
Defect TQFT and orbifolds

Nils Carqueville

Universität Wien & Erwin Schrödinger Institute



spacetime algebra
QFT

spacetime ⊃ Borddef
n (D) VectC ⊂ algebra

defect TQFT



spacetime algebraspacetime ⊃ Borddef
n (D) VectC ⊂ algebra

defect TQFT



spacetime algebraspacetime ⊃ Borddef
n (D) VectC ⊂ algebra

defect TQFT



Goal. Unify and generalise orbifold and state sum constructions

Method. defects and higher algebra

Slogans.

“State sum models = orbifolds of the trivial theory”

“General orbifolds = state sum constructions internal to some QFT”

Result. Worked out for any n-dimensional defect TQFT

Applications.

“generalised symmetry”

new dualities

surface defects in Chern-Simons theory

improved topological quantum computation via orbifolds



2-dimensional closed TQFT

A 222-dimensional closed TQFT is a symmetric monoidal functor

Z :
(

Bord2,t, ∅
)
−→

(
VectC,⊗,C

)

Every 2-dimensional manifold can be decomposed into

Theorem.
{

2d closed TQFTs
} ∼= {commutative Frobenius algebras

}
Proof sketch: Set H := Z(S1) ∈ VectC.

multiplication Z
( )

: H⊗H −→ H, pairing Z
( )

: H⊗H −→ C

= = etc.

Atiyah 1988
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Examples of 2d closed TQFT

Dijkgraaf-Witten models:
H = Z(C[G]) for finite group G

Sigma models:
H = Hd(M) for compact oriented manifold M

Landau-Ginzburg models:
H = C[x1, . . . , xn]/(∂xW ) for isolated singularity W ∈ C[x1, . . . , xn]

State sum models: (⊃ Dijkgraaf-Witten models)

input: separable symmetric Frobenius C-algebra (A,µ,∆) = matrix algebra

choose oriented triangulation for every bordism(=worldsheet) Σ

on Poincaré dual graph, associate A to edges, (co)multiplication
µ,∆ to vertices:

A
A A

A

µ

A A

A

∆
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State sum models in 2d
input: separable symmetric Frobenius C-algebra (A,µ,∆) = matrix algebra

choose oriented triangulation for every bordism(=worldsheet) Σ

decorate Poincaré dual graph with (A,µ,∆):

A
A A

A

µ

A A

A

∆

associate A⊗k to dual triangulation of circle with k points

obtain projectors πk : A⊗k −→ A⊗k from cylinder S1 × [0, 1]

define state sum model

Zss
A : Bord2 −→ VectC

S1 7−→ Im
(
πk : A⊗k −→ A⊗k

)
∼= Z(A) for all k(

Σ: (S1)tm −→ (S1)tn
)
7−→

(
induced linear map Z(A)⊗m −→ Z(A)⊗n

)

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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decorate Poincaré dual graph with (A,µ,∆):

A
A A

A

µ

A A

A

∆

associate A⊗k to dual triangulation of circle with k points

obtain projectors πk : A⊗k −→ A⊗k from cylinder S1 × [0, 1]

define state sum model

Zss
A : Bord2 −→ VectC

S1 7−→ Im
(
πk : A⊗k −→ A⊗k

)
∼= Z(A) for all k(

Σ: (S1)tm −→ (S1)tn
)
7−→

(
induced linear map Z(A)⊗m −→ Z(A)⊗n

)
Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006



State sum models in 2d

Theorem.
State sum model for A is independent of choice of triangulation, and
Zss
A (S1) ∼= Z(A).

Proof sketch: Need to show invariance under Pachner moves

2-2←→ 1-3←→

or dually:

2-2←→ 1-3←→

Satisfied for separable symmetric Frobenius C-algebras A!

