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Foreword



AdS/CFT

Holographic correspondence: microscopic type 11B string —
super-Yang—Mills duality with ging <> 1/ gvm involving AdSs

Anti-de Sitter space: homogeneous spacetime with A < 0
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Figure: AdS4 Penrose—Carter diagram



Thoughts on flat or de Sitter extensions

Minkowski spacetime
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Figure: Minkowski Penrose—Carter diagram

Asymptotically flat holographic correspondence

» microscopically: hard — perhaps easier in 2 + 1 dimensions or in
higl’ler—spin theories [as e.g. in Gaberdiel, Gopakumar "11]

» macroscopically: better prospects more generally



Macroscopic approach: fluid/qravity correspondence

Branch of AdS/CFT: Einstein’s and relativistic Euler’s equations

[Bhattacharyya, Haack, Hubeny, Loganayagam, Minwalla, Rangamani, Yarom, ... 07]

Einstein asymptotically locally AdS spacetime & with A < 0

!

relativistic fluid on .# = d& = conformal boundary

Historically: non-relativistic incompressible-fluid equations
emerge from perturbations of the black-hole horizon — membrane
paradigm (pamour 79; Price, Thorne 's6; Oz et al '09-16) — POSSibly inaccurate

General: in arbitrary bulk dimension D + 1



Challenges in flat-spacetime holography

1. Which spacetime would replace the AdS conf. bry. . and what
is its geometry?

2. Which are the macroscopic degrees of freedom hosted by .7, what
is their dynamics, how are the observables packaged?

Knownfﬂcts.' mOStly in 2 + 1 bulk dlm [Bagchi et al '09-16; Barnich et al '10-12; Duval et al
"14; Hartong '15]
» null infinity 7 plays a privileged role
» asymptotic symmetry towards 9= is conformal Carrollian —
BMS [Bondi, van der Burg, Metzner, Sachs '62]



Wlde dispersion [Strominger et al "10-17; Compere et al "11-12; Caldarelli et al '13; Klemm et al "14]

» “holography” involving Navier—Stokes equations — Galilean
incompressible fluids / “holography” involving relativistic fluids
at finite r with Brown—York energy—momentum tensor / specific
attempts in Rindler — none respects asymptotic symmetry

» 3+ 1-dim Minkowski <+ 2-dim CFT on spatial section of .9+
again cannot be the final word symmetry-wise

Our aim: unravel a clear & generalizable fluid/gravity 3 + 1 pattern

The method: setting k — 0 inside the appropriate expansion that
reconstructs the bulk from the boundary (A = —3k?)

Ricci-flat spacetime <+ conformal Carrollian fluid on . x R at .+



Highlights

Carrollian geometries and Carrollian hydrodynamics



Galilean vs. Carrollian contractions of Poincaré group

[Lévy—Leblond '65]

Both non-relativistic limits with decoupling of time

t = (t — Vixi )
Lorentz boosts: , 7 , CZX.
x" =y (x" = V't)

with v = 1/4/1-v?/2
t' =t

> Galilean limit ¢ — oco: { , . .
x"=x"— V't
o . Y0
» Carrollian limit ¢ — 0: everything is at rest = ¢ ©
v —1

t'=t— Bix’

XI/ — XI

but lime_q Vi/c2 = B; :>{



Carrollian covariance in d spatial plus 1 time dimensions

Geom. on ./ x R: df? = aj;(t,x)dx'dx)  Q(t,x) b= b;(t,x)dx’
t' =t'(t,x) x' =x(x)

=% iex) =35 Jix) =35

,' . ali lkJ 1/ Q/ (b + JJ/) J*].;(

[Bekaert, Bergshoeff, Duval, Gibbons, Gomis, Hartong, Horvathy, Longhi, Morand, Obers]

» Covariant under Carrollian diffs
» Jacobian: J(t,x)

> transfs.:

iQ b/

» The geometry may have isometries but we do not assume any
» Carrollian group realized in tangent space
> Carrollian invariance iff ajj = 6;;, ) = 1, b; = const

» The geometry can be equipped with Ehresmann connection /
Weyl connection with curvature / Weyl curvature



Relativistic uplift

Riemannian d + 1-dim fibration a la Randers—Papapetrou

» ds? = —c? (Qdt — b,-dx")2 + ajdx'dx
» reproduces the wanted transformation under x = x%(x°, x)
x' = x/(x) (here x® = ct) — Carrollian diffeomorphisms

axH J(t,x) cjj(t,x)
H(t,x) = YT :< 0 J_jjf(x) )

