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Motivation - ML in Science and Society
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Motivation - ML in String Theory

» Possible applications of ML in string theory

* Find string models in the landscape

* Find generic / common features of string-derived model and
extract string theory predictions from the landscape

 Find patterns in mathematics of string theory

 Use machine learning / Al to perform computation intensive
WOrk [FR'17]

» Can we use machine learning to study the landscape?
[He’'17; Krefl, Seong’17; FR’17; Carifio, Halverson, Krioukov, Nelson’17]
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Motivation - ML in String Theory

» Possible applications of ML in string theory

Find string models in the landscape
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Motivation - ML in String Theory

4D string theories highly non-unique

e Different choices lead to 107°° or more string vacua
(Go has 1017 states)
[Douglas "03; Douglas, Sen "04; Halverson, Long, Sung 17; Taylor, Wang "15-"17]

* Number huge but seems finite
|Reid "87; Douglas, Taylor "07; Buchbinder, Constantin, Lukas "14;

Groot Nibbelink, Loukas, FR, Vaudrevange "15; Di Cerbo, Svaldi "16]
* Most of these vacua do not correspond to our universe

* Problem: We know the phenomenological properties a string
theory that describes our universe has to have, but we lack a
vacuum selection mechanism



Motivation - ML in String Theory

When choosing a string background (geometry, flux):

» Need to ensure mathematical/physical consistency
* TJadpole and anomaly cancellation

e Solution is actual vacuum (D- and F-flat)

» Need to ensure physically desirable features
* Gauge algebra of the SM: SU(3) x SU(2) x U(1),
* Three tamilies of quarks and leptons, one Higgs pair
* Absence of exotics, realistic Yukawas

* Realistic cosmological constant



Motivation - ML in String Theory

» Mathematical constraints: Often collection of non-
linear, coupled Diophantic equations

» Physical constraints: Further constrains Diophantic
solutions in non-obvious way

» Upshot:

* [For a given configuration we can check its viability easily,
out we have no idea how to find a good configuration in the
first place

» To traverse vacua: Use Reinforcement Learning, a
semi-supervised approach to Machine Learning



Outline

» Reinforcement Learning (RL)
e |ntroduction to RL
e |nterlude: NNs + Tree searches

* |Implementation

» Example applications
* Finding vacua in Type [IA/B intersecting brane models

 Finding weak coupling limits in the F-Theory landscape

» Conclusion



Reinforcement learning




Reinforcement Learning - ldea

» Basic textbooks/literature [Barton, Sutton '98 “17]

» Based on behavioural psychology: train individual by
* Rewarding "good” behavior

* Punishing "bad” behavior

» Used e.g. In (50 [Silver et. al. »16 “17]
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Reinforcement Learning - Vocabulary

» Want to explore the string landscape
(“environment”)

Environment
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Reinforcement Learning - Vocabulary

Want to explore the string landscape
(“environment”)

Done by “workers” that are conditioned

At any given moment, a worker is Iin a

specific string configuration (“state”) defined

by discrete topological data (branes, flux, Return
cycles, ...)

P25

y

Workers change state by taking "actions” to : \ o 4
reach new states (“elements of the environ- ' + + W +
ment”)

4

They select these actions via some “policy” . * i~
P o - ‘
Depending on the chosen action they receive e k‘
a pos/neg “reward” 25 N
-3 .

Via this reinforcement, the agent learns a
policy that, given a state, selects an action
that maximises its “return” (accumulated
long-term reward)



Reinforcement Learning - Prediction Problem

» In order to maximize long-term return, we need to
poredict:

1. how beneficial is a given state

2. how high will the reward of future actions be

» In order to predict this, we use neural networks that
learn to make good predictions based on previous
experience
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INnterlude: Neural Networks




Neural Networks 101
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Neural Networks 101
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Neural Networks 101
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» Connections: Matrix Multiplication

» Nodes: Apply some activation function f
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» Connections: Matrix Multiplication

» Nodes: Apply some activation function f



Neural Networks 101

» Connection between layers : Linear transformations L;:
Matrix multiplication v, = A*v;, + b’

» Each layer applies a function (activation function) to its input to
compute its output. Common choices are

( ) RelLu Logistic Sigmoid Tanh

1 1t

iy

» Typical NN: RM 5 RN
v fpoLy,o...0 fyo L



Neural Networks 101

» Look at simplest case: 1 layer, 1 node, logistic sigma
function zous = (1 + exp(azi, + b))~

