reset:
 - reset episode
 - return start_state

- make environment
- specify RL method (A3C)
- specify policy NN (FF,LSTM)

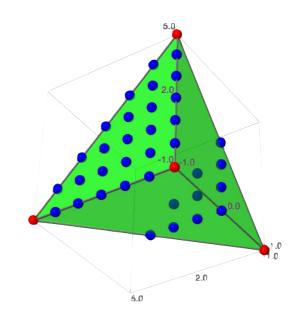
Reinforcement Learning - Versatile Applications



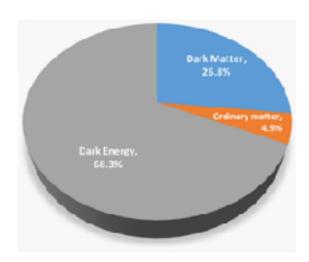
Type II Intersecting branes
Orientifolds of toroidal orbifolds



Realistic vacua of Heterotic Orbifolds

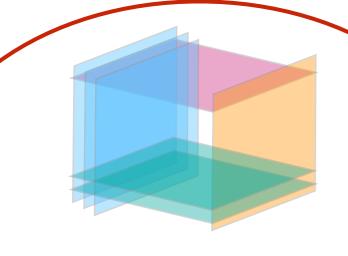


Sen limits in F-Theory

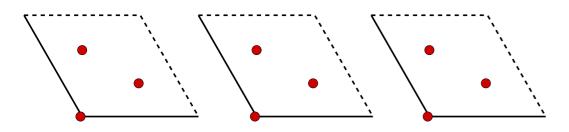


Finding small CC in Bousso-Polchinski

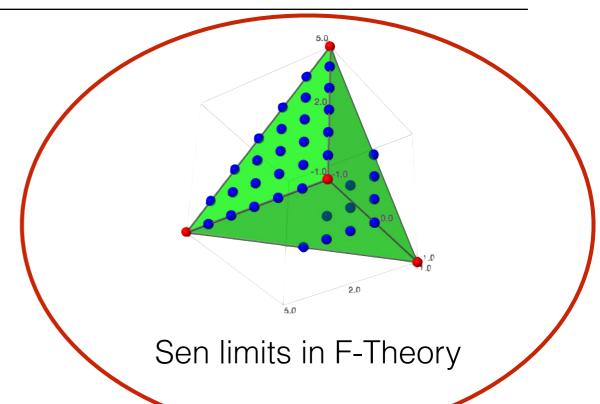
Reinforcement Learning - Versatile Applications

