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this talk ...

This talk is based on work together with F. Cordonier-Tello and D. LUst ::

Open-string T-duality and applications to
non-geometric backgrounds [arXiv:1806.01308]
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motivation :: non-geometry

Non-geometric backgrounds ::
1) Cannot be described using Riemannian geometry (CET description).

2) Are globally-defined using (T-)duality transformations.

Properties :: = Give rise to non-commutative & non-associative structures. Blumenhagen, Plauschinn - 2010
List - 2010

Mylonas, Schupp, Szabo - 2012

m Used for moduli stabilization and inflation. Shelton, Taylor, Wecht - 2006

= Provide origin for gauged supergravities. Grana, Louis, Waldram - 2005
Cassani - 2008

Blumenhagen, Font, Plauschinn - 2015

= Needed for mirror symmetry and heterotic/F-theory duality. Grana, Louis, Waldram - 2005

Malmedier, Morrison - 2014
Gu, Jockers - 2014
Font, Garcia-Etxebarria, LUst, Massai, Mayrhofer - 2016



motivation :: d-branes

Objective :: investigate non-geometric backgrounds from an open-string world-sheet perspective.

doubled geometry

non-geometric background
with D-branes

|

understand global properties

|

open-string T-duality

apply known model-building
techniques

|




motivation :: this talk

This talk :: 1) Analyse global properties of D-branes in non-geometric T-fold backgrounds.

2) Discuss Buscher's procedure for open strings (including technical details).

Alvarez, Barbon, Borlaf - 1996

Dorn, Otto - 1996

Forste, Kehagias, Schwager - 1996
Albertsson, Lindstrom, Zabzine - 2004
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non-geometry :: t-duality group

The T-duality group for toroidal compactifications is O(D, D;Z) — which contains ::

= A-transformations ( A € GL(D, 7))

A1 0
Oa = ( 0 AT> - difffomorphisms

= B-transformations ( B;; an anti-symmetric matrix)

1 0
O = ( B 1 > g gauge transformations b — b + o'B

= 3-transformations ( 5%/ an anti-symmetric matrix)
(15
%= (0 1)

» factorized duality ( £, with only non-zero E; = 1)

2

1 — Ei ::Ei - : o
O4i = ( B 1-E > > T-duality transformations gii — =




non-geometry :: torus fibrations |

he standard example for a non-geometric background is a T“-fibration over a circle.

duality transformation

(Gab, Bap) (X + 27)




non-geometry :: fibrations Il

The non-geometric background is part of a family of T“-fibrations ::

Ok On 05

() () ()

T with H-flux > - twisted T° - S T-fold




non-geometry :: three-torus with h-flux

A three-torus with H-flux is characterized as follows ::

1. Metric and B-field

R? 0 0 0 +2RX3 0
Gij: 0 R% 0 : Bij: —O‘—,hX?’ 0 0 : h e Z.
0

0 0 R2
2. The background is well-defined under X° — X* + 271 using a gauge transformation.

3. The H-flux H = dB can be expressed In a vielbein basis as

o h o’ h
et Ne? Ae?, His3 =

H = .
2T R1 RQ Rg 27T Rl RQ Rg




non-geometry :: twisted three-torus

After a T-duality along X' one obtains a twisted three-torus ::

1. Metric and B-field

[ % o e X3 0 0 0 0
\ 0 0 R} ) 000

2. The background is well-defined under X*® — X* + 27 using a diffeomorphism.

3. A geometric f-flux is defined via a vielbein basis as

o h
2T R1 RQ Rg .

1
de® = ifbcaeb/\ec, fZS1 —

Kachru, Schulz, Tripathy, Trivedi - 2002



non-geometry :: t-fold

A second T-duality along X? gives the T-fold background ::

1. Metric and B-field

(0 0 1 0 —ghX? 0 p="1E 4 [L X",
Gij = o £1 : Bi; = — +§‘—7ThX3 0 0 ],
\ 0 0 R? g 0 0 0 hel

2. The background is well-defined under X°® — X* + 27 using a g-transformation.

3. A non-geometric Q-flux is defined via a vielbein basis and (G — B)™' =g — 8 as

Q;7F = 9, pI* Q1% = o i .
‘ -t ’ 27T R1 RQ Rg

Hull - 2004
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non-geometry :: world-sheet action

The world-sheet action for the open string takes the form ( > is a 2d manifold with 9% # @ )

1 1 | = -
S = ~GiidXA %dX9 + L BydX A dX?
szfz 9 i XAAT T 5 P _

1 ) .
/ 2mia a; d X | .
0> L _

2mo!