* a: Steepness of step (step function for a — 00 )

* b : Position of step: (intersects y-axisaty =1/2forb=0)

0.5 0.5¢ 0.5¢

Y

-2 2 4 6 -.6 _.4 _.2 2 4 6

a=10,b=0 a=10,b=-30 a=—10,b0= 30

%6 -4 -2 | 2 4 6 -




(B) Using NN to approximate functions
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(B) Using NN to approximate functions




(B) Using NN to approximate functions

» More nodes = more steps = approximate any function (with
one layer)[Cybenko '89; Hornik '91; Nielsen‘15]
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Interlude: Tree Searches




Reinforcement Learning - Tree search

current state
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Reinforcement Learning - Tree search
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Reinforcement Learning - Tree search

current state



Reinforcement Learning - Details

» Commonly used policies:

 (Greedy: Choose the action that maximizes the action
value function: 7'(s) = argmax ¢(s, a)

e egreedy: Choose best actionin 1 — € cases and a
random action in € cases

* Draw next action from probability distribution
m'(s) = argmax|log(q(s, a)) + gumbel(g(s, a))]

e Perform tree search [Mnih et al "16]

» We use ChainerRL implementation of A3C (Asynchronous
advantage actor-critic) possibly combined with tree search



Reinforcement Learning - A3C

» Asynchronous: Have n workers explore the
environment simultaneously and asynchronously,
report back to overseer

* Improves training stability (experience of workers
separated)

* Improves exploration
> Advantage: Use advantage to update policy

> Actor-critic: To maximize return we need to select
the best next state (actor) based on an estimate of
the value of the state (critic). Both is done using NNs.



Reinforcement Learning - A3C

Global instance
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Input
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Policy Value Policy Value Policy Value

Network Network Network
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Reinforcement Learning - Implementation

» Open Al Gym: Interface between agent (RL) and environment
(string landscape) [Brockman et al '16]

 We provide the environment
 We use ChainerRL’s implementation of A3C for the agent

Environment step Chainer RL
4+ action space make N 4+ method
+ | (A3C,DQN,...)
observation (state) env
space reset 4+ NN architecture
(FF, LSTM,...)
@ Chainer RL
» step: » make environment
* gotonew state » specify RL method (A3C)
* return (new_state, reward, done, comment) , specify policy NN (FF.LSTM)

» reset:
e reset episode

* return stari_state



Reinforcement Learning - Versatile Applications
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Type Il Orientifolds




[|A Orientifolds

» Why this setup?

e \Well studied [Blumenhagen,Gmeiner,Honecker,Lust,Weigand '04'05;
Douglas, Taylor '07, ...]

 Comparatively simple

 Number of (well-defined) solutions known to be finite:
[Douglas, Taylor '07]
+ Use symmetries to relate different vacua

+ Combine consistency conditions to rule out combinations

 BUT: Number of possibilities so large that not a single
“Interesting” solution could be found despite enormous
random scans (estimated to 1:109)

* [nteresting to study with big data / Al methods



Do branes

T? T2 T?

» Can (have to for three generations) tilt torus (2 different
complex structure choices compatible with orientifold)

» D6 brane: 4D Minkowski + a line on each torus
» Can stack multiple D6 branes on top of each other

» Brane Stacks<:>TupIe: (N, ni,MmM1,MN2, M2, N3, mg)



D6 Branes - Consistency Conditions

» Tadpole cancellation: Balance D6 / O6 charges:

#stacks N® nclL ng ng 3
—N%nimsmg | | 4

; —N*m{nsm3 | | 4
—NmTms ng 3

» K-Theory: Global consistency constraint:

2N*“mImsms 2 0

#stacks NGy g pa 9 0
1772 7% 1 mod =

Z1 —N%nTmsns 2 0

T —2N*n¢ nd mé 2 0



D6 Branes - Consistency Conditions

» SUSY: Va =1, ..., # stacks

a a a ’ a . a. . a a a. . a a_ . a a _
mi{msms — J mingns — knimsng — €ningms =0

a a a . a a a
NiNoNlg — ] N1MoMg —

» Pheno: SU(3) x SU(2)
» MasslessU(1)'s: T, €

kmingms — fmimong > 0

x U(1) + MSSM particles
ker({N*mk})

i =1,2,3 (three tori)

k ]
A

,...,#U brane stacks

r =

... dim(ker({ N*m}}))

= k — 3 (generically)



Typell RL - Model the environment

N
» State space: s, €S, |S|=NDNs (Nfg)

s¢ = [(N',n{,my,ny, m3,nz,ms), (N*,n%,...),...]

