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The Swampland and Related |deas

String theory has just celebrated its 50th birthday & in Okinawa! String

Phenomenology is a well-developed subject, addressing many problems in particle
physics and cosmology from a top-down perspective.

Many detailed constructions have been developed to obtain: dS vacua,
inflation, GUTs, etc...

Yet general ideas about quantum gravity and its realization in string
theory appear to challenge many of these models.

The (string) swampland is the set of (seemingly consistent) effective field
theories, which cannot be obtained from a consistent string construction.

The swampland as a blessing: Knowing which field theories cannot be
realized could actually lead to falsifiable predictions!!!

We want to map out the boundary of the swampland and explore the
geometry of the landscape!
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The Swampland Distance Conjecture

[Ooguri,Vafa ‘06]

Asymptotic displacements A= B in
M continuous moduli space of quantum

gravity

Conjectured universal behavior of mass
scale of an infinite tower of states

B dx® dxP
O = d \/Ga
/TA ! P dr dr

—AA® /My, Casts doubt on validity of EFT for large
, field displacements
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Evidence

Well known for string theory on tori (IIB on S') [Ooguri,Vafa 06]

1 . 1
R Mw ~ R7 GRR ~ —3 © ~ log (—>

Mgk ~ 3

Holds for N > 8 supercharges (moduli space is coset) [Cecotti’I5]

[Grimm, Palti,Valenzuela ’ | 8]

Evidence also for N = 8 supercharges
[Blumenhagen, DK, Schlechter, Wolf ’ | 8]

Evidence from semi=classical arguments, relating it to WGC:  [DK, Palti '16]
(Sub-)Lattice WGC predicts infinite tower of states with m ~ ggMp,

In gravitational theory, scalar fields can grow at most logarithmically [Nicolis '08]

A < élog(r/r*)

1
Together with magnetic WGC bound on the energy density g(r) > p(r)?2

Find that gauge coupling = mass drops at least exponentially in Ag



The Refined Swampland Distance
Conjecture

[Baume, Palti ’| 6; DK, Palti ‘1 6]

- SDC holds globally in simple moduli spaces (toroidal compactification)

* Generically expect the SDC to be badly violated at finite distances

Refined SDC quantifies this:

~ L T )

The universal exponential behavior sets in for

finite displacements O h

of order the Planck scale or earlier

s e e

e e e e



Evidence

Even less evidence than for the SDC

The semi-classical argument gives a hint: Free Scalars can only support sub-
Planckian variations. Inside sources A® > M, is indeed possible, but only
logarithmic growth!

Solid evidence from string theory has been lacking

-3 fill this gap!
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Additional Evidence?

The RSDC applies to moduli, i.e. flat directions. For Pheno, we really want it to
apply it to fields with a potential (Inflaton,...).

In fact, there is evidence that a similar mechanism is at work.

[Silverstein,Westphal ’08; Marchesano, Shiu, Uranga ‘14]

(F-term) axion monodromy inflation: [Palti, Baume ’ | 6; Blumenhagen, Valenzuela, Wolf ‘1 7]

Break axion shift symmetry by fluxes, but corrections to the effective potential
controlled even in the trans-Planckian regime A© > M,

Axions do not control mass scales, should be safe from SDC

For trans-Planckian axion, the axion valley moves into saxion direction
(backreaction). s(8) = \@

This implies the behavior predicted by the refined SDC
do 1
o= [ K/? d9~/—~—1 0
/ 60 (S) 8(9) \ Og( )
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Objectives

* Test the Refined Swampland Distance Conjecture in CY moduli spaces

25 ©
6. = 6y + O,
©. 20 ...
°( ! significant
" decrease of
9)‘< s . mass scale
NPT S I
O 1.0 . logarithmic |
" behavior :
0.5 . relevant i
2 | 4 | 6 8 | 10
Im ¢t Imt. Im¢t

Prediction: C@o < O(1)Mp| 9, < O(l)M@
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Objectives

* Test the Refined Swampland Distance Conjecture in CY moduli spaces

25 ©
O, =0+ O,
©. 20 ...
°( ! significant
" decrease of
1.5+ !
9)‘< . mass scale
NPT S I
SN logarithmic |
behavior :
0.5 relevant i

10
Imt

Prediction:
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Calabi Yau Moduli Spaces

