Maximally Supersymmetric Solutions in Supergravity

> Severin Lüst Universität Hamburg

arXiv:1506.08040, 1607.08249, and in progress in collaboration with J. Louis

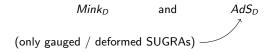
November 24, 2016

Introduction

- Supersymmetric solutions in supergravity are well studied, many are classified.
- They are believed to uplift to solutions of the full string theory and are related to string solitons, i.e. non-perturbative string theory.
- Moreover anti-de Sitter solutions feature prominently in AdS/CFT correspondence.
- ► Here: Maximally supersymmetric solutions.
 - 1. Classification of all background space-times for all gauged and deformed supergravity theories in $D \ge 3$ space-time dimensions.
 - 2. AdS solutions and their moduli spaces.

Outline / Results

- A) Set the stage to discuss solutions in a generic framework.
- B) Solutions without fluxes:
 - Only two possible cases:



- C) Solutions with (non-trivial) fluxes:
 - Exist only for a small class of theories.
 - Solutions coincide with those of the corresponding ungauged theories.
 - ▶ For these theories all solutions are known and classified.
 - $\rightarrow\,$ Exhaustive list of solutions.
- D) AdS_D solutions
 - Characterize gaugings.
 - Moduli spaces for theories with coset scalar field space.

Maximally supersymmetric backgrounds

Classical solutions / backgrounds for which

$$\begin{array}{rcl} \langle \delta_\epsilon B \rangle &=& \langle \delta_\epsilon F \rangle &= 0 \,. \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$$

• Here: bosonic solutions, i.e. $\langle F \rangle = 0$

$$\Rightarrow \quad \langle \delta_{\epsilon} B \rangle \sim \langle F \rangle = 0 \,.$$

 \Rightarrow only remaining condition: $\langle \delta_{\epsilon} F \rangle = 0$

• indep. supersymmetry paramters $\epsilon \quad \leftrightarrow \quad$ preserved supercharges

Supersymmetry variations

▶ gravitini:

$$\delta \psi^{i}_{\mu} = D_{\mu} \epsilon^{i} + (\mathcal{F}_{0\mu})^{i}_{j} \epsilon^{j} + A^{i}_{0j} \gamma_{\mu} \epsilon^{j}$$
fluxes from the gravity multiplet gaugings / deformations
covariant derivative: $D_{\mu} \epsilon^{i} = \nabla_{\mu} \epsilon^{i} + (\mathcal{Q}_{\mu})^{i}_{j} \epsilon^{j}$
spin-1/2 fermions from the gravity multiplet ("dilatini"):

$$\delta \chi^{a} = (\mathcal{F}_{1})^{a}_{i} \epsilon^{i} + A^{a}_{1 i} \epsilon^{i}$$

▶ spin-1/2 fermions from other multiplets ("gaugini", "hyperini", ...):

$$\delta \lambda^{s} = (\mathcal{F}_{2})^{s}_{i} \epsilon^{i} + A^{s}_{2i} \epsilon^{i}$$
fluxes from
other multiplets

Solutions without fluxes (1)

Easiest case: all fluxes vanish:

$$\mathcal{F}_{0\mu}=\mathcal{F}_1=\mathcal{F}_2=0$$

Supersymmetric solutions of gauged supergravity without background fluxes need to satisfy the Killing spinor equation:

$$\delta\psi^{i}_{\mu} = \nabla_{\mu}\epsilon^{i} + A^{i}_{0\,j}\gamma_{\mu}\epsilon^{j} = 0$$

Integrability condition:

$$\left(\frac{1}{4}R_{\mu\nu}{}^{\alpha\beta}\delta^{i}_{k}+2A^{i}_{0\,j}A^{j}_{0\,k}\delta^{\alpha}_{\mu}\delta^{\beta}_{\nu}\right)\gamma_{\alpha\beta}\epsilon^{k}=0$$

 $\Rightarrow \text{ Unbroken supersymmetry (without fluxes):} \\ \textbf{Mink}_D \text{ and } \textbf{AdS}_D \text{ are the only possible solutions.} \\$

Solutions without fluxes (2)

► Spin-1/2 variations:

$$\delta\chi^{a} = A_{1i}^{a} \epsilon^{i} = 0, \qquad \delta\lambda^{s} = A_{2i}^{s} \epsilon^{i} = 0$$

Algebraic conditions

$$A_0^2 = -\frac{\Lambda}{2(D-1)(D-2)} \, 1 \,, \qquad A_1 = A_2 = 0$$

• Compare with the potential:

$$V = -c_0 \operatorname{tr}(A_0^{\dagger}A_0) + c_1 \operatorname{tr}(A_1^{\dagger}A_1) + c_2 \operatorname{tr}(A_2^{\dagger}A_2),$$

- Mink_D (Λ = 0) solutions exist for all theories.
- For D ≤ 7 most gauged theories admit AdS_D (Λ < 0) solutions. (See second half of this talk.)