» Action space: Two approaches

e (Construct collection of winding number 6-tuples.
Actions can add/remove branes from the brane stacks or
exchange entire 6-tuples from pool of constructed stacks
A={N* - N®+1, add stack (N,nq,...),
remove stack (IN,nq,...)}

o Start with all winding numbers zero. Actions can add/
remove branes from the brane stacks or add +1 to any
winding number in any stack

A:{NCL%N&::L n?—)n?::l, mf’—)n?::l}




Typell RL - Model the environment

» RewardRR : Need a notion of "how good a state Is”
1. By how much does a set of stacks violate the tadpole”

2. |s a set of stacks fully consistent (Tadpole, K-Theory, SUSY)
(Note: the latter two are binary, hard to define distance)

3. How far is the state from the Standard Model

x SU(2) x U(1) -

: (Qauv d7L7Hu7Hd7€)
e Too few Standard model particles ?

e Missing a group factor o‘?U(B)

e Extra exotics (particles charged under the Standard Model but not
observed so far)

Note: Only works if good states are “close by” in this sense...
» Need multi-task RL:

* Check properties consecutively/simultaneously and use
different reward hierarchies for different tasks

e Split up async workers and let them prioritise different goals



Preliminary results

» Parameters:

16 or 32 workers (1 CPU, 16-32 threads, 2.6GHz)
Training time of the order few hours to a day

Neural network for value and policy evaluation:

Feed-forward NN with 2 hidden Softmax layers with 200
nodes

Initial state: Empty stack
Maximal steps per episode: 10,000 - 250,000

10 evaluation runs every 100,000 steps
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Preliminary results - Finding models Approach 1

Number of different models satisfying constraints vs number of steps

# of different models satisfying constraints
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Sen Limits in F-Theory




F-theory Sen limits

» F-Theory is strongly coupled [IB [vafa o]

» Coupling encoded in complex structure of auxiliary
torus ( = 12-dimensional theory)

» Starting point: CY 1-fold in Py 5 1|6]
P =% 4 fozt +¢2°, A =413 +274°

» CY N-folds: turn (f, g) into sections of the base

» Singularities in codimension 1 correspond to gauge
theories, these might or might not have a weakly
coupled IIB limit




F-theory Sen limits

» Blowups will force (resolved) singularities in elliptic fibration
y? =x° + fozt +92°, A=4f°+27g°

» Singularities classitied by Kodaira
Fla|b | e |Sing. ¢
X Sen
>
no Sen
Sen
no Sen

» If blowup enforces these (resolved) singularities: no Sen
(i.e. weak coupling) limit



F-theory Sen limits

» Why this setup?

Huge ensemble of geometries (10759) [Halverson, Long, Sung '17]
Probability for Sen limit < 1:10-400

Still leaves a huge “anomaly” of Sen limit models
Geometries simple to construct (Toric blowups/blowdowns)

Interesting to know how “non-perturbative” string theory
generically is

Result can have implications for phenomenology, e.g. dark
matter [Halverson, Nelson, FR '16; Halverson, Nelson, FR, Salinas '18]



F-theory Sen limits

» Start from blown-down geometries that are known to
have a Sen limit

Add sequence of blowups over faces or edges

If you can add a sequence without spoiling Sen limit, you
can also add all sub-sequences

Two polytopes dominate the 1075° models = focus on those

To get lower bound on number of Sen models find:
+ ... as many simultaneous edge/face blowups as possible

+ ... aslarge blowup sequences as possible



Preliminary results - Sen Blowups

100

Blowup sequences added

RL steps
0 108

» 108 blowup sequences can be added simultaneously

» Each corresponds to a single blowup, each can be
done independently

» #Sen states < 2198 ~ 1032



Conclusion

» RL well suited for search & explore in the string landscape
» Very versatile applications to string theory:

e String models in Type Il intersecting brane models on
toroidal orientifolds

e Sen limitin F-Theory geometries

Thank you for

your attention!



