$SL(2) \times \mathbb{R}^+$ Exceptional Field Theory An Action for F-Theory

Geometry and Physics

Schloss Ringberg November 22, 2016

Felix J. Rudolph Ludwig-Maximilian-Universtität München

based on 1512.06115

with D. S. Berman, E. Malek and C. Blair

Outline

What is Exceptional Field Theory?

 $\mathrm{SL}(2) imes \mathbb{R}^+$ Exceptional Field Theory

Relation to Supergravity, Type IIB and F-Theory

What is Exceptional Field Theory?

- "Like Double Field Theory for U-duality and M-theory"
- ► U-duality covariant formulation of supergravity
- ► Higher dimensional origin of exceptional symmetries

General features

- ▶ Fields and coordinates in representations of G ⇒ manifest duality symmetry
- ► Introduce extra coordinates ⇒ extended space
- ► Combines metric and forms⇒ generalized diffeomorphism symmetry
- For closure & consistency ⇒ section condition (reduces coordinate dependence)
- ▶ After imposing section condition ⇒ 11-dim. SUGRA or 10-dim. IIB SUGRA

U-duality

- ▶ Reduce maximal 11-dim. SUGRA on a *D*-torus
- ▶ Enhanced (hidden) symmetry G scalars $\mathcal{M} \in G/H$ coset
- Make manifest by extending the geometry

11-D	D	G	Н
9	2	$SL(2) \times \mathbb{R}^+$	SO(2)
8	3	$SL(3) \times SL(2)$	$SO(3) \times SO(2)$
7	4	SL(5)	SO(5)
6	5	SO(5,5)	$SO(5) \times SO(5)$
5	6	E_{6}	USp(8)
4	7	E_{7}	SU(8)
3	8	E_8	SO(16)

Constructive explanation

▶ Take 11-dim. SUGRA \Rightarrow split coordinates 11 = (11 - D) + D

$$\hat{x}^{\hat{\mu}} \to (x^{\mu}, y^i)$$

Introduce new dual coordinates

$$\tilde{y}_{ij}, \ \tilde{z}_{ijklm}, \ \dots$$

associated with brane charges (wrapping modes)

lacktriangle Combine with the original coordinates \Rightarrow extended coordinates

$$Y^M = (y^i, \tilde{y}_{ij}, \tilde{z}_{ijklm}, \dots)$$

form a representation of G

Constructive explanation

Classify d.o.f. under splitting $SO(1,10-D) \times SO(D)$ (like KK reduction) e.g.:

$$\hat{g}_{\hat{\mu}\hat{\nu}} \to g_{\mu\nu}, \ A_{\mu i}, \ g_{ij}$$

$$\hat{C}_{\hat{\mu}\hat{\nu}\hat{\rho}} \to C_{\mu\nu\rho}, \ C_{\mu\nu \ i}, \ C_{\mu \ ij}, \ C_{ijk}$$

Repackage fields into representations of G

- Metric $g_{\mu\nu}$
- Vector field A_µ^M
- ▶ Forms $B_{\mu\nu}{}^{\alpha}, C_{\mu\nu\rho}{}^{[\alpha\beta]}, \dots$ (after dualization)
- ▶ Scalars $\mathcal{M}_{MN} \in G/H$

Constructive explanation

Repackage symmetries

 Diffeomorphisms plus gauge transformations give generalized diffeomorphisms

$$\delta_{\Lambda} V^{M} = \Lambda^{N} \partial_{N} V^{M} - V^{N} \partial_{N} \Lambda^{M} + Y^{MN}{}_{PQ} \partial_{N} \Lambda^{P} V^{Q}$$

(Y-tensor is G-invariant)

