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Precision counting of BPS black holes I

Since Strominger and Vafa’s seminal 1995 work, a lot of work has
gone into performing precision counting of BPS black hole
micro-states in various string vacua with extended SUSY, and
detailed comparison with macroscopic supergravity predictions.
For string vacua with 16 or 32 supercharges, exact degeneracies
are given by Fourier coefficients of (classical, or Jacobi, or Siegel)
modular forms, giving access to their large charge behavior, and
enabling comparison with the Bekenstein-Hawking formula and its
refinements.
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Precision counting of BPS black holes II

An important complication in N ≤ 4 string vacua in D = 4 is that
multi-centered black hole solutions exist, and correspondingly, the
spectrum of BPS states is subject to wall-crossing. Microstates of
single centered black holes are counted by mock modular forms,
which affects the growth of Fourier coefficients.

Dabholkar Murthy Zagier 2012

In string vacua with 8 supersymmetries, such as Calabi-Yau
vacua, precision counting is much more difficult, as it involves
detailed properties of the internal manifold (Gromov-Witten
invariants, generalized Donaldson-Thomas invariants, etc), and
complicated structure of walls of marginal stability.

Maldacena Strominger Witten 1998; Denef 2000; Denef Moore 2007
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Counting black holes via protected couplings I

For several years, I have advocated to approach the problem of
precision counting of BPS states in D + 1-dimensional string vacua
by considering protected couplings in the low energy effective
action in D dimensions after compactifying on a circle of radius R.

Gunaydin Neitzke BP Waldron 2005

Indeed, finite energy stationary solutions in dimension D + 1
produce finite action solutions in D Euclidean dimensions. States
breaking k supercharges lead to instantons with 2k fermionic
zero-modes, contributing to BPS saturated couplings, i.e. vertices
with more than 2k fermions (or k derivatives) in the LEEA.
The simplest example of this phenomenon are ’t Hooft-Polyakov
monopoles in D = 4, which induce a scalar potential in 3D QED
with compact U(1), explaining confinement [Polyakov 1977].
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Counting black holes via protected couplings II
Couplings in the LEEA in dimension D are functions f (D)(R, za, φI)
of the radius R, of the moduli za in dimension D + 1, and of the
holonomies φI of the D + 1-dimensional gauge fields along the
circle:

MD = R+ ×MD+1 × T

Any coupling has a Fourier expansion w.r.t T ,

f (D)(R, za, ϕI) =
∑

Q∈Λ+

FQ(R, za) e2πi〈Q,φ〉 + cc

For BPS saturated couplings, and for Q primitive, FQ(R, za) is
expected to receive contributions from BPS states of charge Q in
dimension D + 1, exponentially suppressed as R →∞ and
weighted by a suitable BPS index Ωk (Q), or helicity supertrace,

FQ(R, za) = Ωk (Q)KQ(R, za) , KQ(R, za) ∼ e−2πRM(Q)
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Counting black holes via protected couplings III
If Q is not primitive, i.e. Q =

∑n
i=1 Qi with Qi ∈ Λ+,n > 1, Ωk (Q)

may depend on za, and there are also contributions from
multi-particle states of charge Qi which ensure that FQ(R, za) is
smooth across walls of marginal stability.
In contrast, the constant term F0(R, za) typically grow as a power
of R as R →∞, and matches terms in the LEEA in dimension
D + 1.
Thus, f (D)(R, za, ϕI) plays the rôle of a thermodynamical black
hole partition function at temperature T = 1/R, chemical
potentials ϕI , for fixed values za ∈MD+1 of the moduli at spatial
infinity.
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Counting black holes via protected couplings IV
For D + 1 = 4, the moduli spaceM3 also includes the NUT
potential σ, dual to the KK gauge field, and valued in a circle
bundle over T . The Fourier expansion includes non-Abelian
Fourier coefficients

f (3)(R, za, ϕI , σ) =
∑
Q∈Λ

FQ(R, za) e2πi〈Q,φ〉 +
∑
k 6=0

Fk (R, za, φI)eiπkσ

where Fk (R, za, φI) is a section of a line bundle Lk over T . It
receives contributions from Taub-NUT instantons of charge k ,
suppressed as e−πR2/`2P as R →∞.
In that case, the black hole partition function is the constant term
of f (3)(R, za, ϕI , σ) with respect to σ.
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Counting black holes via protected couplings V
For vacua with N ≥ 4 supersymmetries, the moduli space is a
symmetric spaceMD = GD/KD, exact at tree-level, and f (D) is an
automorphic function under the U-duality group, an arithmetic
subgroup GD(Z) ⊂ GD.