At ¢ — 0 this provides the Carrollian geometry on . x R



Relativistic fluids

Obey V,, TH = 0 with

v v

utu ut u gt
T“V:(€+p)7+pg}lv+cig+ CZ +TMV

> Jul? =~ W0 =c, b =V

> ¢, p: energy density and pressure

» g¥, T": heat current and viscous stress tensor — transverse
g, =0 vty =0
q' and ¥

» carry all information on heat exchange and friction processes
> are usually expressed in terms of a u-derivative expansion



Carrollian limit: Carrollian fluid dynamics

Relativistic fluid on Randers—Papapetrou at ¢ — 0
[worth comparing with de Boer, Hartong, Obers, Sybesma, Vandoren '17]

» Kinematics: v/ must vanish faster than ¢

fim L —Op
CTO ? a lB
avoids blow-ups without trivializing
» Transport: limit inside the fluid data (microscopic justification
yet to come)
>»e—epop
» g — Q' + % and TV — —6—122’7 —ci



Limit inside the relativistic-fluid equations

0=§VuTy=LF+£+0(c?)
0=V, TH=5H 4G +0(c?)

— Carrollian equations
» scalar equations: £ =0 F =0
» vector equations: G/ =0 H' =0
— Covariant under Carrollian diffs.

» =€ F=F
> G =JIg0 H =



Highlights

Relativistic fluid / AdS gravity



The bulk reconstruction

Given the “initial data”
» boundary metric ds? (neither flat nor conformally flat)
» conserved energy—momentum tensor T

Two options exist to get perturbatively the asymptotically AdS bulk
(A = —3K?):

1. Fefferman—Graham expansion: mathematically robust, not
resummable, does not discriminate asympt. locally vs. globally
AdS bulks, with singular kK — 0 limit

2. Derivative expansion: designed for fluid/gravity correspondence
requires an extra piece of bry. data — time-like hydrodynamic
congruence u (possibly constrained)




Fefferman—Graham: expansion of any 3 + 1-dim Einstein metric for
large r in a specific gauge (no lapse/shift) ireferman, Granam s3)

167tG

r2
2
+rd5bry+ e (k)

2
dspui = %22

Tuwdxtdx" + -

» boundary metric: leading term

» boundary energy—momentum: subleading term



The derivative expansion — fluid/gravity iswuacharya et a1 07; Haock et a1 07]
» Guideline: Weyl covariance — the bulk metric must be invariant
under boundary Weyl transformations

» Output: dsgulk = complicated expression based on the
boundary data & their derivatives — order by order

Advantﬂges [Leigh et al '10; Caldarelli et al "12; Mukhopadhyay et al '13; Gath et al "15]

» potentially resummable
» controls locally vs. globally AdS bulks
» the limit kK — 0 is regular: flat holography



A parenthesis for lunch

» The velocity u* looks redundant — is it arbitrary?
» Does every relativistic fluid have a dual Einstein spacetime?

Naively yes but ...

... the derivative expansion is not manifestly éu-invariant & the
boundary data gy, T, and u" are subject to remarkable 3rd-order
di[fer@ntiﬂl Constraints [Ciambelli et al '17; Campoleoni et al 18]



The resummation in 4 dimenSionS [Caldarelli et al "12; Mukhopadhyay et al '13; Gath et al "15]

Assuming u shear-free a resummation is performed (A = —3k?):

ds2, Einstein = 275 (dr + rA) + r2ds? +k4+k4 (87Ger + )

res. Einstein

v

boundary metric: ds®> = —k? (th — b,-dx")2 + ajdx'dx

velocity: u= éat = HUH2 = —k? [cf. Barnich, Gomberoff, Gonzalez, '12]

v

v

conformal-fluid energy density: € = 2p = k—lz Tyyutu”

> genuine resummation: p? = r? 4 S wpw ™ = r? 4

v

c: Cotton (3rd-order der. of the metric) VACy,, = C,* =0

Uy cy Uy Cy

3CU14UL ck S
o Kt 28wt t %




Resummability conditions among boundary gy, T,y and shearless u¥

> transverse duality (with 77, = —“%qu )

1

_ P
v T Teage T

_ 1 14
W= grGn

boundary “electric-magnetic gravitational duality” [Bakes 0

> energy-momentum conservation V* Tay = 0: equation for all
boundary data ¢, a;;, () and b;

Output: algebraically special Einstein spacetimes — Goldberg—Sachs
generalizations — asymptotically locally AdS

