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Motivation
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I Classical string solutions have shed light to several aspects of the
AdS/CFT correspondence

I They are connected to gluon scattering amplitudes
I Spiky strings can be related to single trace operators of the dual CFT

I As Pohlmeyer reduction is concerned, the relation between the degrees
of freedom of the NLSM and those of the reduced theory is highly
non-local.

I There is great difficulty to invert the procedure.
I In particular, it is not clear how exactly a solution of the Pohlmeyer reduced

theory corresponds to one or more physically distinct solutions of the original
NLSM.

I The area of minimal surfaces are connected to Entanglement Entropy
through the Ryu-Takayanagi conjecture

I Gravity as quantum entropic force
I Black hole entropy as entanglement entropy
I Entanglement entropy as an order parameter for confinement

I Minimal surfaces are interesting from a purely mathematical point of view
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Reduction of String Actions in AdS3 / Minimal Surfaces in
AdS4
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Pohlmeyer reduction: The critical element of this approach is a non-local
coordinate transformation that manifestly satisfies the Virasoro constraints,
thus leaving only the physical degrees of freedom.
Embedding of the two-dimensional world-sheet (or minimal surface) into the
symmetric target space of the NLSM,
which is in turn embedded in a higher-dimensional flat space.
AdS3 and dS3 can be dealt similarly (s = +1 corresponds to dS and s = −1
corresponds to AdS).
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The action is

S =

∫︁
d𝜉+d𝜉−

(︁
𝜕+Y · 𝜕−Y + 𝜆

(︁
Y · Y − sΛ2

)︁)︁
.

Dot is the inner product in the enhanced space, performed with the metric
𝜂 = diag{−1, s,+1,+1}
Solution is subject to

I The geometric constraint Y · Y = sΛ2

I The Virasoro constraints 𝜕±Y · 𝜕±Y = 0.
I The equations of motion 𝜕+𝜕−Y = −s 1

Λ2 (𝜕+Y · 𝜕−Y ) Y .
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We introduce a vector basis vi , i = 1, 2, 3, 4 in the enhanced space,
combining the vectors Y , 𝜕+Y and 𝜕−Y with one more vector v4 as

vi = {Y , 𝜕+Y , 𝜕−Y , v4} .

v4 is space-like and defined to be orthogonal to v1, v2 and v3 .
We define the Pohlmeyer field

ea := 𝜕+Y · 𝜕−Y .

We decompose the derivatives of the vectors vi in the basis vi using the 4 × 4
matrices A±,

𝜕+vi = A+
ij vj , 𝜕−vi = A−

ij vj .
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They obey the zero-curvature condition

𝜕−A+ − 𝜕+A− +
[︀
A+,A−]︀ = 0.

The zero-curvature condition combined with constraints and the equations of
motion imposes the following equations for the Pohlmeyer field variable a,

𝜕+𝜕−a = −s
1

Λ2 ea + f (+) (𝜉+) f (−) (𝜉−)e−a.

Last equation can be brought to the form of the sinh- or cosh-Gordon
equation defining

𝜙 := a − 1
2

ln
(︁

Λ2
⃒⃒⃒
f (+) (𝜉+) f (−) (𝜉−)

⃒⃒⃒)︁
and

d𝜉±′

d𝜉±
=

√︁
Λ |f (±) (𝜉±)|.
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The form of the final equation depends on the sign of the product
−sf (+) (𝜉+) f (−) (𝜉−). For AdS3, we have

I If f (+)f (−) < 0 then 𝜕+𝜕−𝜙 = 2sinh𝜙/Λ2

I If f (+)f (−) > 0 then 𝜕+𝜕−𝜙 = 2cosh𝜙/Λ2

In a completely similar fashion, the Pohlmeyer reduction of static minimal
surfaces in AdS4 (or else minimal surfaces in H3) results always in the
Euclidean cosh-Gordon equation

𝜕𝜕𝜙 = 2cosh𝜙/Λ2

Notice that the change of coordinates does not alter the expression for the
action ∫︁

dzdz̄ea =

∫︁
dz′dz̄′e𝜙.
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Section 3

Elliptic Solutions of the Sinh- and Cosh-Gordon Equations
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The Effective One-dimensional Mechanical Problem
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The usual approach for finding solutions of the sinh-Gordon equation, such
as the kinks, is to use the corresponding Bäcklund transformation starting
from the vacuum as seed solution.
This method, however, cannot be applied to the cosh-Gordon equation;
although it possesses Bäcklund transformations similar to those of the
sinh-Gordon equation, it does not admit a vacuum solution.
Consequently, some string solutions can be studied using these methods.
However, as static minimal surfaces correspond always to the Euclidean
cosh-Gordon equation, they cannot be studied at all using these techniques.
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The Effective One-dimensional Mechanical Problem
The Elliptic Solutions of the Sinh- and Cosh-Gordon Equations