Hull Townsend 1994; Witten 1995

BPS indices in dimension D + 1 thus arise as Fourier coefficients
FQ of an automorphic form under GD(Z). They are automatically
invariant under the U-duality group GD+1(Z) in dimension D + 1,
while GD(Z) plays the role of a spectrum generating symmetry.

Breitenlohner Mason Gibbons 1988; Gunaydin Neitzke BP Waldron 2005
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Counting black holes via protected couplings VI

In very recent work with G. Bossard we have shown that R4 and
∇4R4 couplings in N = 8 string vacua correctly reproduce the
helicity supertraces Ω8 and Ω12, which count 1/2-BPS and
1/4-BPS small black holes.

Bossard BP, arXiv:1610.06693

In the remainder of this talk, I will discuss protected couplings in
D = 3 string vacua with 16 supercharges, and demonstrate their
relation to BPS indices in dimension D = 4.
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Protected couplings in N = 4 string vacua I

in D = 4 string vacua with 16 supercharges, the moduli space is

M4 =
SL(2)

U(1)
× O(r − 6,6)

O(r − 6)×O(6)

where r ≤ 28. The highest rank is attained in Het/T 6 or its dual
type II/K 3× T 2. A large set of CHL models with reduced rank can
be obtained by freely acting orbifolds. The SL(2)/U(1) factor
corresponds to the heterotic axiodilaton S = a + i/g2

4 .

Chaudhury Hockney Lykken 1995

These 4D models are believed to be invariant under G4(Z), an
arithmetic subgroup of SL(2)×O(r − 6,6) preserving the charge
lattice Λe ⊕ Λm.

Font Ibanez Lüst Quevedo 1990; Sen 1994
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Protected couplings in N = 4 string vacua II
Degeneracies of 1/4-BPS dyons are given by Fourier coefficients
of a meromorphic Siegel modular form of weight −k = 8−r

2 :

Ω6(Q,P, za) = (−1)Q·P
∫
C

dρdσdv
eiπ(ρQ2+σP2+2vQ·P)

Φk (ρ, σ, v)

where C is a suitable contour, depending on za ∈M4.

Dijkgraaf Verlinde Verlinde 1996; David Jatkar Sen 2005-06; Cheng Verlinde 2007

Across walls of marginal stability, Ω6(Q,P, za) jumps due to poles
of 1/Φk on the separating divisor v = 0 (and its images),
corresponding to bound states of two 1/2-BPS dyons.
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Protected couplings in N = 4 string vacua III
For r = 28, i.e. heterotic on T 6 or type II string on K 3× T 2, Φ10 is
the weight 10 Igusa cusp form under Sp(4,Z), and f1 = f2 = 1/∆.
Invariance under G4(Z) = SL(2,Z)×O(Λe) is manifest, thanks to
SL(2,Z) ⊂ Sp(4,Z), but the physical origin of the Sp(4,Z)
symmetry is obscure.
Gaiotto and Dabholkar proposed that 1/4-BPS dyons can be
interpreted as heterotic strings wrapped on a genus-two Riemann
surface Σ2, or M5-branes wrapped on K 3× Σ2, but it was not
clear why higher genera are not allowed.

Gaiotto 2005; Dabholkar Gaiotto 2006
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Protected couplings in N = 4 string vacua IV
After compactification on a circle, the moduli space extends to

M3 =
O(r − 4,8)

O(r − 4)×O(8)
⊃

{
R+

R ×M4 × R2r+1

R+
1/g2

3
× O(r−5,7)

O(r−5)×O(7) × Rr+2

and the U-duality group enhances to an arithmetic subgroup
G3(Z) ⊂ O(r − 4,8), containing both G4(Z) and the T-duality
group in D = 3.

Markus Schwarz 1983, Sen 1994

For r = 28, G3(Z) = O(Λ̃) with Λ̃ = Λe ⊕ Λ2,2. For CHL orbifolds,
noting that Λm = Λ∗e = Λe[N], it is natural to propose that
G3(Z) = O(Λ̃) with Λ̃ = Λe ⊕ Λ1,1 ⊕ Λ1,1[N].