> Kerr—Taub—NUT (perfect fluids)
» Robinson—Trautman

» Plebanski—-Demianski

> ..
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Ricci-flat gravity / Carrollian fluid



The Ricci-flat limit A = —3k* — 0

In the boundary data: k = speed of light

ds? = — k2 (th — b,'dXi)2 + a,-J-dx"dxj
— 0 (Qdt — bidx')” + de2
%

= Carrollian limit: .# — . x R reached at .t (or .#7)

The relativistic conformal fluid Py Carrollian conformal fluid
—



The Ricci-flat derivative expansion

The limit of the Einstein derivative expansion is well-defined and
boundary Weyl- and Carrollian-diffeomorphism-covariant

Ilm dsres Einstein dSrzes. flat
= —2(Qdt—b) (dr + ra + "2dt) + rd(>
+s+ M (8tGer + c* @)
» di?, Q, b, : Carrollian-geometric data

» 02 = r2 + x®?: genuine resummation
» ¢ = 2p: conformal Carrollian-fluid energy density

c: descendent of the Cotton

v



The boundary Cotton tensor v conformal Carrollian 3rd-derivative
—

geometric objects

C, Cu, v — C, Xi, Yi, Xij, ¥ij
o G 0 X Wi Xijy T

The Carrollian-boundary resummability conditions (shear-free case)

J Yty m.
8nG ik Zi 87'£G77’X/J

@ = i~ 8nG

— ¥y

Output: algebraically special Ricci-flat spactimes — Goldberg—Sachs
asymptotically locally flat



Example I: stationary

Boundary data: df* = 2dgdZ, O = 1, b = byd{ + bzd(

@ = %db time-independent
Perfect fluid: e, T =0,Q = g2z x x =0, X = ﬁ*X:Q
E=gicx¥=0
fluid equations: e = M/4xG, P({, (), b;(T,0), bz (2. Q)
Bulk: Ricci-flat Kerr=Taub—-NUT family plus A-metrics



Example II: time-dependent

Boundary data: d(? = d@dg Q=1b=0

i)
> 0 =—-29:InP
> “Cotton”: ¢ =0, ¢ =0, x = 3 (9Kl — 9;Kd(), ¥ =0,
X = 2 (9 (P?.9; In P) dg2 — 3 ((P?9:0;In P) dZ?)
(K =2P?9;9;In P)
Fluid data: e, T =0,Q = giz * X, L = g2 * X, E=0
» momentum equation: d;¢ = 0 = &(t) = M(t)/4nc

> energy equation: AAInP + 12Md;In P — 49, M = 0

Bulk: Ricci-flat Robinson—Trautman (algebraically special solution
radiating & stabilizing at Schwarzschild)



Remark on example 1I — Robinson—Trautman

The Carrollian boundary fluid stress tensor X is related to the bulk

news 1 1

with )
_ % (3 2 | 2p g2
N__F)G%Pdg +8€Pd§>
a weight-0 Carrollian rank-2 tensor carrying all news information

More generally

*X = —9,N

hence “no Cotton <> no news”



Highlights

Summary



About Carrollian hydrodynamics on ajj, Q), b;

» obtained from Randers-Papapetrou relativistic fluids at ¢ — 0
> described in terms of €, p, B;, Qi, i, Zjj, Ej

» obey Carrollian-covariant (possibly conformal) set of equations

Aside observation: abandon the revered energy—momentum tensor
and its equation “divT = 0"/
In example Il with d¢? = P2(tg§ dédé the conformal Carrollian

fluid equations read (here e =2p, T =0, E = 0):

3€at|n P— ate - diVQ = 0,
gradp=0
0:Q —2Qd:InP —divE =0



About flat holography and Carrollian fluids

1. Which spacetime would replace the AdS conf. bry. .# and
what is its geometry? . x R at .# " equipped with Carrollian
geometry

2. Which are the degrees of freedom hosted by .#, what is their
dynamics, how are the observables packaged? Carrollian
conformal fluid with ¢, Q;, 7t;, Xj;, Ej obeying Carrollian fluid
equations

+ + Carrollian

conformal fluid

relativistic
‘/confovmal fluid

AdS bulk [ F —— flat bulk !