In this work, we focus on solutions of the sinh-Gordon or cosh-Gordon
equations that depend on only one of the two world-sheet coordinates 𝜉0 and
𝜉1.
The motivation is provided by the inverse Pohlmeyer reduction, which
requires to solve equations

𝜕2Y𝜇

𝜕𝜉2
1

− 𝜕2Y𝜇

𝜕𝜉2
0

= −s
1

Λ2 e𝜙(𝜉0,𝜉1)Y𝜇,

plus the geometric and Virasoro constraints. The latter will be significantly
simplified via separation of variables if 𝜙 (𝜉0, 𝜉1) depends only on 𝜉0 or 𝜉1.
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The Effective One-dimensional Mechanical Problem
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All cases of equations for the reduced system can be rewritten in unified form

𝜕+𝜕−𝜙 = −s
m2

2
(︀
e𝜙 + te−𝜙)︀ ,

where t = −sgn
(︁

sf (+)f (−)
)︁

and m =
√︀

2/Λ.
We start searching for static solutions, 𝜙 (𝜉0, 𝜉1) = 𝜙1 (𝜉1). The sinh- or
cosh-Gordon equation reduces to the ODE

d2𝜙1

d𝜉1
2 = −s

m2

2
(︀
e𝜙1 + te−𝜙1

)︀
,

which can be integrated to

1
2

(︂
d𝜙1

d𝜉1

)︂2

+ s
m2

2
(︀
e𝜙1 − te−𝜙1

)︀
= E .
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This can be viewed as the conservation of energy for an effective
one-dimensional mechanical problem describing the motion of a particle
with potential

U1 (𝜙1) = s
m2

2
(︀
e𝜙1 − te−𝜙1

)︀
,

letting 𝜉1 play the role of time and 𝜙1 the role of the particle coordinate.
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−m2

m2

𝜙

V (𝜙)

𝜕+𝜕−𝜙 = m2 sinh𝜙

𝜕+𝜕−𝜙 = m2 cosh𝜙

𝜕+𝜕−𝜙 = −m2 sinh𝜙

𝜕+𝜕−𝜙 = −m2 cosh𝜙

The potential of the one-dimensional mechanical analogue
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The Effective One-dimensional Mechanical Problem
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Considering this effective mechanical problem, we obtain a qualitative picture
for the behaviour of the solutions.

I Sinh-Gordon equation with an overall minus sign:
I oscillating solutions with energy E > m2

I no solutions for E < m2

I Sinh-Gordon equation with an overall plus sign: two different classes of
solutions

I reflecting scattering solutions for E < −m2

I transmitting scattering solutions for E > −m2

I Cosh-Gordon equation:
I reflecting scattering solutions for all energies
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The Effective One-dimensional Mechanical Problem
The Elliptic Solutions of the Sinh- and Cosh-Gordon Equations

Introducing the quantities

V1 := −s
m2

2
e𝜙, V1 = 2y − E

3
,

we transform the 1-d problem of motion for a particle with energy E and a
hyperbolic potential to yet another 1-d problem, describing the motion of a
particle with zero energy and a cubic potential,(︂

dy
d𝜉1

)︂2

= 4y3 −
(︂

1
3

E2 + t
m4

4

)︂
y +

E
3

(︂
1
9

E2 + t
m4

8

)︂
.

Energy conservation takes the standard Weierstrass form.
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The Effective One-dimensional Mechanical Problem
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Translationally invariant solutions 𝜙 (𝜉0, 𝜉1) = 𝜙0 (𝜉0) of the sinh- or
cosh-Gordon equation are similar to the static ones. The reduced system
equation is written as

1
2

(︂
d𝜙0

d𝜉1

)︂2

− s
m2

2
(︀
e𝜙0 − te−𝜙0

)︀
= E .

As before, this equation can be viewed as energy conservation for a 1-d point
particle problem with potential identical to the problem of static
configurations, letting s → −s. This implies that the static solutions of the
Pohlmeyer reduced system for string propagation in AdS3 are identical to the
translationally invariant solutions of the Pohlmeyer reduced system for string
propagation in dS3 and vice versa.
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The Effective One-dimensional Mechanical Problem
The Elliptic Solutions of the Sinh- and Cosh-Gordon Equations

We are looking for real solutions of Weierstrass equation defined in the real
domain.
The latter can be visualized in terms of an 1-d mechanical problem,
describing the motion of a point particle with E = 0 and a cubic potential
V℘ (y) = −Q (y)

e3 e2 e1 e2

V℘ V℘

∆ > 0 ∆ < 0
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When Q (y) has three real roots, we expect to have two real solutions, one
being unbounded with y > e1 and a bounded one with e3 < y < e2.
When Q (y) has one real root, we expect to have only one real solution which
is unbounded with y > e2.
Analytic properties of ℘ and the half period relations lead to

y1 (x) = ℘ (x) ,

y2 (x) = ℘ (x + 𝜔2) ,

corresponding to the unbounded and bounded solutions respectively.
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The Effective One-dimensional Mechanical Problem
The Elliptic Solutions of the Sinh- and Cosh-Gordon Equations

Returning to the problem of finding static and translationally invariant
solutions of the sinh- and cosh-Gordon equations, we remind that the cubic
polynomial is not arbitrary, but

Q (x) = 4x3 −
(︂

1
3

E2 + t
m4

4

)︂
x +

E
3

(︂
1
9

E2 + t
m4

8

)︂
.