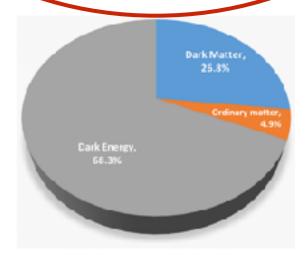


Type II Intersecting branes
Orientifolds of toroidal orbifolds

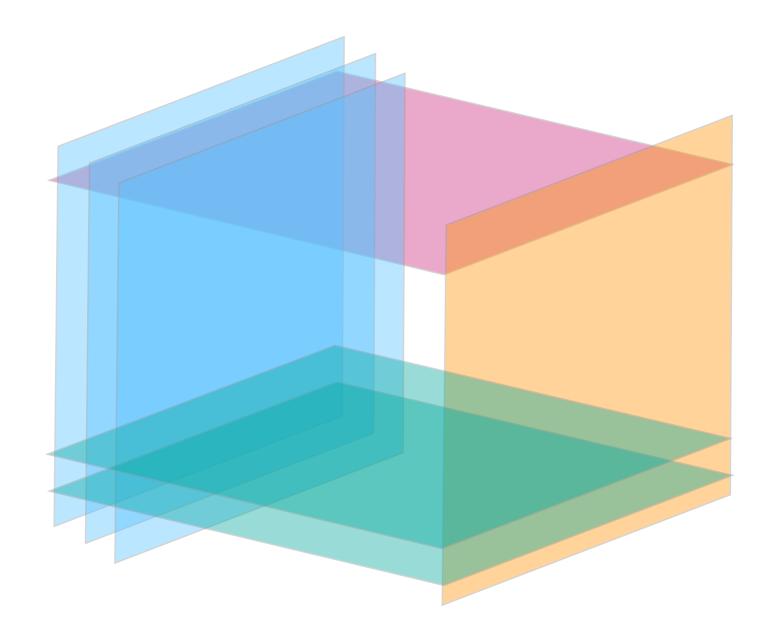


Realistic vacua of Heterotic Orbifolds





Finding small CC in Bousso-Polchinski



Type II Orientifolds

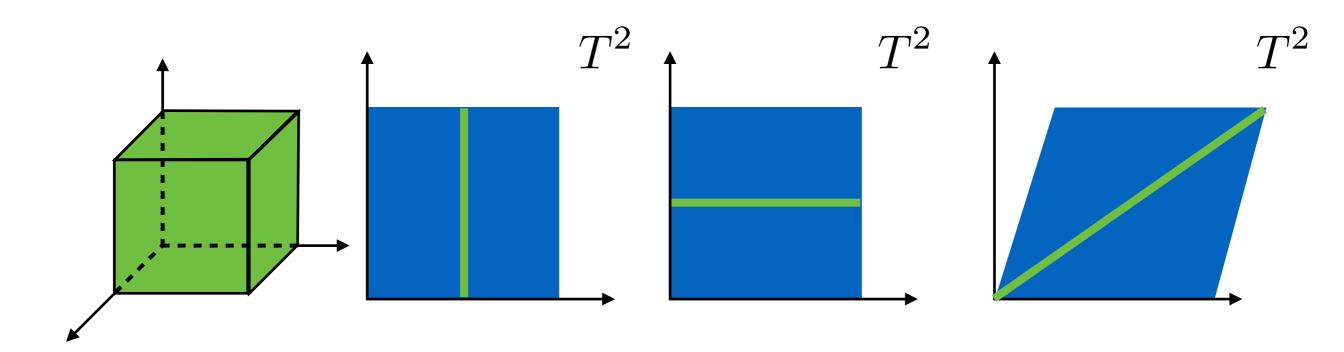
IIA Orientifolds

- Why this setup?
 - Well studied [Blumenhagen, Gmeiner, Honecker, Lust, Weigand '04'05; Douglas, Taylor '07, ...]
 - Comparatively simple
 - Number of (well-defined) solutions known to be finite:

[Douglas, Taylor '07]

- Use symmetries to relate different vacua
- Combine consistency conditions to rule out combinations
- BUT: Number of possibilities so large that not a single "interesting" solution could be found despite enormous random scans (estimated to 1:109)
- Interesting to study with big data / AI methods

D6 branes



- Can (have to for three generations) tilt torus (2 different complex structure choices compatible with orientifold)
- D6 brane: 4D Minkowski + a line on each torus
- Can stack multiple D6 branes on top of each other
- ▶ Brane stacks \Leftrightarrow Tuple: $(N, n_1, m_1, n_2, m_2, n_3, m_3)$

D6 Branes - Consistency Conditions

Tadpole cancellation: Balance D6 / O6 charges:

$$\sum_{a=1}^{\text{\#stacks}} \begin{pmatrix} N^a n_1^a n_2^a n_3^a \\ -N^a n_1^a m_2^a m_3^a \\ -N^a m_1^a n_2^a m_3^a \\ -N^a m_1^a m_2^a n_3^a \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ 4 \\ 8 \end{pmatrix}$$

K-Theory: Global consistency constraint:

$$\sum_{a=1}^{\text{\#stacks}} \begin{pmatrix} 2N^a m_1^a m_2^a m_3^a \\ -N^a m_1^a n_2^a n_3^a \\ -N^a n_1^a m_2^a n_3^a \\ -2N^a n_1^a n_2^a m_3^a \end{pmatrix} \mod \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

D6 Branes - Consistency Conditions

- ► SUSY: $\forall a=1,\ldots,\#$ stacks $m_1^a m_2^a m_3^a j m_1^a n_2^a n_3^a k n_1^a m_2^a n_3^a \ell n_1^a n_2^a m_3^a = 0$ $n_1^a n_2^a n_3^a j n_1^a m_2^a m_3^a k m_1^a n_2^a m_3^a \ell m_1^a m_2^a n_3^a > 0$
- ▶ Pheno: $SU(3) \times SU(2) \times U(1)$ + MSSM particles
- Massless U(1)'s: $T_r \in \ker(\{N^k m_i^k\})$ i=1,2,3 (three tori) $k=1,\ldots,\# U$ brane stacks $r=1,\ldots,\dim(\ker(\{N^k m_i^k\}))$ =k-3 (generically)