Confirms previous results regarding Carroll, null infinity and flat
holography

Calls for better microscopic understanding of the ¢ — 0 limit

» First step: Boltzmann equation
» QFT on D-dim null surfaces (D = d + 1) with conformal
Carrollian symmetries: Hilbert space, Green's functions,
unitarity, ...
» nota D — 1-dim CFT but the lim._,g of a D-dim CFT with
BMS(D + 1) = CCarroll(D) = Conf(D — 1) x T (D)
» fundamental observables are not a conserved Tjj(x) (for d =2
ng(g) and ng(é_)) [as suggested in He et al. '15-17 vs. Fareghbal et al. '15;

Bagchi et al. '16]



Highlights

Galilean covariance



Galilean covariance in d spatial dimensions

Geometry: di? = a,-j(t, x)dx'dx, Q=0(t), w=w(t x)o;

v

Galilean diffs.: ' = ¢/(t), x = (t X)
Jacobian: J(t) = %— Ji(t,x) =
transfs.. al; = agJ~ 1,-kJ_1J(, QO =

absolute Newtonian time (invariant

v

v

v

[Cartan, Bekaert, Bergshoeff, Duval, Gibbons, Gomis, Hartong, Horvathy, Longhi, Morand, Obers]

Do not confuse with the Galilean group of invariance present when
aj = 9j, QO =1, w' = constant

t'=t+ ty,
X'k = Rix + VKt 4 xk



Simple realization and relativistic uplift

Particle: x' = x'(t), v/ =dx'/at, v = v'0;

'k

> transfs.: v/* = (ka’ +J ) 5" d-dim vector

1
- J
> free dynamics: L(v,x, t) = 51>aj (vi —w') (v —w/)
Relativistic uplift: d + 1-dim Zermelo form
» ds? = —02c2dt? + g (dx' — widt) (dx/ — w/dt)

) J(t) 0
» form-invariant under J//(x) = %XT]; = <-i tx ; >
J (C ) J_j(t’ X)

» relevant limit: ¢ — oo



Highlights

Galilean fluids



Non-relativistic Galilean fluid

Relativistic fluid on Zermelo at ¢ — oo: Galilean fluid

o_ ¢ 1/c ":‘LI 1/c2
u Q+O(/) u Q—FO(/)

> v
> e p, 0O
> g — Q; and TU—)—Z,'J'

Galilean-covariant equations on a;(t,x), Q(t), w'(t,x)



Highlights

Carrollian covariance



Carrollian covariance in d spatial dimensions

Geometry on . d0? = a;(t,x)dx'dx)  Q(t,x) b= b;(t,x)dx’

» Carrollian diffs.: ¢/ = t'(t,x) x' =x'(x)
> Jacobian: J(t,x) = %t ji(t,x) = (% JJ’(x) = %
> transfs.: aj; = ak/J_ll-kJ_lj! Q=92 b= (b+%)JY

Do not confuse with the Carrollian group of invariance present when
aj = 6jj, 3 = 1, b; = constant (here realized in tangent space)

t' =t+ Bix' +ty,
1k _ pkyi k
X = Rx" 4+ xg



Simple realization and relativistic uplift

Extended object: t = t(x), B; = Qo;t — b;, B = Bidx’'

> transfs.: B}, = B;J"Y (d-dim form)
» free dynamics: L£(dt, t,x) = %a’j (Qojt — bj) (Q9;t — b;)

Relativistic uplift: d 4 1-dim Randers—Papapetrou form
> relevant limit: ¢ — 0
» ds? = —c? (Qdt — b,-dx")2 + ajdx'dx
» form-invariant under Carrollian diffeomorphisms (x° = ct)

axH J(t,x) c¢jj(t,x)
H(t,x) = FyT :< 0 Jin(x) )




More on Carrollian geometries

> isometries
» time and space connections, covariant derivatives, curvatures

» time and space Weyl connection, Weyl curvature

Example: Carrollian space derivative 0; =0+ %at
> transfs.: 9} = J 40,
il

» connection: '?J’-k == (ajalk +dkaj — alajk>

» covariant metric-compatible derivative: V = 0 +%

Similarly: Weyl-covariant metric-compatible derivatives 9;, 9,
built on ¢; = é (0¢b; +0;Q)) and 6 = 5at Iny/a



Highlights

Carrollian fluids



Carrollian limit: Carrollian fluid

Relativistic fluid on Randers—Papapetrou at ¢ — 0: kinematics

v/ must vanish faster than c:
vi =20 +0 (c*)

avoids blow-ups without trivializing

» kinematic variable B’ = ?u’;’ —bi = "'/C2Q<1fngfj>
> 1% = yc=c/a+0(c?) u—’yv—c2ﬁ’+0(c)
> ug=—cO+0 (C3) up = c? (bi + ( 4)