The roots of the cubic polynomial are

x1 =
E
6
, x2,3 = − E

12
± 1

4

√︀
E2 + tm4.
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−m2

m2
−m2

m2

x1

x2

x3

xi xi

E E

cosh-Gordon sinh-Gordon

The roots of Q (x) as function of the energy E
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The Weierstrass function allows for a unifying description of the elliptic
solutions of both sinh- and cosh-Gordon equations. Different classes of
solutions simply correspond to different ordering of the roots xi .

reality of roots ordering of roots
t = +1 3 real roots e1 = x2, e2 = x1, e3 = x3

t = −1, E > m2 3 real roots e1 = x1, e2 = x2, e3 = x3

t = −1, E < −m2 3 real roots e1 = x2, e2 = x3, e3 = x1

t = −1, |E | < m2 1 real, 2 complex e1 = x2, e2 = x1, e3 = x3
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The Effective One-dimensional Mechanical Problem
The Elliptic Solutions of the Sinh- and Cosh-Gordon Equations

All elliptic solutions of the sinh- and cosh-Gordon equations take the following
form

V1 (𝜉1; E) = 2℘ (𝜉1 + 𝛿𝜉1; g2 (E) , g3 (E)) − E
3
,

𝜙1 (𝜉1; E) = ln
[︂
−s

2
m2

(︂
2℘ (𝜉1 + 𝛿𝜉1; g2 (E) , g3 (E)) − E

3

)︂]︂
,

for all choices of the overall sign s.
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In particular, we choose
I 𝛿𝜉1 = 0 for the reflecting solutions of the cosh-Gordon equation as well

as for the right incoming reflecting and transmitting solutions of the
sinh-Gordon equation, having s = −1 in both cases

I 𝛿𝜉1 = 𝜔1 for the left incoming transmitting solutions of the sinh-Gordon
equation, having s = −1

I 𝛿𝜉1 = 𝜔2 for the left incoming reflecting solutions of the sinh-Gordon
equation with s = −1 as well as for the oscillating solutions of the
sinh-Gordon equation with s = +1

I 𝛿𝜉1 = 𝜔1 + 𝜔2 for the reflecting solutions of the cosh-Gordon equation
with s = +1.
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Section 4

The Building Blocks of the String / Minimal Surface
Solutions
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The Effective Schrödinger Problem
The Lamé Potential

Given a classical string configuration, it is straightforward to find the
corresponding solution of the Pohlmeyer reduced system.
The inverse problem is highly non-trivial due to the non-local nature of the
transformation relating the embedding functions Y𝜇 with the reduced field 𝜙
and because the Pohlmeyer reduction is a many-to-one mapping.
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The Effective Schrödinger Problem
The Lamé Potential

Such a construction requires the solution of the equations of motion for the
embedding functions,

𝜕2Y𝜇

𝜕𝜉2
1

− 𝜕2Y𝜇

𝜕𝜉2
0

= −s
1

Λ2 e𝜙Y𝜇,

supplemented with the geometric constraint as well as the Virasoro
constraints of the embedding problem,

Y · Y = sΛ2,

𝜕±Y · 𝜕±Y = 0.
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The Effective Schrödinger Problem
The Lamé Potential

Consider the case of a static solution of the reduced system
𝜙 (𝜉0, 𝜉1) = 𝜙1 (𝜉1). We define

V1 (𝜉1) := −s
1

Λ2 e𝜙1 .

Then, the equations of motion can be rewritten as

d2Y𝜇

d𝜉2
1

− d2Y𝜇

d𝜉2
0

= V1 (𝜉1) Y𝜇.
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The Effective Schrödinger Problem
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Since V1 depends solely on 𝜉1, it is possible to separate the variables letting

Y𝜇 (𝜉0, 𝜉1) := Σ𝜇 (𝜉1) T𝜇 (𝜉0) .

We arrive at a pair of ODEs,

−d2T𝜇

d𝜉2
0

= 𝜅𝜇T𝜇,

−d2Σ𝜇

d𝜉2
1

+ V1 (𝜉1) Σ𝜇 = 𝜅𝜇Σ𝜇,

which can be viewed as two effective Schrödinger problems with common
eigenvalues.
This pair of Schrödinger problems does not require any normalization
condition for the effective wavefunction.