Also have

- ► Tensor hierarchy of forms
- External diffeomorphisms (covariantized under gen. diffeos)

$$\partial_{\mu} \to D_{\mu} \equiv \partial_{\mu} - \mathcal{L}_{A_{\mu}}$$

Consistency of symmetries

Generalized diffeomorphism form symmetry algebra

Closure requires section condition

$$Y^{MN}{}_{PQ}\partial_M \mathcal{O}_1 \partial_N \mathcal{O}_2 = 0, \qquad Y^{MN}{}_{PQ}\partial_M \partial_N \mathcal{O} = 0$$

lacktriangle Restricts Y^M coordinate dependence

Two inequivalent solutions not related by G

- ▶ **M-theory section**: at most D of Y^M coordinates \Rightarrow in total (11 D) + D = 11
- ▶ IIB section: at most D-1 of Y^M coordinates \Rightarrow in total (11-D)+(D-1)=10

Action

The (bosonic) action is fixed by the (bosonic) symmetries

$$S = \int dx dY \sqrt{g} \left[\hat{R}(g) + \mathcal{L}_{kin} + \mathcal{L}_{pot} + \frac{1}{\sqrt{g}} \mathcal{L}_{top} \right]$$

- Ricci scalar $\hat{R}(g) \sim (D_{\mu}g)^2$
- Kinetic and gauge field terms $\mathcal{L}_{kin} \sim (D_{\mu}\mathcal{M})^2 + \mathcal{F}^2$
- ▶ Scalar potential $\mathcal{L}_{pot} = V(M,g) \sim (\partial_M \mathcal{M})^2 + (\partial_M g)^2$
- ▶ Chern-Simons \mathcal{L}_{top}
- lacktriangle Invariant under local G by construction, global G manifest
- ▶ Input section condition choice \Rightarrow equivalent to 11-dim. SUGRA / 10-dim. IIB SUGRA

Different Cases

- The full EFT has been constructed for
 - \blacktriangleright E_8, E_7, E_6 [Hohm, Samtleben 2013; Cederwall, Rosabal 2015]
 - ightharpoonup SO(5,5) [Abzalov, Bakhmatov, Musaev 2015]
 - ► SL(5) [Musaev 2015]
 - ► $SL(3) \times SL(2)$ [Hohm, Wang 2015]
 - $ightharpoonup + SUSY E_7, E_6$ [Godazgar, Godazgar, Hohm, Nicolai, Samtleben 2014; Musaev, Samtleben 2014]
- ▶ So what about $SL(2) \times \mathbb{R}^+$? Duality group for 11-dim. SUGRA on T^2 / 10-dim. SUGRA on S^1 / F-theory

$\mathrm{SL}(2) imes \mathbb{R}^+$ EFT - simplest extended geometry

Generalized Coordinates

- External: x^{μ} , $\mu = 1, \ldots, 9$
- ▶ Internal: $Y^M = (y^\alpha, y^s)$ in $\mathbf{2}_2 \oplus \mathbf{1}_{-1}$ of $\mathrm{SL}(2) \times \mathbb{R}^+$
- Covariant derivative: $\partial_{\mu} \rightarrow D_{\mu} \equiv \partial_{\mu} \mathcal{L}_{A_{\mu}}$

Section Condition

$$\partial_{\alpha} \otimes \partial_{s} = 0$$

- ▶ **M-theory section** $\partial_s = 0$: coordinate dependence on (x^{μ}, y^{α})
- ▶ IIB section $\partial_{\alpha} = 0$: coordinate dependence on (x^{μ}, y^s)

Field Content

Metric and Scalars

- External metric $g_{\mu\nu}$
- ▶ Coset valued generalized metric $\mathcal{M}_{MN} \in \mathrm{SL}(2) \times \mathbb{R}^+/\mathrm{SO}(2)$

$$\mathcal{H}_{\alpha\beta} \in \mathrm{SL}(2)/\mathrm{SO}(2)$$

 $\mathcal{M}_{ss} \in \mathbb{R}^+$

$$\mathcal{M}_{\alpha\beta} = \mathcal{M}_{ss}^{-3/4} \mathcal{H}_{\alpha\beta} \qquad \mathcal{H}_{\alpha\beta} = rac{1}{\operatorname{Im} au} egin{pmatrix} | au|^2 & \operatorname{Re} au \\ \operatorname{Re} au & 1 \end{pmatrix}$$