11 _ 3 1,1
IIA/IIB string theory on a Calabi-Yau M manifold with ho = dim (H g

h?l = dim (H2’1
Low energy EFT: N=2 supergravity

Moduli space of deformations of M splits into

complex

structure

lIA: h'! vector multiplets h?! hypermultiplets

IB: h'' hypermultiplets h?! vector multiplets

Mirror symmetry: duality between llA on M and IIB on W (mirror CY)

Exchanges Kahler and CS moduli spaces

14



Calabi Yau Moduli Spaces

Metric on moduli space is determined by Kihler potential Jo3 = 0205 K

Kg = —log (——mabC(t —ta)(ty —tp)(te —te) + €+ O (6‘2”’““)>
— / B+ z/ a=1,... h'! compl. Kahler moduli

Kcs = —log(—iﬁZH) 11;(®,) :/ QD) i=1,... 202 42 periods
Aj

The Kahler side receives perturbative and non-perturbative corrections
The classical result for the complex structure side is exact

We focus on the Kahler side because of the obvious associated tower of
Kaluza-Klein states (similar results apply for the CS sector)

Use mirror symmetry as tool to compute the fully corrected Kahler potential
and explore non-geometric regions of moduli space Im(¢;) = O(1)

15



Example: (mirror) quintic

15+

1.0+

0.5+

0.0

Im(4))