Georgios Pastras Elliptic String Solutions in AdS3 and Elliptic Minimal Surfaces in AdS4



Motivation
Reduction of String Actions in AdS3 / Minimal Surfaces in AdS4

Elliptic Solutions of the Sinh- and Cosh-Gordon Equations
The Building Blocks of the String / Minimal Surface Solutions

Construction of Classical String Solutions
Static Minimal Surfaces in AdS4

Discussion

The Effective Schrödinger Problem
The Lamé Potential

Translationally invariant solutions of the reduced system can be related to
classical string configurations in a similar manner. The only difference is that
V1 (𝜉1) is replaced by

V0 (𝜉0) := s
1

Λ2 e𝜙0 .

We result in the same system of effective Schrödinger problems with Σ ↔ T.
Since the translationally invariant reduced solutions are identical to the static
ones with the inversion s → −s, it suffices to construct the string solutions for
the static configurations. The translationally invariant solutions can then be
obtained with the inversion s → −s.
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The Effective Schrödinger Problem
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For all cases, the effective potential V1 takes the special form

V1 = 2℘ (𝜉1 + 𝛿𝜉1) − E
3
,

where 𝛿𝜉1 is either 0 or 𝜔2 depending on the use of the unbounded or the
bounded real solution.
The special class of periodic potentials

V (x) = n (n + 1)℘ (x)

are called Lamé potentials and they are analytically solvable.
The spectrum of the corresponding Schrödinger problem contains up to n
finite allowed bands, plus one more continuous band extending to infinite
energy.
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The Effective Schrödinger Problem
The Lamé Potential

Our case corresponds to the n = 1 Lamé problem,

−d2y
dx2 + 2℘ (x) y = 𝜆y ,

whose solutions are given in general by

y± (x ; a) =
𝜎 (x ± a)

𝜎 (x)𝜎 (±a)
e−𝜁(±𝛼)x

with corresponding eigenvalues

𝜆 = −℘ (a) .
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I If the cubic polynomial has three real roots and for 𝜆 < −e1 or
−e2 < 𝜆 < −e3 or if it has one real root and 𝜆 < −e2, the eigenstates
y± (x) are real and if they are shifted by a period 2𝜔1 they will get
multiplied by a real number. In those cases, the eigenfunctions diverge
exponentially as x → ±∞.

I If the cubic polynomial has three real roots and for 𝜆 > −e3 or
−e1 < 𝜆 < −e2 or if it has one real root and 𝜆 > −e2, the eigenstates
y± (x) are complex conjugate to each other and if they are shifted by a
period 2𝜔1 they will acquire a complex phase. These states are the
familiar Bloch waves of periodic potentials.

Thus, the band structure of the n = 1 Lamé potential contains a finite
“valence” band between the energies −e1 and −e2 an infinite “conduction”
band above −e3 or only one infinite “conduction” band at energies higher
than −e2.
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The Effective Schrödinger Problem
The Lamé Potential

The whole process of finding the eigenstates and the band structure can be
repeated for the potential V = 2℘ (x + 𝜔2). The results are the same apart
from making a shift by 𝜔2 in the definition of the eigenfunctions and an
appropriate choice of the normalization constant in order to absorb the
complex phases,

y± (x ; a) =
𝜎 (x + 𝜔2 ± a)𝜎 (𝜔2)

𝜎 (x + 𝜔2)𝜎 (𝜔2 ± a)
e−𝜁(±a)x .

As a result, the potentials V = 2℘ (x) and V = 2℘ (x + 𝜔2) have the same
band structure. The two potentials are quite dissimilar functions, the first one
having poles and the other being smooth and bounded function
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The Effective Schrödinger Problem
The Lamé Potential

2e1

2e2

2e3

−e1

−e2
−e3 2𝜔1 4𝜔1 6𝜔1

2e2

−e2

2𝜔1 4𝜔1 6𝜔1

V (x) V (x)

x x

∆ > 0 ∆ < 02℘ (x)

2℘ (x + 𝜔2)

The band structure of the Lamé potential 2℘
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Section 5

Construction of Classical String Solutions
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It turns out that if all four eigenvalues 𝜅𝜇 are equal there will be no string
solution that is compatible with the constraints.
The simplest solution to obtain is provided by two distinct eigenvalues.
The form of the target space metrics suggests that AdS3 favours the selection
of eigenvalues of the same sign, which can be either positive or negative,
whereas dS3 favours the selection of eigenvalues of opposite sign.
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For positive eigenvalues 𝜅 = ℓ2, the solution of the flat Schrödinger problem is

T (𝜉0) = c1 cos (ℓ𝜉0) + c2 sin (ℓ𝜉0) ,

while for negative eigenvalues 𝜅 = −ℓ2, the corresponding solution is

T (𝜉0) = c1 cosh (ℓ𝜉0) + c2 sinh (ℓ𝜉0) .

