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Goal. Unify and generalise orbifold and state sum constructions
Method. defects and higher algebra

Slogans.
@ “State sum models = orbifolds of the trivial theory”

@ “General orbifolds = state sum constructions internal to some QFT"

Result. Worked out for any n-dimensional defect TQFT

Applications.
@ “generalised symmetry”
@ new dualities
@ surface defects in Chern-Simons theory
°

improved topological quantum computation via orbifolds
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2-dimensional closed TQFT

A 2-dimensional closed TQFT is a symmetric monoidal functor
z (Bordg,l_l,@) SN (Vect@,®,(D>

Every 2-dimensional manifold can be decomposed into

by W ooe X

Theorem. {2d closed TQFTs} = {commutative Frobenius algebras}
Proof sketch: Set H := Z(S') € Vectc.

multiplication Z( ) HH — H, pairing Z &) HRH—C
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Atiyah 1988
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Examples of 2d closed TQFT

Dijkgraaf-Witten models:
H = Z(C|G]) for finite group G

Sigma models:
‘H = Hy(M) for compact oriented manifold M

Landau-Ginzburg models:
H = Clx1,...,2,]/(0:W) for isolated singularity W € Clz1, ..., x,)

State sum models: (5 Dijkgraaf-Witten models)
@ input: separable symmetric Frobenius C-algebra (A, 1, A) = matrix algebra
@ choose oriented triangulation for every bordism(=worldsheet) 3
@ on Poincaré dual graph, associate A to edges, (co)multiplication
i, A to vertices:

A A A
A
A K
A A A

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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State sum models in 2d
@ input: separable symmetric Frobenius C-algebra (A, 1, A) = matrix algebra
@ choose oriented triangulation for every bordism(—worldsheet) b

decorate Poincaré dual graph with (A4, u, A

C A Y

associate A®* to dual triangulation of circle with & points

obtain projectors mj,: A®* — A%k from cylinder S x [0, 1]

define state sum model

Z%: Bordy — Vectg
Sl Im(ﬁk: ABk A®’f) >~ Z(A)  for all k
(Z: (SHHm — (Sl)u") — (induced linear map Z(A)®™ — Z(A)®")

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006



State sum models in 2d
Theorem.

State sum model for A is independent of choice of triangulation, and
Z5(ShH = Z(4).
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State sum models in 2d
Theorem.

State sum model for A is independent of choice of triangulation, and
Z5(ShH = Z(4).

Proof sketch: Need to show invariance under Pachner moves

2-2 1-3
o o A
2-2 1-3

Y \Y/

Satisfied for separable symmetric Frobenius C-algebras A!

or dually:

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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2-dimensional defect TQFT

A 2-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord$*! (D) — Vectg

where the defect data D consist of
@ a set D5 to label 2-strata of surfaces
@ a set D to label 1-strata of surfaces
@ a set Dy to label O-strata of surfaces
@ allowed ways for strata to meet locally:

B a 4
a € Do
€D
X
. o .
objects: y morphisms:

B

Z

Davydov/Kong/Runkel 2011
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Examples of 2d defect TQFTs

@ A-models: symplectic manifolds & Fukaya categories
@ B-models: Calabi-Yau manifolds & Fourier-Mukai kernels

@ LG models: isolated singularities & matrix factorisations
o trivial defect TQFT Z'V: Bord$*'(D"V) — Vectc

» DY — {C)

» DU — [(-bimodules} = {C-vector spaces}

» DY = {bimodule maps} = {linear maps}

ch
> Ztriv(O: )d:eka1®,.-®Ck’m
Ckm
> Ztriv(%) def (evaluate line and point defects in Vecte)

o state sum models 2.0 Z*: Bord{*{(D%) — Vectc

» D5® = {separable symmetric Frobenius C-algebras A, B, ...}
» D$ = {B-A-bimodules}
» D = {bimodule maps}

Davydov/Kong/Runkel 2011
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Orbifolds from groups actions

orbifodable action of finite group G on Z: Bord$®{(D) — Vectg
~+ G-orbifold theory Z¢: “averaging & twisted sectors”

Equivalently:
@ group action gives p(g) € Dy forall g € G

° Ag =@ ccr(g), algebra structure from p(g o h) = p(g) o p(h)

o define ZC as Ag-state sum construction internal to Z:

(. ) - 2 ()
e 4 —e T

-
- -

consistent if Ag is separable symmetric Frobenius algebra

internal to 2-category associated to Z

— group orbifolds from special types of algebras

Frohlich /Fuchs/Runkel /Schweigert 2009, Carqueville/Runkel 2012, Brunner/Carqueville/Plencner 2014
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Orbifolds

Let Z: Bord$®!(ID) — Vectc be any defect TQFT.
An orbifold datum for Z is A= (T, A, u, A):

A A A A
T T
T
A Y
A A A
T € Do Ae Dq w € Do A € Dy

such that Pachner moves are identities under Z:
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Orbifolds

Let Z: Bord$®!(ID) — Vectc be any defect TQFT.
An orbifold datum for Z is A = (T, A, u, A

Sl A

T € Do Ae Dq w € Do A € Dy

such that Pachner moves are identities under Z:

AN =) =YY

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives A-orbifold TQFT

Z 4: Bordy — Vectg

Carqueville/Runkel 2012
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Examples of 2d orbifolds

e group orbifolds: Z€ = Za,
o state sum models: Z% = (ZtV) 4

° (Landau-Ginzburg model with potential Wg, = % + y4)
= (non—group orbifold of LG model with Wa,, = u'? 4 v?