Cosnier-Horeau, Bossard, Pioline, to appear

B. Pioline (CERN & LPTHE) Protected couplings Schloss Ringberg 2016 13 / 27



Protected couplings in N = 4 string vacua V
The 4-derivative and 6-derivative couplings in the LEEA

Fabcd (Φ)∇Φa∇Φb∇Φc∇Φd + Gab,cd (Φ)∇(∇Φa∇Φb)∇(∇Φc∇Φd )

are expected to satisfy non-renormalization theorems and get
contributions from 1/2-BPS and 1/4-BPS instantons, respectively.
Indeed, they satisfy supersymmetric Ward identities

D2
ef Fabcd = c1 δef Fabcd + c2 δe)(a Fbcd)(f + c3 δ(ab Fcd)ef ,

D2
ef Gab,cd =c4δef Gab,cd + c5

[
δe)(aGb)(f ,cd + δe)(cGd)(f ,ab

]
+c6

[
δab Gef ,cd + δcd Gef ,ab − 2δa)(c Gef ,d)(b

]
+c7

[
Fabk(e F k

f )cd − Fc)ka(e F k
f )b(d

]
,

D[e
[êDf ]

f̂ ]Fabcd = 0 , D[e
[êDf

f̂Dg]
ĝ]Gab,cd = 0 .

Bossard, Cosnier-Horeau, BP, 2016
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Exact (∇Φ)4 coupling in N = 4 string vacua I

The coupling (∇Φ)4 is a 3D version of the F 4 and R2 couplings
which were analyzed in the past. The F 4 coupling is one-loop
exact on the heterotic side in D ≥ 4, while the R2 coupling is
one-loop exact on the type II side in D = 4.

Lerche Nilsson Schellekens Warner 1988; Harvey Moore 1996

Requiring invariance under U-duality, it is natural to conjecture
that the exact coefficient of the (∇Φ)4 in D = 3 is [Obers BP 2000]

F (r−4,8)

abcd =

∫
F1(N)

dρ1dρ2

ρ 2
2

∂4

(2πi)4∂ya∂yb∂yc∂yd

∣∣∣∣
y=0

Γr−4,8

∆k+2

where ∆k+2 is a weight k + 2 modular form, and Γr−4,8 is the
Narain partition function of the lattice Λ̃,

Γr−4,8 = ρ 4
2

∑
Q∈Λ̃

eiπQ2
Lρ−iπQ2

R ρ̄+2πiQL·y+π(y·y)
2ρ2

B. Pioline (CERN & LPTHE) Protected couplings Schloss Ringberg 2016 15 / 27



Exact (∇Φ)4 coupling in N = 4 string vacua II
Obers BP, 2000

This Ansatz satisfies the Ward identities and has the correct
perturbative expansion on the heterotic side:

F (r−4,8)

αβγδ =
c0

16πg 4
3
δ(αβδγδ) +

F (r−5,7)
αβγδ

g 2
3

+ 4
3∑
`=1

′∑
Q∈Λr−5,7

P(`)
αβγδ

×c̄(Q) g2`−9
3 |

√
2QR|`−

7
2 K

`−7
2

(
2π
g 2

3
|
√

2QR|
)

e−2πiaIQI

exhibiting the tree-level and one-loop contribution and an infinite
sum of NS5-brane and KK5-brane instantons. Here P(`)

αβγδ are
degree 6− 2k polynomials in QL, and

c̄(Q) =
∑
d |Q

d c
(
− |Q|

2

2d

)
,

1
∆k

=
∑
N≥1

c(N)qN .
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Exact (∇Φ)4 coupling in N = 4 string vacua III
In the large radius limit, one finds instead

F (r−4,8)

αβγδ =R2
(

fR2(S) δ(αβδγδ) + F (r−6,6)

αβγδ

)
+ 4

3∑
`=1

R5−`
′∑

Q′∈Λr−6,6

′∑
j,p

c
(
− |Q

′|2
2

)
P(`)
αβγδK`− 7

2

(
2πR|pS+j|√

S2
|
√

2Q′R|
)

e−2πi(ja1+pa2)·Q′ +O(e−R2
)

exhibiting the exact R2 and F 4 couplings in D = 4, along with
O(e−R) terms from 1/2-BPS dyons with charge (Q,P) = (j ,p)Q′,
with measure

µ(Q,P) =
∑

d |(Q,P)

c
(
− gcd(Q2,P2,Q·P)

2d2

) primitive
= Ω4(Q,P) .