Any of these solutions should be combined with the eigenfunctions Σ (𝜉1) of
the Lamé effective Schrödinger problem.
The relation between the eigenvalues of the pair of effective Schrödinger
problems implies that 𝜅 should be 𝜅 = −℘ (a) − 2x1.
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As an indicative example, let us consider string solutions associated with two
distinct positive eigenvalues 𝜅 = ℓ2

1,2 given by the ansatz

Y =

⎛⎜⎜⎝
c+

1 Σ+
1 (𝜉1) cos (ℓ1𝜉0) + c−

1 Σ−
1 (𝜉1) sin (ℓ1𝜉0)

c+
1 Σ+

1 (𝜉1) sin (ℓ1𝜉0) − c−
1 Σ−

1 (𝜉1) cos (ℓ1𝜉0)
c+

2 Σ+
2 (𝜉1) cos (ℓ2𝜉0) + c−

2 Σ−
2 (𝜉1) sin (ℓ2𝜉0)

c+
2 Σ+

2 (𝜉1) sin (ℓ2𝜉0) − c−
2 Σ−

2 (𝜉1) cos (ℓ2𝜉0)

⎞⎟⎟⎠ .

The functions Σ±
1,2 (𝜉1) are in general linear combinations of the Lamé

eigenfunctions y± (𝜉1) with moduli equal to a1,2, where

ℓ2
1,2 = −℘ (a1,2) − 2x1.
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The geometric constraint implies(︀
c+

1 Σ+
1

)︀2
+

(︀
c−

1 Σ−
1

)︀2 −
(︀
c+

2 Σ+
2

)︀2 −
(︀
c−

2 Σ−
2

)︀2
= Λ2.

The Virasoro constraints imply

ℓ1c+
1 c−

1

(︁
Σ+

1
′
Σ−

1 − Σ−
1

′
Σ+

1

)︁
= ℓ2c+

2 c−
2

(︁
Σ+

2
′
Σ−

2 − Σ−
2

′
Σ+

2

)︁
,[︁(︀

c+
1 Σ+

1

)︀2
+

(︀
c−

1 Σ−
1

)︀2
]︁
ℓ2

1 −
[︁(︀

c+
2 Σ+

2

)︀2
+

(︀
c−

2 Σ−
2

)︀2
]︁
ℓ2

2 = Λ2 (℘ (𝜉1) − x1) .
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The solution of the constraints and the demand that the solution is real
combined with the properties of the Lamé eigenfunctions result in the
following

I Positive eigenvalues must correspond to Bloch wave solutions of the
n = 1 Lamé problem, whereas negative eigenvalues must correspond to
non-normalizable states in the gaps of the n = 1 Lamé potential.

I a1 and a2 must obey
℘ (a1) + ℘ (a2) = −x1.

I ℘ (a1) < ℘ (a2) for unbounded solutions, whereas ℘ (a1) > ℘ (a2) for the
bounded ones.
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e1

−2e2

−e2

0

e2

e3

e3 0 −e2 −2e2 e2 e1
℘ (a1)

℘
(a

2
)

positive eigenvalues

Bloch states

℘ (a1) + ℘ (a2) = −e2

V = 2℘ (x) solutions

V = 2℘ (x + 𝜔2) solutions

The allowed ℘ (a1,2) for classical string solutions when x1 = e2, E < 0
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−2e3

e1

−e3

0
e2

e3

e3 e2 0 −e3 e1 −2e3
℘ (a1)

℘
(a

2
)

positive eigenvalues

Bloch states

℘ (a1) + ℘ (a2) = −e3

V = 2℘ (x) solutions

V = 2℘ (x + 𝜔2) solutions

The allowed ℘ (a1,2) for classical string solutions when x1 = e3
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To visualize the form of the solutions, we convert to global coordinates

Y = Λ

⎛⎜⎜⎝
√

1 + r 2 cos t√
1 + r 2 sin t
r cos𝜙
r sin𝜙

⎞⎟⎟⎠ ,

in which the AdS3 metric takes the usual form

ds2 = −
(︁

1 + r 2
)︁

dt2 +
1

1 + r 2 dr 2 + r 2d𝜙2.
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The string solution associated to the unbounded configurations takes the
form

r =

√︃
℘ (𝜉1) − ℘ (a2)

℘ (a2) − ℘ (a1)
,

t = ℓ1𝜉0 − arg
𝜎 (𝜉1 + a1)

𝜎 (𝜉1)𝜎 (a1)
e−𝜁(a1)𝜉1 ,

𝜙 = ℓ2𝜉0 − arg
𝜎 (𝜉1 + a2)

𝜎 (𝜉1)𝜎 (a2)
e−𝜁(a2)𝜉1 .
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Likewise, for the bounded configurations, the corresponding string solution is

r =

√︃
℘ (a2) − ℘ (𝜉1 + 𝜔2)

℘ (a1) − ℘ (a2)
,

t = ℓ1𝜉0 − arg
𝜎 (𝜉1 + 𝜔2 + a1)𝜎 (𝜔2)

𝜎 (𝜉1 + 𝜔2)𝜎 (a1 + 𝜔2)
e−𝜁(a1)𝜉1 ,

𝜙 = ℓ2𝜉0 − arg
𝜎 (𝜉1 + 𝜔2 + a2)𝜎 (𝜔2)

𝜎 (𝜉1 + 𝜔2)𝜎 (a2 + 𝜔2)
e−𝜁(a2)𝜉1 .
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In both cases, the solution corresponds to a rigidly rotating spiky string with
constant angular velocity 𝜔 = ℓ2/ℓ1, which

𝜔 < 1, when ℘ (a1) < ℘ (a2) ,

𝜔 > 1, when ℘ (a1) > ℘ (a2) .