CY moduli spaces and the RSDC

C/Zs
v — ()
mirror
~~~~~~ —>
map
Re(v))

large
volume

-
-
- ~ -~
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Periods

* Well-known method to obtain Kahler potential on CS side and mirror map:

2.0

Im(%))

Tedious, but can be
done in a case by case
analysis for h'! small

[Berglund, Candelas, de la Ossa,
Font, Hubsch, Jancic, Quevedo ‘93]

[Hosono, Klemm, Theisen,Yau '93]

[Candelas, de la Ossa, Font, Katz,
Morrison '94]

t=t(y)

IH=mw
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Periods for 2-dimensional moduli spaces

8 , 8 4, .4 4 44
P =]+ x5+ x5+ x4+ x5+ YT1T203T4T5 + QT Ty
¢ N I

orbifold I large volume

¥, ¢ = 00
w0(¢7¢)

terms of
hypergeometric

techniques apply

0 b=

Wy (¢7 ¢) — wO(O‘jwv an1 ¢)

Analytic continuation
is subtle, but periods
can be written in

functions in different
ways and standard

18



Pil1222[8] and ]P)iL1226[12]

[Berglund et al ‘94]

2 oo
8yl <lo£1]  wo(thd)=—2)

obtain all periods by w; (¥, ) = wo(a? 9, a?? @) ,
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IP)11222[8] and ]P)11226[12]

Alternative representation:

d
Z 7" 27?237“/d nj,r(qub)

d
1 = . 2¢)"
mr(.0) = 5 3 e POy )
n=0 )

Vn,r(w) — Nn,r (d¢)r Hn,r(w)

n o r r lo+1-—% r L+1 r+1
Hy, — F 1,_ _,1 - 2,1 — — :
(V) (d+1) d( 2+d +d k2 —|—d m y
- ~ _ \v—/
1=3,...,5 1;,=0,...,k;—1 [=0,...,d—1

Convenient for continuation to 8|y|* > |¢ + 1| !
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The Gauged Linear Sigma Model

Can also compute directly on the Kahler side, using Witten’s gauged linear
Sigma model (GLSM) description [Witten ‘93] [Jockers, Kumar, Lapan, Morrison, Romo ’1 3]

GLSM is N=(2,2) SUSY gauge theory in 2d.Varying the Fl parameters leads to
phase transitions, corresponding to phases of Kahler moduli space

Kahler potential is given by sphere partition function e X =Zg

100

ZSZ Z Z / day ... / das Zelass Zgauge Zchiral

m1EZ msE€ZL

200 —100
" (R/2+zczw (a; mg/2>> ;
B Z L —47Ti7“jaj—|—z'9jmj Z L 1
Zchiral = H class = H € gauge —
=ir (1 — R;/2 — Z Qi (aj + mj/2)> g=1
j=1

[Doroud, Gomis, Le Floch, Lee ‘13] [Benini, Cremonesi ‘I 5]

Allows for direct and algorithmic computation of the Kiahler potential
without knowing the periods. Subtleties of analytic continuation are traded for
subtleties in the evaluation of the integrals.

21



The Quintic

EL‘? + x5 + 25+ T+ 28+ BYr Tow3TaTs = @

Necessary steps:
Compute metric, mirror map as described

Determine the interesting regions in the moduli space (here: Landau-Ginzburg)

d? dx® dzP
r# —
dT? tlap dr dt 0

Solve the geodesic equation numerically

Check consistency with the RSDC

22



The Quintic

Metric Geodesics

,  Im(y)

. Re(¥)

Re(v)

23



Results

. . N Ot - 60/« o At © ©
Find distances 0.42-0.45 inside the 2k 2 = S :
3 0.1315 0.2043 0.9605 0.4262 1.3366
LG phase 4 0.1127 0.2099 0.9865 0.4261 1.4125
5 0.0098 0.2213 0.9780 0.4260 1.4040
: : : 6 0.0955 0.2294 0.9567 0.4259 1.3827
@%\varl.es be.cause geodesics curve in 7 0.0818 0.2475 0.9611 0.4259 1.3869
axion direction 8 0.0877 0.2592 0.9275 0.4258 1.3533
9 0.0808 0.2825 0.9253 0.4257 1.3510
10 0.0929 0.3093 0.8969 0.4257 1.3226
(:@0 < 0-45) C@A < D 11 0.0998 0.3497 0.8845 04257 1.3102
12 0.1234 0.1662 0.8657 0.4256 1.2914

Analyse all CYs with h!! = | given by hypersurfaces in WCP , namely

IP)1111112[6] IP)1111114[8] IP)4111125[10]

All results in agreement with the RSDC, quintic is extremal

(@C — 0,40, < 1.4]

24



CYsWith h!! =2

new feature;:
hybrid phases

phase

Landau-Ginzburg
phase

orbifold 1} r2

05}

Large volume
phase

(¢ + 8y1)2 =1

P! phase

2 l 2 2 2 2 >

-0.5

[Aspinwall ‘94]

1.0 P1

25



P1.,,,[8]: LG phase

% |
: orbifold i LV A@l N [}/1 dw \/G¢E(¢) =0 40’
: AO, — / d(b\/Gq%(gb) = 0.24,
N : b
M swislex1]  ABg =/ dT\/Guv(¢(T)v¢(T))
Land%: _______ 3
Ginzburg ~, : ]P)l = 0.36
\21/ s
0 $=1 O

@verything consistent with the RSDCD

20



"1

orbifold

P%.505[8]: Hybrid Phase |

AO, = / di) \/Gw(zp) — 0.24
Y1

Ly

: 201.25 . 0

: GIaP;slympg (?b (((3)%|€b|) 0.5905> .

| V19l
S IsetSieE _ Asymp.

sl A, = /dw\/apl P (¢

: Wﬂ’l Pl [’72

! Y3

L s _ [05905 Lflel _

5= 1 "‘_2/5 N \/W 8

@verything consistent with the RSDCD
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The Mirror Quintic: h!' = 101

P = :13? + :zjg + :zzg + :132 — :Bg + Yr1x9037425 + 100 other terms

Recent advances allow us to compute the Kahler metric for the Landau-
Ginzburg phase of the mirror quintic [Aleshkin, Belavin ‘17]

Computing geodesics in a 10| dimensional space numerically is hopeless

Group deformations into equivalence classes under coordinate permutations
— |eft with 5 sets of deformations of cardinality (1, 20, 30, 30, 20)

Compute proper lengths of collective displacements

. 1 direction  AO
Compelling: Oy ~ fiolds 5 oG
D, 0.0082
No parametric enhancement of ©gin this way. ®, 0.0670
Dy 0.0585
O, O,  0.0089
hases) < M, ?

28



Implications for Cosmology

Large Field Inflation

Under pressure from several swampland conjectures

WGC constrains natural inflation

All models of large field inflation in tension with RSDC

OOSV |V'|/V > ¢ = O(1) puts pressure on slow roll [Obied, Ooguri, Spodyneiko,Vafa 18]
Dark Energy

If dS is in the swampland, what about quintessence?

Borderline consistent with the OOSV conjecture, RSDC [Agrawal, Obied, Steinhardt, Vafa ‘18]

Are we missing something fundamental?
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Conclusion

Refined Swampland Distance Conjecture passes many non-trivial tests in
Calabi-Yau moduli spaces

Diameter of non-geometric phases seems to approach zero as h'' — oo
Our analysis is case by case - it would be good to have a general argument!

Many of the swampland conjectures turn out to be tightly related. Are there
further relations?
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