The possible boundary conditions for X* are

Dirichlet

Neumann

0= (dX")

tan’

0= G (dX") +2ma/i Fop(dX")

tan’

(dX"), =120, X" ds|aZ ,

tan

(dXi) =n20,X" ds‘az,

norm

27’ F = 2w’ F + B,
F=da.



non-geometry :: boundary conditions

he open-string boundary conditions can be expressed using (restriction to 0> is understood)

(n) = (amar ) () )

A particular type of D-brane is selected using a projection operator

A0
_ 2
H‘(o 1—A>’ A

n
>

Question :: are D-branes globally well-defined on non-geometric backgrounds?



non-geometry :: transformations |

The coordinate differentials behave under transformations O € O(D, D;7Z) as

where

(e

norm

T with H-flux

twisted T

T-fold

i (dX)

o )= (") ).

-
vy,
|
TN
o =
= O
—




non-geometry :: transformations I

Boundary conditions for the previous examples are well-defined using O(D, D; Z) transformations

D o’ 0 i(d )tan
N / x3 4 on 2’ F G ) x3 L on (dX')
o' 0 _1 ’L(dX) .
O, ( 2o’ F G )XB {2, ( (dX)t >

D
(9*<N>X3, *= (B, A, ).

he projection onto a particular D-brane has to be performed after the transformation

T\ (8 ) o) =T [ ()
N X3—|—27T_ N J xs3




non-geometry :: summary

Summary :: = \When applying T-duality transformations to geometric T -fibrations,

= non-geometric backgrounds can be obtained.

= Open-string boundary conditions are well-defined for such fibrations.
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t-duality :: buscher's procedure

T-duality transformations for curved backgrounds are obtained following Buscher's procedure ::

1) ldentify a global symmetry (isometry) of the world-sheet action.

2) Gauge the global symmetry by introducing a gauge field.

3) Integrate-out the gauge field.

integrate A, x
gauging

original theory
S|X]

gauged theory
S[X, A, x]

integrate X, A

T-dual theory
S[x|




t-duality :: world-sheet action

The world-sheet action for the open string takes the form ( > is a 2d manifold with 9% # @ )

1 1 | = -
S = ~GiidXA %dX9 + L BydX A dX?
szfz 9 i XAAT T 5 P _

1 ) .
/ 2mia a; d X | .
0> L _

2mo!

The possible boundary conditions for X* are
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Neumann

0= (dX")

tan’

0= G (dX") +2ma/i Fop(dX")

tan’

(dX"), =120, X" ds|aZ ,

tan

(dXi) =n20,X" ds‘az,

norm

27’ F = 2w’ F + B,
F=da.



t-duality :: hodge decomposition

The Hodge decomposition theorem for manifolds with boundaries can be expressed using

» closed forms C?P ={we QP :dw=0},
= exact forms EP={weQP :w=dnnec QP 1},
m closed & co-closed, vanishing normal part CcCr ={w e QP 1 dw =0, d'w = 0, Wyorm = 0}.

For closed forms on then finds C? = EP & CcCy; .
e.g. Capell, DeTurck, Gluck, Miller - 2005

his implies for Dirichlet directions X' that dX' is exact.




t-duality :: global symmetry

For Buscher's procedure, one assumes that the action is invariant under a global transformation

6. X" = ek'(X), € = const. < 1.

he variation of the action vanishes provided that

LG =0,

v globally-defined one-formon 32,
L:k B = dv .

w globally-defined function on 032,

2ma’ Lra }az = (—v + dw)|az .



t-duality :: local symmetry

The global symmetry can be gauged by introducing a gauge field A (and a Lagrange multiplier X))

N 1 . . . .
S = , / LG (X" + K A) Ax(dX7 + K A)