Typell RL - Model the environment

- ▶ State space: $s_t \in S$, $|S| = N_{\text{max}}^{N_S} \binom{N_B}{N_S}$ $s_t = [(N^1, n_1^1, m_1^1, n_2^1, m_2^1, n_3^1, m_3^1), (N^2, n_1^2, \ldots), \ldots]$
- Action space: Two approaches
 - Construct collection of winding number 6-tuples. Actions can add/remove branes from the brane stacks or exchange entire 6-tuples from pool of constructed stacks $A = \{N^a \to N^a \pm 1, \text{ add stack } (N, n_1, \ldots), \text{ remove stack } (N, n_1, \ldots)\}$
 - Start with all winding numbers zero. Actions can add/remove branes from the brane stacks or add ± 1 to any winding number in any stack

$$A = \{ N^a \to N^a \pm 1, \ n_i^a \to n_i^a \pm 1, \ m_i^a \to n_i^a \pm 1 \}$$

Typell RL - Model the environment

- ▶ RewardR: Need a notion of "how good a state is"
 - 1. By how much does a set of stacks violate the tadpole?
 - 2. Is a set of stacks fully consistent (Tadpole, K-Theory, SUSY) (Note: the latter two are binary, hard to define distance)
 - 3. How far is the state from the Standard Model
 - $\hbox{- Missing a group factor of } SU(3)\times SU(2)\times U(1) ? \\ (Q,u,d,L,H_u,H_d,e) \\ \hbox{- Too few Standard model particles } ?$
 - Extra exotics (particles charged under the Standard Model but not observed so far)

Note: Only works if good states are "close by" in this sense...

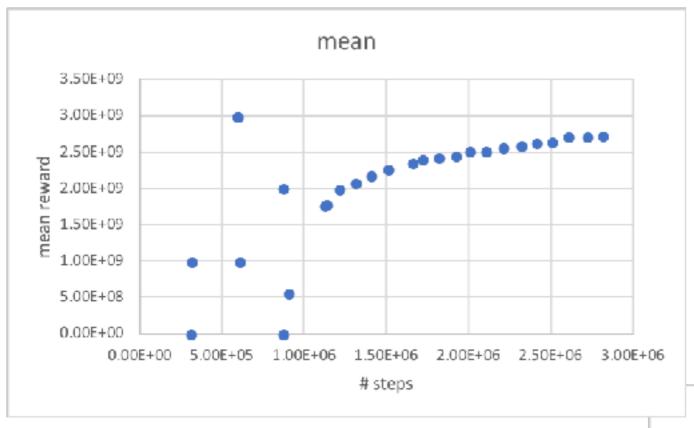
- Need multi-task RL:
 - Check properties consecutively/simultaneously and use different reward hierarchies for different tasks
 - Split up async workers and let them prioritise different goals

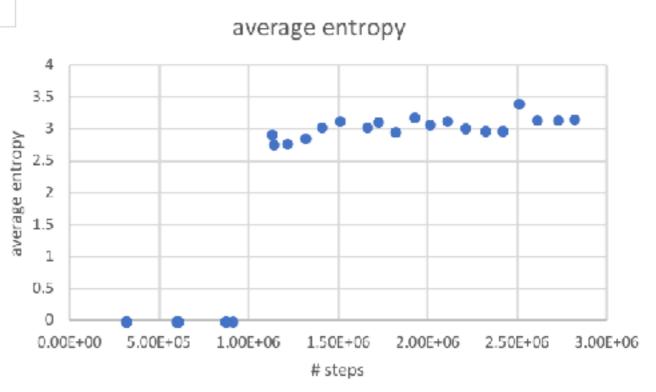
Preliminary results

Parameters:

- 16 or 32 workers (1 CPU, 16-32 threads, 2.6GHz)
- Training time of the order few hours to a day
- Neural network for value and policy evaluation: Feed-forward NN with 2 hidden Softmax layers with 200 nodes
- Initial state: Empty stack
- Maximal steps per episode: 10,000 250,000
- 10 evaluation runs every 100,000 steps

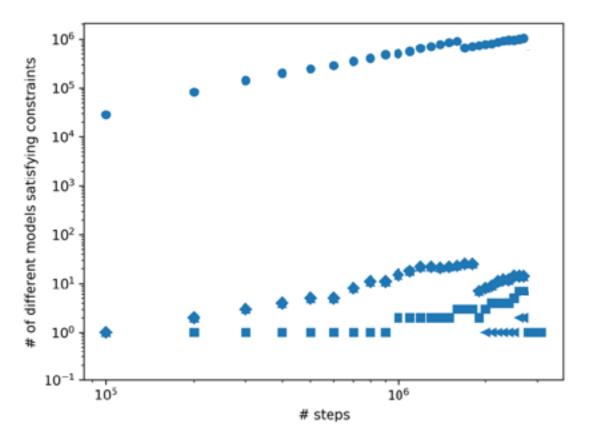
Preliminary results - Finding models Approach 1





Preliminary results - Finding models Approach 1

Number of different models satisfying constraints vs number of steps



- (0.99,0,val1_21-v0)

 SM GG

 TC

 TCK

 TCKS

 TCKS+SM
- 1.) Check consistency
- 2.) Check particle physics

(0.99,multi,val1_21-v0)

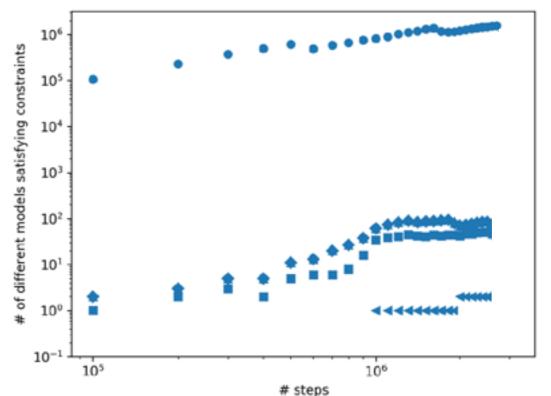
SM GG

TC

TCKS

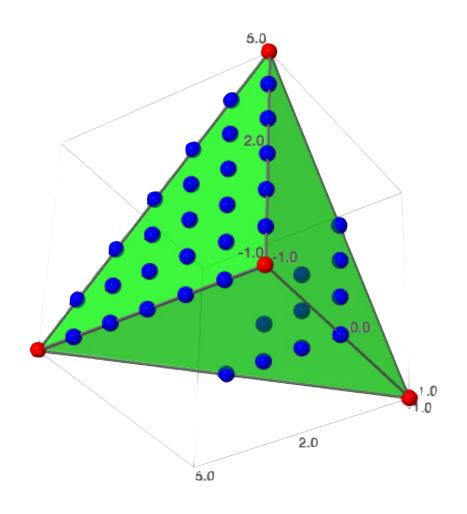
TCKS+SM

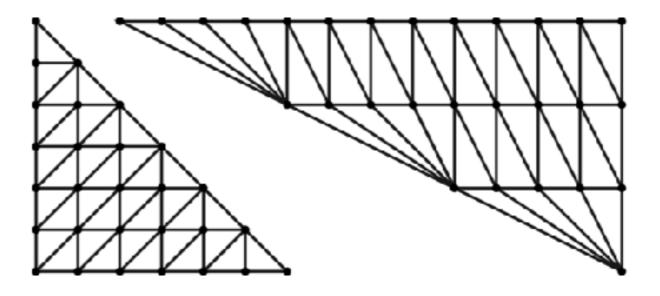
Number of different models satisfying constraints vs number of steps



multitask:

- 16 workers consistency
- 16 workers particle physics





Sen Limits in F-Theory

- ▶ F-Theory is strongly coupled IIB [Vafa '96]
- Coupling encoded in complex structure of auxiliary torus (⇒ 12-dimensional theory)
- Starting point: CY 1-fold in $\mathbb{P}_{2,3,1}[6]$ $y^2 = x^3 + fxz^4 + gz^6$, $\Delta = 4f^3 + 27g^2$
- CY N-folds: turn (f,g) into sections of the base
- Singularities in codimension 1 correspond to gauge theories, these might or might not have a weakly coupled IIB limit