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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2-dimensional defect TQFT

A 222-dimensional defect TQFT is a symmetric monoidal functor

Z : Borddef
2 (D) −→ VectC

where the defect data D consist of

a set D2 to label 2-strata of surfaces
a set D1 to label 1-strata of surfaces
a set D0 to label 0-strata of surfaces
allowed ways for strata to meet locally:

α ∈ D2

αβ

X∈D1

+

ϕ ∈ D0

α

β

γ

−
ψ ∈ D0

α′

β′

γ′

objects:

X

Y

Z

α

β

γ morphisms:

Davydov/Kong/Runkel 2011
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Examples of 2d defect TQFTs

A-models: symplectic manifolds & Fukaya categories

B-models: Calabi-Yau manifolds & Fourier-Mukai kernels

LG models: isolated singularities & matrix factorisations

trivial defect TQFT Ztriv : Borddef
2 (Dtriv) −→ VectC

I Dtriv
2 = {C}

I Dtriv
1 = {C-bimodules} = {C-vector spaces}

I Dtriv
0 = {bimodule maps} = {linear maps}

I Ztriv
( Ck1

...
Ckm

)
def
= Ck1 ⊗ · · · ⊗ Ckm

I Ztriv
( )

def
= (evaluate line and point defects in VectC)

state sum models 2.0 Zss : Borddef
2 (Dss) −→ VectC

I Dss
2 = {separable symmetric Frobenius C-algebras A,B, . . . }

I Dss
1 = {B-A-bimodules}

I Dss
0 = {bimodule maps}
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Orbifolds from groups actions

orbifoldable action of finite group G on Z : Borddef
2 (D) −→ VectC

 GGG-orbifold theory ZG: “averaging & twisted sectors”

Equivalently :

group action gives ρ(g) ∈ D1 for all g ∈ G
AG :=

⊕
g∈G ρ(g), algebra structure from ρ(g ◦ h) ∼= ρ(g) ◦ ρ(h)

define ZG as AG-state sum construction internal to Z:

ZG
( )

= Z
(

AG

)

consistent if AG is separable symmetric Frobenius algebra
internal to 2-category associated to Z

=⇒ group orbifolds from special types of algebras
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Orbifolds

Let Z : Borddef
2 (D) −→ VectC be any defect TQFT.

An orbifold datum for Z is A ≡ (T,A, µ,∆):

T

T ∈ D2

A
T T

A ∈ D1

A A

A

µ

µ ∈ D0

A A

A

∆

∆ ∈ D0

such that Pachner moves are identities under Z:

Z

( )
= Z

( )
Z

( )
= Z

( )

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

ZA : Bord2 −→ VectC

Carqueville/Runkel 2012



Orbifolds

Let Z : Borddef
2 (D) −→ VectC be any defect TQFT.

An orbifold datum for Z is A ≡ (T,A, µ,∆):

T

T ∈ D2

A
T T

A ∈ D1

A A

A

µ

µ ∈ D0

A A

A

∆

∆ ∈ D0

such that Pachner moves are identities under Z:

Z

( )
= Z

( )
Z

( )
= Z

( )

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

ZA : Bord2 −→ VectC

Carqueville/Runkel 2012



Orbifolds

Let Z : Borddef
2 (D) −→ VectC be any defect TQFT.

An orbifold datum for Z is A ≡ (T,A, µ,∆):

T

T ∈ D2

A
T T

A ∈ D1

A A

A

µ

µ ∈ D0

A A

A

∆

∆ ∈ D0

such that Pachner moves are identities under Z:

Z

( )
= Z

( )
Z

( )
= Z

( )

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

ZA : Bord2 −→ VectC

Carqueville/Runkel 2012



Orbifolds

Let Z : Borddef
2 (D) −→ VectC be any defect TQFT.

An orbifold datum for Z is A ≡ (T,A, µ,∆):

T

T ∈ D2

A
T T

A ∈ D1

A A

A

µ

µ ∈ D0

A A

A

∆

∆ ∈ D0

such that Pachner moves are identities under Z:

Z

( )
= Z

( )
Z

( )
= Z

( )

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

ZA : Bord2 −→ VectC

Carqueville/Runkel 2012



Examples of 2d orbifolds

group orbifolds: ZG = ZAG

state sum models: Zss
A = (Ztriv)A(

Landau-Ginzburg model with potential WE6 = x3 + y4
)

=
(

non-group orbifold of LG model with WA11 = u12 + v2
)

(also E7/A17 and E8/A29)

∼ ∼

(
LG model with potential WS11 = x2z + yz3 + y4

)
=
(

orbifold of LG model with WW13 = u2 + v4 + vw4
)

(also Z13/Q11 and E13/Z11)
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In any dimension n > 1, the generalised
orbifold construction works for any
n-dimensional defect TQFT

Z : Borddef
n (D) −→ VectC .

