$\mathcal{N}=3$ four dimensional field theories

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Diego Regalado

Ringberg, November 2016

Based on [1512.06434] with I. García-Etxebarria

Goal

Understand F-theory at singularities with **no supersymmetric smoothing**.

- M-theory on weakly curved spaces, at low energies: 11d supergravity.
- Typically: family of spaces X_{ϵ} , parametrized by ϵ such that:
 - X_0 is the singular supersymmetric space of interest.
 - X_{ϵ} is smooth and preserves SUSY, for $\epsilon \neq 0$.
 - Study X_{ϵ} and take the limit $\epsilon \to 0$.
- What if X_{ϵ} is always SUSY breaking for $\epsilon \neq 0$?
 - Does this even make sense? Yes! The CFT description on S^1 is fine.
- This kind of singularities have not been classified. We will focus on some simple examples.
 - D3-branes probing codimension 4 terminal singularities in F-theory.

Strategy

We will examine a well-known example of this and then generalize it.

- D3-branes probing an O3-plane from several perspectives:
 - Worldsheet
 - M/F-theory
 - 4d field theory
 - Holographic dual
- Generalize to obtain new setups.

As we will see, the simplest generalization leads to $\mathcal{N} = 3$ four dimensional field theories.

O3s in perturbation theory

- In 2d CFT, O3s are defined as the **quotient** of 10d Type IIB by $\mathcal{I}(-1)^{F_L}\Omega$
 - $\mathcal{I}: (z_1, z_2, z_3) \to (-z_1, -z_2, -z_3)$
 - $(-1)^{F_L}$: left moving spacetime fermion number
 - Ω : orientation reversal on the worldsheet
- Two different actions

Purely geometrical

- Some key properties:
 - Breaks 10d Poincare
 - Breaks half of the supercharges
 - Has no dynamics
 - Comes in different flavors

O3s+D3s in perturbation theory

- Since the O3 has no dynamics, we include N parallel D3s to probe it.
- Extra open string sector. The orientifold action also acts on this sector.

O3s in M/F-theory

[Hanany, Kol]

What is the F-theory description of an O3-plane?

• M-theory description of Type IIB (F-theory):

M-theory on
$$\mathbb{R}^{1,2} \times \mathbb{C}^3 \times T^2 \xrightarrow{T^2 \to 0}$$
 Type IIB on $\mathbb{R}^{1,3} \times \mathbb{C}^3$

(Recall that the O3 is a **quotient** of Type IIB: geometrical + worldsheet)

• With the orientifold

M-th. on $\mathbb{R}^{1,2} \times (\mathbb{C}^3 \times T^2)/\mathbb{Z}_2$ with $(z_1, z_2, z_3, u) \to (-z_1, -z_2, -z_3, -u)$ $(-1)^{F_L}\Omega$ lifts to: $\mathcal{M}_{(-1)^{F_L}\Omega} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in SL(2,\mathbb{Z})$

The O3-plane is simply an orbifold (involving the torus). Only geometry!

O3s+D3s in M/F-theory

- D3-branes parallel to the O3-plane lift to M2-branes.
- Four fixed points, which locally look like C⁴/Z₂. This singularity has **no susy smoothings**: no low-energy dynamics associated to the O3.
- In M-theory, this is precisely **ABJM** (at level k = 2).

The F-theory limit provides the 4d lift of ABJM.

[Aharony, Bergman Jafferis, Maldacena]

k = 1: $4d \ \mathcal{N} = 4 \ \mathfrak{u}(N)$ (Without orientifold) k = 2: $4d \ \mathcal{N} = 4 \ \mathfrak{so}(N), \mathfrak{usp}(N)$ (With orientifold)

D3s in field theory

Let's see how all this looks like from the perspective of the D3-branes.

- Before the quotient we have $4d \mathcal{N} = 4 \mathfrak{u}(N)$ on the probe D3s, with coupling constant $\tau_{\rm YM} = \tau_{\rm IIB}$.
 - It has R-symmetry group $SO(6)_R$
 - Montonen-Olive duality:

$$\tau \to \tau' = \frac{a\tau + b}{c\tau + d}$$
 for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$

The duality group is **not a symmetry** of the theory!

A theory T_{τ} is defined by specifying a particular τ , then: $T_{\tau} \xrightarrow{SL(2,\mathbb{Z})} T_{\tau'}$ However, if for $\Gamma \subset SL(2,\mathbb{Z})$, $\Gamma(\tau^*) = \tau^*$, then Γ is a symmetry of T_{τ^*} ,

$$T_{\tau^*} \xrightarrow{\Gamma} T_{\tau^*}$$

O3s+D3s in field theory

We have to identify the blue and the red quotients in field theory terms. The F-theory construction gives us the answer.

- Rotations around the O3 map to R-symmetry, so \mathcal{I} maps to $\mathbb{Z}_2^R \subset SO(6)_R$.
- We have seen that $(-1)^{F_L}\Omega$ maps to $\mathbb{Z}_2^S \subset SL(2,\mathbb{Z})$.