▶ Blowups will force (resolved) singularities in elliptic fibration $y^2 = x^3 + fxz^4 + gz^6$, $\Delta = 4f^3 + 27g^2$

Singularities classified by Kodaira

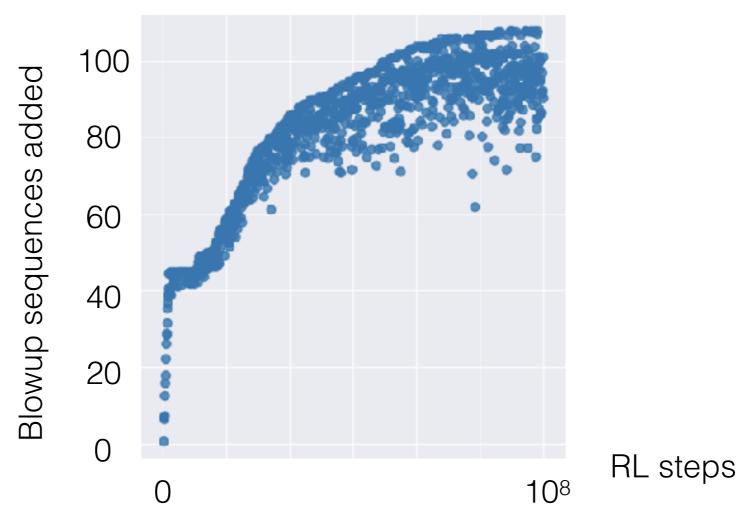
F	a	b	c	Sing.	G	
I_0	≥ 0	≥ 0	0	none	none	Sen
I_n	0	0	$n \ge 2$	$ A_{n-1} $	$SU(n)$ or $Sp(\lfloor n/2 \rfloor)$	0011
II	≥ 1	1	2	none	none	no Con
III	1	≥ 2	3	A_1	SU(2)	no Sen
IV	≥ 2	2	4	A_2	SU(3) or $SU(2)$	
$I_0^{\tilde{\alpha}}$	≥ 2	_	6 _	D_4	$SO(8)$ or $SO(7)$ or G_2	Sen
I_n^*	2	3	$n \ge 7$		SO(2n-4) or $SO(2n-5)$	0011
IV ~	≥ 3	4	8	E_6	$E_6 \text{ or } F_4$	
111	3	≥ 5	9	E_7	E_7	no Sen
II^*	≥ 4	5	10	E_8	E_8	

 If blowup enforces these (resolved) singularities: no Sen (i.e. weak coupling) limit

- Why this setup?
 - Huge ensemble of geometries (10⁷⁵⁵) [Halverson, Long, Sung '17]
 - Probability for Sen limit < 1:10-400
 - Still leaves a huge "anomaly" of Sen limit models
 - Geometries simple to construct (Toric blowups/blowdowns)
 - Interesting to know how "non-perturbative" string theory generically is
 - Result can have implications for phenomenology, e.g. dark matter [Halverson, Nelson, FR '16; Halverson, Nelson, FR, Salinas '18]

- Start from blown-down geometries that are known to have a Sen limit
 - Add sequence of blowups over faces or edges
 - If you can add a sequence without spoiling Sen limit, you can also add all sub-sequences
 - Two polytopes dominate the 10^{755} models \Rightarrow focus on those
 - To get lower bound on number of Sen models find:
 - ... as many simultaneous edge/face blowups as possible
 - → ... as large blowup sequences as possible

Preliminary results - Sen Blowups



- ▶ 108 blowup sequences can be added simultaneously
- Each corresponds to a single blowup, each can be done independently
- #Sen states $< 2^{108} \simeq 10^{32}$

Conclusion

- RL well suited for search & explore in the string landscape
- Very versatile applications to string theory:
 - String models in Type II intersecting brane models on toroidal orientifolds
 - Sen limit in F-Theory geometries

Thank you for your attention!