Field Content

Tensor Hierarchy

Representation	Gauge potential	Field strength
$2_1 \oplus 1_{-1}$	$A_{\mu}{}^{M}$	$\mathcal{F}_{\mu u}{}^M$
2_0	$B_{\mu\nu}^{ \alpha s}$	$\mathcal{H}_{\mu u ho}{}^{lpha s}$
1_1	$C_{\mu\nu\rho}^{[\alpha\beta]s}$ $D_{\mu\nu\rho\sigma}^{[\alpha\beta]ss}$ $E_{\mu\nu\rho\sigma\kappa}^{\gamma[\alpha\beta]ss}$	$\mathcal{J}_{\mu\nu\rho\sigma}{}^{[\alpha\beta]s}$ $\mathcal{K}_{\mu\nu\rho\sigma\lambda}{}^{[\alpha\beta]ss}$ $\mathcal{L}_{\mu\nu\rho\sigma\kappa\lambda}{}^{\gamma[\alpha\beta]ss}$
1_0	$D_{\mu\nu\rho\sigma}^{[\alpha\beta]ss}$	$\mathcal{K}_{\mu u ho\sigma\lambda}{}^{[lphaeta]ss}$
2_1	$E_{\mu\nu\rho\sigma\kappa}^{\gamma[\alpha\beta]ss}$	$\mathcal{L}_{\mu u ho\sigma\kappa\lambda}{}^{\gamma[lphaeta]ss}$
${f 2}_0\oplus {f 1}_2$	$F_{\mu u ho\sigma\kappa\lambda}{}^{M}$. ,

Action

The (bosonic) action is entirely fixed by the (bosonic) symmetries:

$$S = \int d^9x d^3Y \sqrt{g} \left[\hat{R}(g) + \mathcal{L}_{kin} + \mathcal{L}_{pot} + \frac{1}{\sqrt{g}} \mathcal{L}_{top} \right]$$

$$\mathcal{L}_{kin} = -\frac{7}{32} g^{\mu\nu} D_{\mu} \ln \mathcal{M}_{ss} D_{\nu} \ln \mathcal{M}_{ss} + \frac{1}{4} g^{\mu\nu} D_{\mu} \mathcal{H}_{\alpha\beta} D_{\nu} \mathcal{H}^{\alpha\beta}$$
$$-\frac{1}{2 \cdot 2!} \mathcal{M}_{MN} \mathcal{F}_{\mu\nu}{}^{M} \mathcal{F}^{\mu\nu N} - \frac{1}{2 \cdot 3!} \mathcal{M}_{\alpha\beta} \mathcal{M}_{ss} \mathcal{H}_{\mu\nu\rho}{}^{\alpha s} \mathcal{H}^{\mu\nu\rho\beta s}$$
$$-\frac{1}{2 \cdot 2! \cdot 4!} \mathcal{M}_{ss} \mathcal{M}_{\alpha\gamma} \mathcal{M}_{\beta\delta} \mathcal{J}_{\mu\nu\rho\sigma}{}^{[\alpha\beta]s} \mathcal{J}^{\mu\nu\rho\sigma[\gamma\delta]s}$$

Action

$$\mathcal{L}_{pot} = \frac{1}{4} \mathcal{M}^{ss} \left(\partial_{s} \mathcal{H}^{\alpha\beta} \partial_{s} \mathcal{H}_{\alpha\beta} + \partial_{s} g^{\mu\nu} \partial_{s} g_{\mu\nu} + \partial_{s} \ln |g| \partial_{s} \ln |g| \right)$$

$$+ \frac{9}{32} \mathcal{M}^{ss} \partial_{s} \ln \mathcal{M}_{ss} \partial_{s} \ln \mathcal{M}_{ss} - \frac{1}{2} \mathcal{M}^{ss} \partial_{s} \ln \mathcal{M}_{ss} \partial_{s} \ln |g|$$

$$+ \mathcal{M}^{3/4}_{ss} \left[\frac{1}{4} \mathcal{H}^{\alpha\beta} \partial_{\alpha} \mathcal{H}^{\gamma\delta} \partial_{\beta} \mathcal{H}_{\gamma\delta} + \frac{1}{2} \mathcal{H}^{\alpha\beta} \partial_{\alpha} \mathcal{H}^{\gamma\delta} \partial_{\gamma} \mathcal{H}_{\delta\beta} \right.$$