 $SL(2,\mathbb{Z})$ is a duality, not a symmetry: $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$ However, $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathbb{Z}_2^S$ is a symmetry: $\tau \rightarrow \tau$

- Therefore, the orientifold corresponds to gauging $\mathbb{Z}_2^{O3} = \mathbb{Z}_2^R \cdot \mathbb{Z}_2^S$.
- Supercharges: $Q_{\alpha a}$ is charged under both \mathbb{Z}_2^R and \mathbb{Z}_2^S . [Kapustin, Witten]

 $\mathbb{Z}_2^{O3}: Q_{\alpha a} \to Q_{\alpha a}$ (the O3 does not break SUSY further)

Holographic dual (O3)

[Witten]

- The holographic dual can be obtained from the IIB construction.
- Before introducing the O3, we have $N \gg 1$ D3-branes, whose near horizon limit is $AdS_5 \times S^5$. [Maldacena]
- The geometric action Z₂ gives IIB on AdS₅ × S⁵/Z₂ (which is not supersymmetric by itself).
- There is also an $SL(2,\mathbb{Z})$ bundle on S^5/\mathbb{Z}_2 (now supersymmetric). \uparrow \mathbb{Z}_2
- The near horizon geometry in F-theory is $AdS_5 \times (S^5 \times T^2)/\mathbb{Z}_2$.
- The different O3 variants are given by turning on discrete fluxes $[H_3, F_3] \in H^3(S^5/\mathbb{Z}_2, \tilde{\mathbb{Z}}) = \mathbb{Z}_2$

Recap

Different ways to look at O3+D3s:

- Worldsheet: quotient by $\mathcal{I}(-1)^{F_L}\Omega$.
- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_2$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_2^R) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_2^S).
- Holographic dual: F-theory on $AdS_5 \times (S^5 \times T^2)/\mathbb{Z}_2$

Beyond the O3

What if we take instead $\mathbb{Z}_2 \longrightarrow \mathbb{Z}_k$?

• Worldsheet: not very promising...

However, the other three seem to make sense a priori.

- M/F-theory: F-theory limit of $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_k$.
- 4d gauge theory: quotient by R-symmetry (\mathbb{Z}_{k}^{R}) and $SL(2,\mathbb{Z})$ (\mathbb{Z}_{k}^{S}).
- Holographic dual: F-theory on $AdS_5 \times (S^5 \times T^2)/\mathbb{Z}_k$

We call the associated objects $OF3_k$ -planes. ($OF3_2 = O3$)

OF3s in M/F-theory

• We want to consider M/F-theory on $\mathbb{R}^{1,2} imes (\mathbb{C}^3 imes T^2)/\mathbb{Z}_k$

 $(z_1, z_2, z_3, u) \to (\zeta_k z_1, \bar{\zeta}_k z_2, \zeta_k z_3, \bar{\zeta}_k u)$ with $\zeta_k = e^{2\pi i/k}$ (k = 2, 3, 4, 6)

 $OF3_k$ -planes exist only for some values of k.

Only well-defined for special values of the complex structure τ (g_s^{IIB}).

This already explains why we can't do this in the worldsheet!

OF3s in M/F-theory

- Similarly to k = 2, these do not have supersymmetric smoothings. [Morrison, Stevens ; Anno]
- Preserve twelve supercharges, $\mathcal{N}_{3d} = 6$ or $\mathcal{N}_{4d} = 3$. (k > 2)
- ABJM at level k > 2 preserves $N_{3d} = 6$. The lift only works for some values of k, because there has to be a torus in M-theory.

Is there a 4d theory such that, when we put it on a circle, it flows to ABJM? Yes, at least for k = 1, 2, 3, 4, 6.

• M-theory geometry admits discrete flux \longrightarrow Different $OF3_k$

[García-Etxebarria, DR; Aharony, Tachikawa]

OF3s in field theory

- The theory on N D3s probing an $OF3_k$ should arise as a \mathbb{Z}_k quotient of $4d \ \mathcal{N} = 4 \ \mathfrak{u}(N)$ SYM.
- Just like before, $\mathbb{Z}_k^{OF} = \mathbb{Z}_k^R \cdot \mathbb{Z}_k^S$ with $\mathbb{Z}_k^R \subset SO(6)_R$ and $\mathbb{Z}_k^S \subset SL(2,\mathbb{Z})$

• Again, $SL(2,\mathbb{Z})$ is not a symmetry, $\tau \rightarrow \frac{a\tau + b}{c\tau + d}$. However, if for $\Gamma \subset SL(2,\mathbb{Z})$, $\Gamma(\tau^*) = \tau^*$, then Γ is a symmetry of T_{τ^*} . $(\tau^*, \Gamma) \rightarrow (i, \mathbb{Z}_4)$ and $(e^{i\pi/3}, \mathbb{Z}_6)$

Restriction in both k and τ . The theory is stuck at **strong coupling**. [similar quotient: Ganor et al]

• The action on the supercharges shows that $\mathcal{N} = 3$.

Holographic dual (OF3)

[Ferrara, Porrati, Zaffaroni]

- Just like for the usual O3, we can derive it from the IIB construction.
- Before introducing the OF3, we have N D3-branes, whose near horizon limit is $AdS_5 \times S^5$.
- In the presence of an OF3, we have Type IIB on $AdS_5 \times S^5/\mathbb{Z}_k$ with an $SL(2,\mathbb{Z})$ bundle. Or F-theory on $AdS_5 \times (S^5 \times T^2)/\mathbb{Z}_k$. \uparrow \mathbb{Z}_k [García-Etxebarria, DR; Aharony, Tachikawa]
- We see that:
 - Smooth, weakly curved geometry.
 - Stuck at strong string coupling. No marginal deformation in the CFT.

Conclusions

- We have built the first examples of $\mathcal{N} = 3$ field theories in 4d as quotients of $\mathcal{N} = 4$ SYM by particular R-symmetry and $SL(2,\mathbb{Z})$ symmetries.
- Only works for specific values of the coupling. Isolated field theories.
- The worldvolume theory of D3s probing OF3s (generalized orientifolds).
- Can be thought of as the 4d version of ABJM (only for some k).
- Large N limit as a quotient of $AdS_5 \times S^5$ acting on the IIB coupling. [see also Aharony, Tachikawa]
- These were just simple examples of isolated singularities.

Thank you!