[worth comparing with de Boer, Hartong, Obers, Sybesma, Vandoren '17]

Limit inside the fluid data (microscopic justification yet to come)

> &, p
» ¢ = Q + 2 and TV — —C—IZZU _ i



Inside the perfect-fluid enerqy—momentum tensor

14+ c?B-b 1 .
:gn—ﬁczpz_ﬂ( + /3 ([3+2b)+0(c)>

Tperfo0 = —e—c?(e+ p)B* (bx + Bx) + O (c*)
QT % = (e +p) (bi + Bi) + O (c*)

& Toerfo = —(e+p)p + 0 (c*)

Tt = pd) + (e + p)B (b + Bi) + 0 (c*)



Inside the relativistic-fluid equations

0=§VuTy=LF+£+0(c?)
0=V, TH=5H 4G +0(c?)

— Carrollian equations
» scalar equations: £ =0 F =0
» vector equations: G/ =0 H' =0
— Covariant under Carrollian diffs.

» =€ F=F
> G =JIg0 H =



Carrollian hydrodynamics with B = 0

Scalar equations

> &= —40ie— (e+p)0—ViQ —29,Q +Eig; + 3576 = 0

» F=30g;+35.0 =0

Vector equations
> G =0ip+ (e+ p)git§0em + M0 +2Q@;
—VIE’J' -9
> Hi = aﬁuatQj + Q- VE — i =0

Remarks
» more involved for B # 0
» more elegant for conformal fluids

» not based on an “energy—momentum tensor”

L H



@i, 9, Cjj, wjj: kinematic observables

Relativistic origin: acceleration, expansion, shear, vorticity
= é (atb,' + a,Q) +0 (C2) = @i+ 0 (C2)

3
» ©=240:In\/a+0(c?) =60+0(c?)
o= & (o~ Joln v3) +0() =2 40 ()

& = 9pb + 090+ bdeby) 0 (¢?) = @; +0 (c?)

>

Remarks
» all Carrollian-covariant
» purely geometric
» more terms if B/ # 0



Highlights

Conformal Carrollian geometry and conformal Carrollian fluids



Conformal Carrollian geometry

Weyl transformation on Carrollian geometry

ajj b,' @)
—>§ b,-—>E Q—>E

ajj

Spatial Weyl derivative for a weight-w vector V!

A A

GV =V V4 (w=1)g;V! + ¢V, = 5lVig;
Temporal Weyl derivative for a weight-w vector V!

1 . 1
—.@tVI - =

I Wty i
a Qatv+29v+§,v



Conformal Carrollian fluids p = 0

From relativistic to Carrollian conformal properties

> s:dpandr”VZO—gEf,:zf,.:o
c—

» ¢ — BItle, 1 — B, Qi — BYQ;,
E,’j — Bdfla,’j, Z,’j — Bd*12;j

Scalar equations
> £ = —é@ts—.@;({)" —|—EU§U =0
» F=X0g; =0

Vector equations

> G = %.@js—i—é.@tﬂj + 7Ti€ij + 2infj - ‘@"Eij -
» H; = %-@tQj + Qiéij - Qiz‘ij =0



Highlights

Curvature and Cotton



The Conformal Carrollian curvature tensors in 2 dim

The Ricci tensor (space)



Reminder: the Cotton tensor

In 3 dim the Weyl tensor vanishes — conformal properties are captured
by the Cotton tensor

R
CP“’ - Wﬂpavp (Rva - 4g1/(7>

(77‘111/0 = _gew/a)

» symmetric and traceless
» conformally covariant of weight 1
> identically conserved: V,CH =0



Decomposition wrt u

Bcupuy ¢k CGu | UG UyCy
B K K

Cuv =

At large k with u = 50,

> ¢ = Xi+ K
> cj = Xj+ k2‘f,'j
> weight 2 and 1 respectively




The “Cotton” in two-dimensional Carrollian geometry

c= (9/@’+2,}£7) * (0

Xj = %1]/1.@/% + %.@Jﬂf— 2 % COQJ'

P = 317’1-9/ * (02

Xij = 31", D% + 51,95

T,‘j = @,@J * @0 — %a,-j@/@’ * @0 — Wuégt * (02

Conservation identities
%-@tc + -@i)(i =0
%QJC + 2}(i(17,'J"—|— %Qtl,bj — .@,’llfij =0
%@t?(j — 9,‘X'j =0
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