$$+ \partial_{\alpha} \mathcal{H}^{\alpha\beta} \partial_{\beta} \ln \left(|g|^{1/2} \mathcal{M}^{3/4}_{ss} \right)$$

$$+ \frac{1}{4} \mathcal{H}^{\alpha\beta} \left(\partial_{\alpha} g^{\mu\nu} \partial_{\beta} g_{\mu\nu} + \partial_{\alpha} \ln |g| \partial_{\beta} \ln |g| \right.$$

$$+ \frac{1}{4} \partial_{\alpha} \ln \mathcal{M}_{ss} \partial_{\beta} \ln \mathcal{M}_{ss} + \frac{1}{2} \partial_{\alpha} \ln g \partial_{\beta} \ln \mathcal{M}_{ss} \right)$$

Relation to Supergravity, Type IIB and F-Theory

Embedding Supergravity - EFT Dictionary

EFT field	M-theory	Type IIB
$\mathcal{H}_{lphaeta}$	$g^{-1/2}g_{lphaeta}$	$\mathcal{H}_{lphaeta}$
\mathcal{M}_{ss}	$g^{-6/7}$	$(g_{ss})^{8/7}$
$A_{\mu}{}^{lpha}$	$A_{\mu}{}^{\alpha}$	$B_{\mu s}, C_{\mu s}$
$A_{\mu}{}^s$	$C_{\mu\alpha\beta}$	$A_{\mu}{}^{s}$
$B_{\mu\nu}{}^{\alpha s}$	$C_{\mu\nu\alpha}$	$B_{\mu\nu}$, $C_{\mu\nu}$
$C_{\mu u ho}^{lphaeta s}$	$C_{\mu\nu\rho}$	$C_{\mu\nu\rho s}$
$D_{\mu\nu\rho\sigma}^{\alpha\beta ss}$	dual	$C_{\mu\nu\rho\sigma}$

M-Theory / Type IIB Duality

- M-Theory on $T^2(V,\tau)$ gives IIB on $\tilde{S}^1_B(\tilde{R}_B)$ with

$$\tilde{R}_B = V^{-3/4}$$

- ▶ Limit of vanishing torus $V \rightarrow 0 \Rightarrow \mathsf{IIB}$ in 10 dimensions
- Generalization of T-duality: exchange membrane winding with momentum
- ► Keep track of membrane winding modes!

Relation to Supergravity, Type IIB and F-Theory Type IIB SUGRA in 10 dimensions - SL(2) invariant

• scalars \rightarrow complex modulus of torus: $\tau = C_0 + ie^{-\phi}$

Geometrical Origin

lacktriangle Shape of a torus is parametrized by a complex structure au

Introduce an auxiliary torus $T^2\Rightarrow 10$ -dim. Type IIB with τ varying in spacetime

Higher dimensional origins

Type IIA / M-theory

- Geometric interpretation of dilaton in Type IIA
- ightharpoonup Extra circle \Rightarrow in large limit: M-theory (11-dim. SUGRA)

Type IIB / F-theory

- ▶ 12-dim. origin of theory? No 12-dim. SUGRA!
- ► F-theory is a framework for analyzing these fibrations [Vafa '96]

Relationship to F-theory

- ▶ Both $SL(2) \times \mathbb{R}^+$ EFT and F-theory give a 12-dim. perspective on Type IIB
- ▶ EFT: Extended space has local $SL(2) \times \mathbb{R}^+$ symmetry via generalized diffeomorphisms not conventional geometry
- F-theory auxiliary torus is now part of the EFT extended geometry
- ► EFT may also be reduced to M-section and when there are two isometries then we have M-theory/IIB duality

M-theory/F-theory duality

- ► Explicit realization of M-theory/F-theory duality ⇒ direct mapping between fields via EFT dictionary
- Consider just extended directions

"
$$\mathrm{d}s_{(3)}^2$$
" = $(\mathcal{M}_{ss})^{-3/4}\mathcal{H}_{\alpha\beta}\mathrm{d}y^{\alpha}\mathrm{d}y^{\beta} + \mathcal{M}_{ss}(\mathrm{d}y^s)^2$