𝜔 is smaller than one for the unbounded solution and larger than one for the
bounded one, since the radial coordinate r is also unbounded or bounded,
respectively depending on the form of the solution.
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The periodic sinh-Gordon configurations exhibit an interesting limit as

℘ (a1,2) → e1,2 or ℘ (a1,2) → e2,1.

In this limit, the functions y± (𝜉1; a1,2) both tend to
√︀

℘ (𝜉1) − e1,2. These
eigenfunctions are real, and, thus, we have the relation 𝜑− 𝜔t = 0 and the
solution degenerates to a straight string rotating like a rigid rod around its
center. This limit gives rise to the Gubser-Klebanov-Polyakov solution.
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If one considers the translationally invariant solutions of the cosh-Gordon
equation, 𝜉0 and 𝜉1 will be interchanged and the solution will be written as

r =

√︃
℘ (a2) − ℘ (𝜉0 + 𝜔2)

℘ (a1) − ℘ (a2)
,

t = ℓ1𝜉1 − arg
𝜎 (𝜉0 + 𝜔2 + a1)𝜎 (𝜔2)

𝜎 (𝜉0 + 𝜔2)𝜎 (a1 + 𝜔2)
e−𝜁(a1)𝜉0 ,

𝜙 = ℓ2𝜉1 − arg
𝜎 (𝜉0 + 𝜔2 + a2)𝜎 (𝜔2)

𝜎 (𝜉0 + 𝜔2)𝜎 (a2 + 𝜔2)
e−𝜁(a2)𝜉0 .
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This describes the space-time “dual” picture of a finite spiky string. This
solution is a circular string that rotates with angular velocity and radius that
vary periodically in time. In this solutions, the radius of the string oscillates
between two extremes. When it reaches the maximum value the string
moves with the speed of light. Then, it is reflected towards smaller radii and
starts shrinking until it reaches the minimum and it keeps oscillating.
From the point of view of the enhanced space, the coordinates Y−1 and Y 0

have a periodic dependence on the global coordinate t with period equal to
2𝜋. Thus, demanding that these solutions are single valued in the enhanced
space enforces the oscillatory behaviour of the circular strings to have period
equal to 2𝜋/n, where n ∈ N.
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Section 6

Static Minimal Surfaces in AdS4
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The construction of solutions of elliptic static minimal surfaces is identical to
that of elliptic classical string solutions, with some trivial variations

I There is no distinction between static and translationally invariant
solutions, as both world-sheet coordinates are space-like.

I Solutions correspond always to the cosh-Gordon equation solutions
I Every pair of effective Schrödinger problems must have opposite

eigenvalues instead of equal.
I Bounded solutions are excluded (they are not real and this is physically

expected since surfaces not anchored at the boundary are shrinkable to
a point)

I The form of the metric enforces the two distinct eigenvalues in the
ansatz to be of opposite sign.

I The latter together with the correspondence between bands/gaps and
signs of eigenvalues results in the positive eigenvalue corresponding to
the finite band and the negative one to the finite gap.
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e1

-2e2

e2

e3

e1

e2

-2e2

e3

e3 e2 -2e2 e1 e3 -2e2 e2 e1

℘ (a1) ℘ (a1)

℘
(a

2
)

E < 0 E > 0𝜅1 > 0, 𝜅2 < 0

𝜅1 in gap, 𝜅2 in band

℘ (a1) + ℘ (a2) = −e2

minimal surface solutions
Georgios Pastras Elliptic String Solutions in AdS3 and Elliptic Minimal Surfaces in AdS4



Motivation
Reduction of String Actions in AdS3 / Minimal Surfaces in AdS4

Elliptic Solutions of the Sinh- and Cosh-Gordon Equations
The Building Blocks of the String / Minimal Surface Solutions

Construction of Classical String Solutions
Static Minimal Surfaces in AdS4

Discussion

Moduli Space
Boundary Region
Interesting Limits
Area and Entanglement Entropy
Geometric Phase Transitions

The family of elliptic minimal surfaces contains two free parameters. One of
those is the constant of integration E , the other is the parameter ℘ (a1), which
takes values between e3 and min (e2,−2e2).
−𝜋/2 𝜋/20

−𝜋/2
arctan E

ar
ct

an
℘

(a
1
)

allowed E , ℘ (a1)