Carqueville/Runkel/Schaumann 2017



n-dimensional defect TQFT

An nnn-dimensional defect TQFT is a symmetric monoidal functor

Z : Borddef
n (D) −→ VectC

where the defect data D consist of

a set Dj to label j-strata of bordisms for all j 6 n

allowed ways for strata to meet locally (defined inductively via cylinders and cones)

For example for n = 3:

u ∈ D3

α ∈ D2

u
v

X ∈ D1

α
β

γ

+

ψ ∈ D0

Carqueville/Runkel/Schaumann 2017
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Examples of 3d defect TQFTs

quantum Chern-Simons theory (= Reshetikhin-Turaev theory ZM)
I D3 =

{
gauge group

}
(more generally: modular tensor categoryM)

I D′1 =
{

Wilson line labels
}

= Ob(M)

I can add surface defects and more line defects:

D2 =
{

separable symmetric Frobenius algebras in M
}

D1 =
{

cyclic modules
}

Rozansky-Witten theory (conjecturally)

I D3 =
{

holomorphic symplectic manifolds
}

I D2 =
{

“generalised Landau-Ginzburg models”
}

(curved differential graded algebras)

I D1 =
{

“fibred matrix factorisations”
}

(fibred CDGA bimodules)
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Triangulations

standard nnn-simplex ∆n :=

{
n+1∑
i=1

tiei

∣∣∣ ti > 0 ,

n+1∑
i=1

ti = 1

}
⊂ Rn+1

∆2 = ∆3 =

A triangulation of a manifold M is a decomposition of M into simplices.
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Pachner moves

Let F ⊂ ∂∆n+1 be collection of n-simplices.

Let M be triangulated

manifold with K ⊂M such that K
ϕ∼= F .

A Pachner move “glues the other side of ∂∆n+1 into M”:

M 7−→
(
M \K

)
∪ϕ|∂K

(
∂∆n+1 \

◦
F
)

n = 2 :
2-2←→ 1-3←→

n = 3 : 2-3 1-4

Theorem.
If triangulated PL manifolds are PL isomorphic, then there exists a finite
sequence of Pachner moves between them.
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Orbifolds

An orbifold datum A for defect TQFT Z : Borddef
n (D) −→ VectC

is

an element Aj ∈ Dj for each j ∈ {1, . . . , n},
two elements A+

0 ,A
−
0 ∈ D0, such that

compatibility:
Aj can consistently label j-strata dual to (n− j)-simplices in ∆n;
A+

0 ,A
−
0 can label duals of the two oppositely oriented n-simplices ∆n.

triangulation invariance:
Let B,B′ be A-decorated n-balls which are dual to the two sides of a
Pachner move. Then Z(B) = Z(B′).

Recovers case n = 2:

Z

( )
= Z

( )
Z

( )
= Z

( )

Carqueville/Runkel/Schaumann 2017
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Results: 3 classes of examples of 3d orbifolds

3d state sum models are orbifolds of “trivial” Chern-Simons theory:

ZTV,A ∼=
(
ZVect

)
A

for Turaev-Viro theory ZTV,A for any spherical fusion category A:
I A3 = ∗
I A2 = A
I A1 = ⊗ : A×A −→ A
I A±0 = associator (+ details. . . )

group actions on any Reshetikhin-Turaev theory ZM
(G-crossed modular tensor categoriesM×

G
=

⊕
g∈GMg)

=⇒ Unification of state sum models and group orbifolds in 3d

commutative separable symmetric Frobenius algebras in M
topological quantum computation: M = C�n and G ⊆ Sn

Carqueville/Runkel/Schaumann 2018
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