2T 3

—%BijdXi/\de—i(U—LkB+dX)/\A}
1
2mia’ a, dX® —iQoxn | .
2 /
T O

The local symmetry transformations take the form

Sy

5. X" = ek’ SEA:—de,

€X — —€ Lk/U .



t-duality :: boundary conditions

The possible boundary conditions for the gauge field are

Dirichlet 0 = Atan | 5. -

Neumann 0 = Goi k' Anorm + 270 i Fap k Agan | 5 - |
Albertsson, Lindstrom, Zabzine - 2004

The boundary term has the following form ::

s For Dirichlet boundary conditions the variation parameter satisfies €|gs; = 0 and hence
Qo = 0.
= For Neumann boundary conditions a second Lagrange multiplier is needed and
X globally-defined function on 932,

= (X+¢—|—w — QW(X/Lka)A,
¢ constant function on 0% .
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t-duality :: back to original action

The original action is obtained from the gauged action using the Lagrange muiltipliers ::

= equation of motion for X (globally-defined on  X2) > F=dA=0,

= equation of motion for ¢ (globally-defined on o) - Atanloz = 0.

Using Hodge decomposition for manifolds with boundary the original action is recovered via (w™ € CcC'y, )

A dA =0 > A = da(o) T Q(m) W Atan = 0 > A(m) = 0

AGA
0 > CL(()) — ()




t-duality :: integrating-out the gauge field |

Integrating-out the gauge field gives the action (with & = (1,0....,0) and B,,1 = By,1 — v, )

>4 1 1 Gml Gnl Bl Bml Bnl 1 1 Bml
S = — | Gun dX™ ANxdX" + = ——dy N xdx - dy N\ *xdX™
2’7‘(’0//2{ 2 ( Gll ) + 2 Gll X X G11 X
' Bin1Gni — GmiBn Gm |
_ Bon Ll L VX ™ AdX™ — i 22 dX™ Ady +idX YA (dx + v)
2 G11 Gll
1 - a
{277204 a,dX } .
27TC¥/ o
Interpreting dX! = +-- dx as the dual coordinate, the Buscher rules can be read-off
5 Ck/2
G — :
11 Gl
v B 1 ~ G 1
Gm = +q - , Bm = +a' - 9
e 1 Gy
b m n _Bm Bn ~ Bm nl m Bn
Gmn _ Gmn G 1G 1 1 1 | an _ an 1G 1 G 1 1
(11 G11

Buscher - 1987, 1988



t-duality :: integrating-out the gauge field Il

The variation of A on the boundary introduces a constraint, which is implemented as

path integral

0 = 2t — (x+ 6+ » 5(6- Do

~

Y =xX+w-—2rd1a.

The Neumann boundary condition for A becomes as Dirichlet condition for x

():d>2|82.



t-duality :: integrating-out the lagrange multiplier

After integrating-out the gauge field, the path integral takes the form

Z:/[DXi] Dx| /[D¢]5(¢_§Z)az exp(Sv'[Xi,X]).

Vga uge

Integration over ¢ s trivially performed.



t-duality :: integrating-out the original coordinate

The terms in the action depending on the original coordinate read (with £ = (1,0,...,0))
| : /(dx+v)/\dX1 : / o2ra’a1d Xt = A : / YdXx?'.
2ra’ s 2ma’ Jox 2ma J oy

Expand dX' = dX ) + X{,w™ . For X' compact and free X/, € 2rZ, and

DX 1 N
/[V ]eXp{z ’/ XXm}
gauge T o0

_ E < o x L  y(m)

Y
SIS X e2nz

1
m(mZ)GZ 2ma’ ™ s g X|gx € 2ma’ L.

The dual coordinate X! = ::5 X IS quantized on the boundary and thus compact.



t-duality :: summary neumann

Summary :: = [-duality along a Neumann direction results in a T-dual Dirichlet direction.

= A Wilson loop along X shifts the dual coordinate as X' = + 1 (x + w — 2ma’a).

= Momentum modes of X! determine winding modes via X!|sx € 277 .