℘ (a1) = e3

℘ (a1) = e2

℘ (a1) = −2e2
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The minimal surface reaches the boundary at the points the Weierstrass
elliptic function diverges, namely u = 2n𝜔1. Thus, an appropriately anchored
at the boundary minimal surface is spanned by

u ∈ (2n𝜔1, 2 (n + 1)𝜔1) , v ∈ R,

where n ∈ Z.
In Poincaré coordinates, denoting as r± and 𝜙± the angular coordinates of
the trace of the extremal surface at the boundary as u → 2n𝜔1

+ and as
u → 2 (n + 1)𝜔1

−, respectively

r+ = Λe
ℓ1
ℓ2

𝜙++2n
(︁

ℓ1
ℓ2

Im𝛿2+Re𝛿1

)︁
= Λe𝜔(𝜙++𝜙0),

r− = Λe
ℓ1
ℓ2

(𝜙−−𝜋)+2(n+1)
(︁

ℓ1
ℓ2

Im𝛿2+Re𝛿1

)︁
= Λe𝜔(𝜙+𝜙0−𝛿𝜙),

where

𝜔 =
ℓ1

ℓ2
, 𝛿𝜙 = 𝜋 − 2

(︂
Im𝛿2 +

ℓ2

ℓ1
Re𝛿1

)︂
,

𝛿1 ≡ 𝜁 (𝜔1) a1 − 𝜁 (a1)𝜔1, 𝛿2 ≡ 𝜁 (𝜔1) a2 − 𝜁 (a2)𝜔1.
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So in Poincaré coordinates, the trace of the minimal surface in the boundary
is the union of two logarithmic spirals.
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At the limit ℘ (a1) = e3 and ℘ (a2) = e1, we get the ruled surface limit
(helicoids) for which 𝛿𝜙helicoid = 𝜋.
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When E > 0, at the limit ℘ (a1) = −2e2 and ℘ (a2) = e2, we get the rotational
surface limit (catenoids) for which 𝜔catenoid = 0, 𝛿𝜙catenoid = +∞ .
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When E < 0, at the limit ℘ (a1) = e2 and ℘ (a2) = −2e2, we get the conical
surface limit for which 𝜔conical = ∞.
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The area of the minimal surface can be directly calculated with the use of
formula

A = Λ2
∫︁ +∞

−∞
dv

∫︁ 2(n+1)𝜔1

2n𝜔1

du (℘ (u) − e2).

The length of the entangling curve, due to the conformal parametrization can
be expressed as

L = lim
u→2n𝜔1

+
Λ

∫︁ +∞

−∞
dv

√︀
℘ (u) − e2 + lim

u→2(n+1)𝜔1
−

Λ

∫︁ +∞

−∞
dv

√︀
℘ (u) − e2.

It is straightforward to show that we recover the usual “area law”

A = ΛL − 2Λ2e2𝜔1

∫︁ +∞

−∞
dv .

Georgios Pastras Elliptic String Solutions in AdS3 and Elliptic Minimal Surfaces in AdS4



Motivation
Reduction of String Actions in AdS3 / Minimal Surfaces in AdS4

Elliptic Solutions of the Sinh- and Cosh-Gordon Equations
The Building Blocks of the String / Minimal Surface Solutions

Construction of Classical String Solutions
Static Minimal Surfaces in AdS4

Discussion

Moduli Space
Boundary Region
Interesting Limits
Area and Entanglement Entropy
Geometric Phase Transitions

The universal constant term here diverges. This is due to the geometry of the
entangling curve being infinite.
This divergence introduces a subtlety in the comparison of the areas of two
distinct surfaces corresponding to the same entangling curve, as one may
rescale v for each of those at will.
An appropriate regularization of the universal constant term must enforce that
v is connected to the physical position of a given point on the entangling
curve. The azimuthal angle 𝜙 specifies a unique point on the spiral
entangling curve.

A = ΛL −
√

2
3

Λ2
√︀

E (1 − 𝜔2)𝜔1

∫︁ +∞

−∞
d𝜙.

We define

a0 (E , 𝜔) := −
√

2
3

Λ2
√︀

E (1 − 𝜔2)𝜔1 (E) ,

which can be used as a measure of comparison for the areas corresponding
to the same entangling curve.
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E
a0

𝜔 = 0.1
𝜔 = 0.5
𝜔 = 1.5
𝜔 = 2.0
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Unlike the general surface, where the parameter v has to take values in the
whole real axis, in the catenoid limit the range of the coordinate v becomes
finite. It is a direct consequence that the universal constant term in the area
formula becomes finite and specifically,

Acatenoid = ΛL − 4𝜋Λ2
√︂

e2

3
𝜔1.