(also E7 /A17 and Eg/A2g)

VLS

LG model with potential Wg,, = 222 + y2° + y

= (orblfold of LG model with Wyy,, = u? + v* + vw )

(also Z13/Qq1 and E13/Z11)
Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013, Recknagel/Weinreb 2017



In any dimension n > 1, the generalised

orbifold construction works for any
n-dimensional defect TQFT

Z: Bord® (D) — Vectc .

Carqueville/Runkel /Schaumann 2017
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An n-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord®{(D) — Vectc

where the defect data D consist of
@ aset D; to label j-strata of bordisms for all j < n
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n-dimensional defect TQFT
An n-dimensional defect TQFT is a symmetric monoidal functor
Z: Bord!*(D) — Vecte

where the defect data D consist of
@ aset D; to label j-strata of bordisms for all j < n

@ allowed ways for strata to meet |0ca“y (defined inductively via cylinders and cones)

For example for n = 3:

’LLGD,?,

Carqueville/Runkel /Schaumann 2017
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Examples of 3d defect TQFTs

@ quantum Chern-Simons theory (= Reshetikhin-Turaev theory Z*")
> D3 = {gauge group} (more generally: modular tensor category M)
» D = {Wilson line labels} = Ob(M)
» can add surface defects and more line defects:
D, = {separable symmetric Frobenius algebras in M}

Dy = {cyclic modules}

@ Rozansky-Witten theory (conjecturally)
» D3 = {holomorphic symplectic manifolds}
» Dy = { “generalised Landau-Ginzburg models” } (curved differential graded algebras)
» Dy = {“fibred matrix factorisations”} (fibred CDGA bimodules)

Kapustin/Saulina 2010, Carqueville/Runkel/Schaumann 2017, Kapustin/Rozansky/Saulina 2009 + work in progress
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Triangulations

=1 =1

AZ[ i A% =

A triangulation of a manifold M is a decomposition of M into simplices.

n+1 n+1
standard n-simplex A" := {Z tie; | t; =20, t; = 1} c R**!
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Pachner moves

Let ' C OA™ ! be collection of n-simplices. Let M be triangulated
©

manifold with K C M such that K = F.

A Pachner move “glues the other side of 9A™ ! into M":

M —s (M\K)U,,, (9A™1\ F)

<P|6K
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Pachner moves

Let ' C OA™ ! be collection of n-simplices. Let M be triangulated
©

manifold with K C M such that K = F.

A Pachner move “glues the other side of 9A™ ! into M":

M —s (M\K)U,,, (9A™1\ F)

wIaK

2.2 ii 1-3 ;|;
n=2: — —

Theorem.
If triangulated PL manifolds are PL isomorphic, then there exists a finite

sequence of Pachner moves between them.
Pachner 1991
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Orbifolds

An orbifold datum A for defect TQFT Z: Bord!* (D) — Vectc is
@ an element A; € D, for each j € {1,...,n},
e two elements A, A, € Dy, such that

o compatibility:
Aj can consistently label j-strata dual to (n — j)-simplices in A™;
Ag, Ay can label duals of the two oppositely oriented n-simplices A™.
@ triangulation invariance:

Let B, B’ be A-decorated n-balls which are dual to the two sides of a
Pachner move. Then Z(B) = Z(B’).
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Orbifolds

An orbifold datum A for defect TQFT Z: Bord!* (D) — Vectc is
@ an element A; € D, for each j € {1,...,n},
e two elements A, A, € Dy, such that
o compatibility:
Aj can consistently label j-strata dual to (n — j)-simplices in A™;
Ag, Ay can label duals of the two oppositely oriented n-simplices A™.

@ triangulation invariance:

Let B, B’ be A-decorated n-balls which are dual to the two sides of a
Pachner move. Then Z(B) = Z(B’).

Recovers case n = 2:

AN =) =)+ (Y)

Carqueville/Runkel /Schaumann 2017
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Definition & Theorem.
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Definition & Theorem.
Applying Z to A-decorated dual triangulations gives .A-orbifold TQFT

Z 4: Bord,, — Vect¢

Orbifold datum A for n = 3:

A
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Orbifolds
Let A be orbifold datum for defect TQFT Z: Bordd®!(D) — Vectc.

Definition & Theorem.
Applying Z to A-decorated dual triangulations gives .A-orbifold TQFT

Z 4: Bord,, — Vect¢

Orbifold datum A for n = 3:

A
As 2
Aq
Az
Az A3 As A3
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Results: 3 classes of examples of 3d orbifolds
@ 3d state sum models are orbifolds of “trivial” Chern-Simons theory:

ZTV,A ~ (ZVect)A
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@ group actions on any Reshetikhin-Turaev theory ZM

(G-crossed modular tensor categories Mé = @geG My)
= Unification of state sum models and group orbifolds in 3d

@ commutative separable symmetric Frobenius algebras in M

e topological quantum computation: M =C®* and G C S,
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