▶ Limit $\mathcal{M}_{ss} \to 0 \Rightarrow$ M-theory directions large

$$\mathrm{d}s_M^2 = V \mathcal{H}_{\alpha\beta} \mathrm{d}y^\alpha \mathrm{d}y^\beta$$

▶ Limit $\mathcal{M}_{ss} \to \infty \Rightarrow \mathsf{IIB}$ direction large

$$\mathrm{d}s_{IIB}^2 = V^{-3/2} (\mathrm{d}y^s)^2$$

usual relation $\tilde{R}_B \sim V^{-3/4}$.

Schematic Overview

Summary

- Overview of EFT
- ▶ Construction of $SL(2) \times \mathbb{R}^+$ EFT
- Action for F-Theory
- ▶ Duality between M-Theory/IIA and F-Theory/IIB

Sevenbranes in F-Theory

Sevenbrane backgrounds \rightarrow codimension 2

- ▶ transverse coordinate $z \in \mathbb{C}$: $\tau = \tau(z)$ describes fibration of torus (elliptic fibration)
- At sevenbrane position, $\tau \sim \frac{1}{2\pi i} \log(z z_{D_7})$. So $\tau \to i\infty$ at brane position. Paths around the brane have an $\mathrm{SL}(2)$ monodromy $\tau \to \tau + 1$.

$$\overbrace{ \Phi }^{\text{7-brane}} \tau \to (a\tau + b)/(c\tau + d)$$

More general monodromies allowed \Rightarrow non-perturbative (recall $\tau = C_0 + i/g_s$).

Sevenbranes

Metrics

- $ds_{(9)}^2 = -dt^2 + d\vec{x}_{(6)}^2 + \tau_2 |f|^2 dz d\bar{z}$
- $"ds_{(3)}^2" = \frac{1}{\tau_2} \left[|\tau|^2 (dy^1)^2 + 2\tau_1 dy^1 dy^2 + (dy^2)^2 \right] + (dy^s)^2$

where

$$\tau = j^{-1}(P(z)/Q(z))$$

and P(z) and Q(z) are polynomials in z

- ▶ Roots of Q(z) → brane locations
- Near brane, solution like "smeared monopole" in extended space

Sevenbranes

On different sections

▶ D7 in Type IIB

$$ds_{IIB}^2 = -dt^2 + d\vec{x}_{(6)}^2 + (dy^s)^2 + \tau_2 |f|^2 dz d\bar{z}$$

KK7 in M-theory (D6 in Type IIA)

$$ds_M^2 = -dt^2 + d\vec{x}_{(6)}^2 + \tau_2 |f|^2 dz d\bar{z} + \tau_2 (dy^1)^2 + \frac{1}{\tau_2} (dy^2 + \tau_1 dy^1)^2$$

Topological Term

$$S_{top} = \frac{1}{5! \cdot 48} \int d^{10}x \, d^{3}Y \, \varepsilon^{\mu_{1} \dots \mu_{10}} \frac{1}{4} \epsilon_{\alpha\beta} \epsilon_{\gamma\delta}$$

$$\left[\frac{1}{5} \partial_{s} \mathcal{K}_{\mu_{1} \dots \mu_{5}}{}^{\alpha\beta ss} \mathcal{K}_{\mu_{6} \dots \mu_{10}}{}^{\gamma\delta ss} \right.$$

$$\left. - \frac{5}{2} \mathcal{F}_{\mu_{1} \mu_{2}}{}^{s} \mathcal{J}_{\mu_{3} \dots \mu_{6}}{}^{\alpha\beta s} \mathcal{J}_{\mu_{7} \dots \mu_{10}}{}^{\gamma\delta} \right.$$

$$\left. + \frac{10}{3} 2 \mathcal{H}_{\mu_{1} \dots \mu_{3}}{}^{\alpha s} \mathcal{H}_{\mu_{4} \dots \mu_{6}}{}^{\beta s} \mathcal{J}_{\mu_{7} \dots \mu_{10}}{}^{\gamma\delta} \right]$$