The non-Abelian O(e−R2
) terms come from Taub-NUT instantons.
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Exact (∇Φ)4 coupling in N = 4 string vacua IV

These expansions are easily obtained using the unfolding trick: for
Γp,q → Γp−1,q−1, the sum in Γ1,1 = R

∑
(m̃,n) e−πR2|m̃−nρ|2/ρ2 can be

restricted to n = 0 provided it is integrated on the strip S = H1/Z.
For Γp,q → Γp−2,q−2, the sum over (dual momenta,windings) in Γ2,2
has three orbits:

(
m̃1 n1
m̃2 n2

)
/SL(2,Z)

= {
(

0 0
0 0

)
;

(
j 0
p 0

)
(j ,p) 6= (0,0)

;

(
j k
p 0

)
0 ≤ j < k ,p 6= 0

}

integrated over F1,H1/Z,2H1, respectively. These produce the
powerlike, Abelian and non-Abelian Fourier coefficients,
respectively.

Dixon Kaplunovsky Louis 1990; Harvey Moore 1995
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua I

Similarly, it is natural to conjecture that the exact coefficient of the
∇2(∇Φ)4 in D = 3 is given by

G(r−4,8)

ab,cd =

∫
F2(N)

d3Ω1d3Ω2

|Ω2|3
1
2(εilεjm + εimεjl)∂

4

(2πi)4∂ya
i ∂yb

j ∂yc
l ∂yd

m

∣∣∣∣
y=0

Γr−4,8,2

Φk

where Φk is a cusp form of weight k under a suitable level N
subgroup of the Siegel modular group, and Γ24,8,2 is the
genus-two Narain partition function of the lattice Λ̃,

Γ24,8,2 = |Ω2|4
∑

Qi∈Λ̃⊗2

eiπ(Qi
LΩij Q

j
L−Qi

RΩ̄ij Q
j
R+2Qi

Lyi )+π
2 ya

i Ω-1ij
2 yja

Again, this ansatz satisfies the correct Ward identity, including the
quadratic source term originating from the pole of 1/Φk in the
separating degeneration.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua II

At weak heterotic coupling, it reproduces the known perturbative
contributions,

G(r−4,8)

αβ,γδ =
G(r−5,7)

αβ,γδ

g 4
3
−
δαβG(r−5,7)

γδ +δγδG
(r−5,7)

αβ −2δγ)(αG(r−5,7)

β)(δ

12g 6
3

− 1
2πg 8

3

[
δαβδγδ − δα(γδδ)β

]
+O(e−1/g2

3 )

exhibiting the two-loop [d’Hoker Phong 2005], one-loop [Sakai Tanii 1987],

G(r−5,7)

αβ =

∫
F1(N)

dρ1dρ2

ρ 2
2

∂2

(2πi)2∂yα∂yβ

∣∣∣
y=0

Ê2 Γr−5,7

∆k
,

tree-level, and NS5/KK5-brane instantons.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua III
In the large radius limit, we find instead

G(r−4,8)

αβ,γδ =R4
[
G(r−6,6)

αβ,γδ − fR2(S)
(
δαβG(r−6,6)

γδ + δγδG
(r−6,6)

αβ − 2δγ)(αG(r−6,6)

β)(δ

)
+ g(S)(δαβδγδ − δα(γδδ)β

]
+ G(1)

αβ,γδ + G(2)
αβ,γδ + G(KKM)

αβ,γδ

exhibiting the exact ∇2F 4 and R2F 2 couplings in D = 4. The term
proportional to g(S) is required by the Ward identity, but hard to
compute.
The Abelian Fourier coefficients G(1) and G(2) are both O(e−R),
and come from 1/2-BPS and 1/4-BPS states in D = 4.

The non-Abelian Fourier coefficient G(KKM) is O(e−R2
) and comes

from Taub-NUT instantons.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua IV
These expansions follow again from the unfolding trick: for
Γp,q → Γp−1,q−1, the sum over non-zero (dual momenta,windings)
unfolds onto R+ ×F1 × T 2+1.
For Γp,q → Γp−2,q−2, the sum has 4 orbits:0,

(
0 m1 0 0
0 m2 0 0

)
(m1,m2) 6= (0,0)

,

(
k 0 0 0
j p 0 0

)
0 ≤ j < p, k 6= 0

,

(
j1 j2 j3 p
0 k 0 0

)
0 ≤ j1, j2, j3 < p, k 6= 0


integrated over R+ ×F1 × T 2+1, P2 × T 3, R+ ×F1 × R3. These
produce the powerlike, 1/2-BPS Abelian, 1/4-BPS Abelian and
non-Abelian Fourier coefficients, respectively.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua V

We focus on the Abelian rank-two orbit G(2), integrated over
P2 × T 3. The integral over Ω1 in T 3 extracts the Fourier coefficient

C
[
− 1

2 |Q1|2 −Q1 · Q2
−Q1 · Q2 − 1

2 |Q2|2
; Ω2

]
=

∫
[0,1]3

dρ1dσ1dv1
eiπ(ρQ2

1+σQ2
2+2vQ1·Q2)

Φk (ρ, σ, v)

which is a locally constant function of Ω2.