In the case of catenoids it is convenient to define the quantity

acat
0 := −4𝜋Λ2

√︂
e2

3
𝜔1,

which can be used to compare the area of catenoids possessing the same
entangling curve.
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Possible geometric phase transitions may occur between minimal surfaces
corresponding to the same boundary region. These are minimal surfaces
with the same 𝜔 and 𝛿𝜙 equal or summing to 2𝜋.
We plot 𝛿𝜙 along a constant 𝜔 curve in the moduli space.
These curves all start at E = 0, ℘ (a1) = 0 and end at a helicoid with
E = 1/𝜔 − 𝜔.
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𝜔 = 𝜔1 = 0.10

𝜔 = 𝜔2 = 0.15

𝜔 = 𝜔3 = 0.25

𝜔 = 𝜔4 = 0.75

𝜔 = 𝜔5 = 2

𝜔 = 𝜔6 = 5

𝛿𝜙

E
Eh(𝜔6) Eh(𝜔5) Eh(𝜔3)Eh(𝜔2) Eh(𝜔1)E0

𝜋

2𝜋

3𝜋

E0 is the energy corresponding to the maximum “time of flight” in the effective
one-dimensional mechanical problem.
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In the case of catenoids, there is also the choice of a Goldschmidt solution.
When the ratio of the radii of the boundary circles is smaller than a critical
value

(︁
r−
r+

)︁
c
≃ 0.467209 the disjoint surfaces are the preferred choice,

whereas when the ratio of the radii is larger that this critical value the catenoid
is preferred and specifically the catenoid corresponding to the larger value of
E for the given ratio. The catenoid corresponding to the smaller value of E for
a given ratio is never preferred in comparison to any of the two options
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r−
r+

a0

−4𝜋

(︁
r−
r+

)︁
0

(︁
r−
r+

)︁
c

Georgios Pastras Elliptic String Solutions in AdS3 and Elliptic Minimal Surfaces in AdS4



Motivation
Reduction of String Actions in AdS3 / Minimal Surfaces in AdS4

Elliptic Solutions of the Sinh- and Cosh-Gordon Equations
The Building Blocks of the String / Minimal Surface Solutions

Construction of Classical String Solutions
Static Minimal Surfaces in AdS4

Discussion

Section 7

Discussion
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We developed a method to construct classical string solutions in AdS3 and
dS3 from a specific family of solutions of the Pohlmeyer reduced theory that
depend solely on one of the two world-sheet coordinates.

I These solutions admit a uniform description in terms of Weierstrass
functions.

I They are characterized by an interesting interplay between static and
translationally invariant solutions and string propagation in AdS3 and dS3

spaces.
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Our construction is based on separation of variables leading to four pairs of
effective Schrödinger problems

I The components of each pair of effective Schrödinger problems have the
same (opposite for the Euclidean problem) eigenvalue.

I Each pair consists of a flat potential and a periodic n = 1 Lamé potential
I Consistent solutions fall within an ansatz that requires not one but two

distinct eigenvalues.
I Relative size of the two eigenvalues corresponds to the selection

between bounded and unbounded solutions (bounded are excluded in
the Euclidean problem).

I The constraints select Bloch waves with positive eigenvalues and
non-normalizable states in the gaps of the Lamé potential with negative
eigenvalues.
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I The class of elliptic string solutions that emerge in our study includes the
spiky strings as well as several new solutions.

I They include rotating circular strings with periodically varying radius and
angular velocity.

I Solutions corresponding to negative eigenvalues of the effective
Schrödinger problems look like a periodic spiky structure translating with
constant velocity in hyperbolic slicing of AdS3
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The inverse problem of Pohlmeyer reduction:

I For a given solution of the Pohlmeyer reduced equations, there is a
continuously infinite set of distinct classical string solutions.

I Bounded solutions: A discrete but still infinite subset is single valued.
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It would be interesting to study the extension to other target space
geometries, such as the sphere. Spiky string solutions are known to exist on
the sphere thus it is very probable that there is an analogous treatment for
them.
In higher dimensional symmetric spaces, Pohlmeyer reduction results in
multi-component generalizations of the sinh- or cosh-Gordon equations. An
interesting question is whether there is an non-trivial extension of our
techniques to those more general cases.
All these will be useful for applications to strings propagating in AdS5×S5 in
the framework of holography.
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The minimal surfaces constructed can lead to applications related to
entanglement entropy in theories with holographic duals. Not much beyond
sphere and strip were known so far.

I If Gravity is a quantum entropic force associated with quantum
entanglement statistics (Raamsdonk), then equivalence between first
law of entanglement thermodynamics and Einstein equations should
hold for any entangling surface.

I The entangling surfaces have not trivial curvature (ulike the usual cases),
so they are a good toy model to study dependence of entanglement
entropy on the geometric characteristics of the entangling surface.

I From a purely mathematical point of view, we explicitly constructed a
family of minimal surfaces interpolating between the catenoids, helicoids
and conicals and reproduced the stability regions for the latter known
only numerically so far.

I The geometric phase transitions discovered can provide further
information about the role of entanglement entropy as an order
parameter for the confinement/deconfinement phase transition.
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Thank you!
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