= [he dual metric and B-field can be identified as (contain open-string gauge flux)

5 &/2

G = ,
11 Gll
~ E 1 ~ G 1
Gm = +qa' ik , Bm = +a' = 9
e ! G
. G,.1G.1— B, 1B, . B,.1G.1 — G, 1B,
Gmn — Gmn 1 1 1 1 7 an _ an 1 1 1 1

= [he dual gauge field reads & = a,,d X" .



outline

1. motivation

2. d-branes & non-geometry
3. open-string t-duality
a) generalities
b) neumann
c) dirichlet
)

d) summary

4, summary



t-duality :: back to original action

The original action is obtained using the Lagrange multiplier ::
= Perform a Hodge decomposition (w™ € CeC'y, ) dx = dx( o) + Xmw™,

= and recall the boundary conditions Atanlox = 0.

Perform then the following steps to recover the original action ::

= [he equation of motion for X (o) leadsto F ' =dA =0 . A =dag) + amw".
= [he boundary conditions imply a(m)y = 0.
= [he equation of motion for X(m) gives aylos = 0.

» The gauge symmetry can be used to set ay = 0.



t-duality :: integrating-out the gauge field

Integrating-out the gauge field leads to the Buscher rules similarly as before ::

~

g 1 1 G,1Gni — Bmi By, 1 1 B,,
S = / { - (Gmn Lnl ! 1) AX™ A %dX™ + = ——dy A *dx + —2% dy A xdX™
>

2o G11 2 Gll Gll

Gm ,
LAX™ Adx +idX A (dy + v)

Gll

( BmlGnl Bl CTY”rnlénl
A an
2 G11

)de/\dX” 7

1
// {QWZ.()&,CLQCZXQ}.
27'('04 o

he Dirichlet boundary condition for A becomes as Neumann condition for X1 = +-L

0 = th; (dXi)norm -+ ZBM (dXi)tan :



t-duality :: integrating-out the original coordinate

The terms in the action depending on the original coordinate read (with k" = (1,0,...,0)and v = 0)

? ? X155
dX' ANdx = 2w/ dy| .
A /z: X 2o’ /(92 e - 2ma X_

Expand dx = dx o) + x(mw™ , and for X' compact perform the path-integral

(DX { i 1 }
exp X ox dx
/ Vgauge 2mal 0
:/ [DX(H Z exp { 2 / (X(H(‘JE + 27777,32) dx}
Vgauge nos €7 2ma/ 0>
— Z 0 ! X(m) — M exp 7; / 2mal Xolox dx /
- 210y (m) (m) 2ma’ o5 I o > X(m) € 2ol 4 .
MM (m)

This gives Wilson loop and quantized momenta for the dual coordinate X! = =X



t-duality :: summary dirichlet

Summary ::

= [-duality along a Dirichlet direction results in a T-dual Neumann direction.

» The position of X'|sx determines a Wilson loop for X*.

= Winding modes of X! determine momentum modes of X! .

m [he dual metric and B-field can be identified as

04/2

Gll 7
. B, . i
G = Fa i : B, =
1 @ G 1
. G1Gn1 — Bl By, §
Gmn — Gmn . . . - 9 an —
Gll

» The dual gauge field reads a = Xglfz dX' + a,dX™
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t-duality :: summary

Summary ::

Here ::

Neumann boundary conditions
= momentum modes

= \Vilson loop

= CFT results are reproduced for curved backgrounds.

= [-duality along Dirichlet directions.

= |nclusion of non-trivial world-sheet topologies.

<

T-duality

>

Dirichlet boundary conditions
= winding modes
= D-lorane position




t-duality :: outlook

Paper :: includes the generalization to collective T-duality along multiple directions.

Grin = G — kam [(G+D) 1 G (G — D) kg, Bin = Bun + kam [(G
~ Kam [(G+D) ' D(G—D) " s, + kam [(G
+ Tom [(G+D) "D (G —D) 1 ks — Bam [(G
+ Tam [(G+D)1G (G —D) 1" G4 — Tam [(G
G =+ [(G+D) DG~ D) '] kpn B, = — [(G+D)" 1 G (G- D)
+ [(6+D)1 G (G-D) 1" Tsn - [(¢+D)'D(G-D)!
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summary

Summary :: = Boundary conditions for D-branes on certain flux-backgrounds

= are well-defined using O(D, D; Z) transformations.

= Open-string T-duality via Buscher's procedure has lbeen discussed,

= taking into account non-trivial world-sheet topologies.