For large R, the integral is dominated by a saddle point at

Ω?
2 =

R
M(Q,P)

Aᵀ
[

1
S2

(
1 S1

S1 |S|2
)

+ 1
|PR∧QR |

(
|PR|2 −PR ·QR
−PR ·QR |QR|2

) ]
A .

where (Q
P ) = A(Q1

Q2
), A =

(
k 0
j p

)
, |PR ∧QR| =

√
(P2

R)(Q2
R)− (PR ·QR)2.
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua VI
Approximating C [ ; Ω2] by its saddle point value, we find

G(2)
αβ,γδ =2R7

∑
Q,P∈Λ′r−6,6

3∑
`=1

P(`)
αβ,γδe

−2πi(a1Q+a2P)

× µ(Q,P)

|2PR ∧QR|
4−`

2
B 1

2 ,
4−`

2

[
2R2

S2

(
1 S1
0 S2

)(
|QR|2 PR ·QR

PR ·QR |PR|2
)(

1 0
S1 S2

)]
where

µ(Q,P) =
∑

A∈M2(Z)/GL(2,Z)

A−1( Q
P )∈Λ⊗2

r−6,6

|A|C
[
A−1

(
− 1

2 |Q|
2 −Q · P

−Q · P − 1
2 |P|

2

)
A−ᵀ; Ω?

2

]

and B is a kind of matrix-variate modified Bessel function,

Bν,δ(Z ) =

∫ ∞
0

dt
t1+s e−πt−πTrZ

t Kδ
(

2π
t

√
|Z |
)
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Exact ∇2(∇Φ)4 coupling in N = 4 string vacua VII

In the limit R →∞, using Bν,δ(Z ) ∼ e−2π
√

TrZ+2
√
|Z |, one finds

that the contributions are suppressed as e−2πRM(Q,P).
In ‘primitive’ cases where only A = 1 contributes, µ(Q,P) agrees
with the helicity supertrace Ω6(Q,P; za), evaluated with the
correct contour prescription. It also refines earlier proposals for
counting dyons with ‘non-primitive’ charges.

Cheng Verlinde 2007; Banerjee Sen Srivastava 2008; Dabholkar Gomes Murthy 2008

There are exponentially suppressed corrections due to the
discrepancy between C [ ; Ω2] and its saddle point value, which
are necessary to match the F 2

abcd term in the Ward identity.
The detailed analysis of (∇Φ)4 and ∇2(∇Φ)4 couplings in CHL
models is subtle and in progress...
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Conclusion - Outlook I

∇2(∇Φ)4 couplings in D = 3,N = 4 string vacua nicely
incorporate degeneracies of 1/4-BPS dyons in D = 4, and explain
their hidden modular invariance. They give a precise
implementation of the idea that 1/4-BPS dyons are (U-duals of)
heterotic strings wrapped on genus-two Riemann surfaces.

Gaiotto 2005; Dabholkar Gaiotto 2006

A similar story presumably relates ∇6R4 couplings in N = 8 string
vacua and degeneracies of 1/8-BPS dyons. In D = 6, the exact
f∇6R4 is given by a genus-two theta lifting of the Kawazumi-Zhang
invariant, which is itself a genus-one theta lifting of the partition
function of 1/8-BPS dyons... however generalisation to D < 6 is
unclear.

BP 2015; Bossard Kleinschmidt 2015
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Conclusion - Outlook II

In D = 4,N = 2 string vacua, the appropriate coupling capturing
degeneracies of 1/2-BPS black holes is the metric on the
vector-multiplet moduli spaceMV after compactification on a
circle, which is dual to the hypermultiplet moduli spaceMH .
Hopefully, progress on understandingMV andMH will lead to
new ways of computing Donaldson-Thomas invariants...

Alexandrov BP Vandoren 2008, Alexandrov Banerjee Manschot BP 2016

From a mathematical viewpoint, higher-genus theta liftings are an
interesting source of new automorphic objects beyond Eisenstein
series.
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