[de Alwis,Louis,McAllister,Triendl,Westphal][Louis,Triendl][Louis,SL][Louis,Triendl,Zagermann][Louis,Muranaka]

Solutions with non-trivial flux (1)

▶ For more "interesting" solutions: Allow for non-vanishing flux.

► Firstly: spin-1/2 variations:

 $\delta\chi^{a} = (\mathcal{F}_{1})^{a}_{i} \epsilon^{i} + A^{a}_{1i} \epsilon^{i} = 0, \quad \delta\lambda^{s} = (\mathcal{F}_{2})^{s}_{i} \epsilon^{i} + A^{s}_{2i} \epsilon^{i} = 0$

Unbroken supersymmetry:

$$\mathcal{F}_1 = \mathcal{F}_2 = A_1 = A_2 = 0 \qquad \Rightarrow \qquad \mathcal{F}_{0\mu} = 0$$

Generically no non-trivial fluxes possible!

Two exceptions

- 1. theories without $\chi{\rm 's}$ in the gravitational multiplet.
- 2. chiral theories with selfdual fluxes.

Solutions with non-trivial flux (2)

Secondly: gravitino variations:

$$\delta\psi^{i}_{\mu} = \nabla_{\mu}\epsilon^{i} + \left(\mathcal{Q}_{\mu}\right)^{i}_{j} + \left(\mathcal{F}_{0\mu}\right)^{i}_{j}\epsilon^{j} + A^{i}_{0j}\gamma_{\mu}\epsilon^{j} = 0$$

Integrability condition:

$$\left(\frac{1}{4}R_{\mu\nu\rho\sigma}\gamma^{\rho\sigma}\delta^{i}_{j}-(\mathcal{H}_{\mu\nu})^{i}_{j}+\ldots\right)\epsilon^{j}=0\,,$$

where $\mathcal{H}_{\mu\nu}$ is the field strength corresponding to \mathcal{Q}_{μ} .

Unbroken supersymmetry:

$$\mathcal{H}_{\mu
u} = 0 \qquad \Rightarrow \qquad \mathcal{Q}_{\mu} = \mathcal{A}_0 = 0$$

(See also [Hristov,Looyestijn,Vandoren] [Gauntlett,Gutowski] [Akyol,Papadopoulos])

 The supersymmetry variations take the same form as in the ungauged / undeformed case.

Solutions with non-trivial flux (3)

SUGRAs with non supersymmetry breaking flux:

dimension	supersymmetry	q	possible flux	classification
D = 11	N = 1	32	F ⁽⁴⁾	[Figueroa-O'Farrill,Papadopoulos]
D = 10	IIB	32	$F_{+}^{(5)}$	[Figueroa-O'Farrill,Papadopoulos]
<i>D</i> = 6	N = (2, 0)	16	$5 imes F_+^{(3)}$	[Chamseddine,Figueroa-O'Farrill,Sabra]
<i>D</i> = 6	N = (1, 0)	8	$F_{+}^{(3)}$	[Gutowski,Martelli,Reall]
<i>D</i> = 5	N = 2	8	F ⁽²⁾	[Gauntlett,Gutowski,Hull,Pakis,Reall]
<i>D</i> = 4	<i>N</i> = 2	8	F ⁽²⁾	[Tod]

The maximally supersymmetric solutions are classified:

- $AdS_p \times S^{(D-p)}$ and $AdS_{(D-p)} \times S^p$, for *p*-form flux.
- Hpp-wave as Penrose-limit of $AdS \times S$ solutions.

[Penrose;Gueven;Blau,Figueroa-O'Farrill,Hull,Papadopoulos]

• Exceptional solutions in D = 5. [Gauntlett, Gutowski, Hull, Pakis, Reall]

All maximally supersymmetric solutions

(with non-trival flux)

dim.	SUSY	q	AdS imes S	H <i>pp</i> -wave	others
D = 11	$\mathcal{N}=1$	32	$\begin{array}{l} \mathrm{AdS}_4 \times S^7 \\ \mathrm{AdS}_7 \times S^4 \end{array}$	KG_{11}	-
<i>D</i> = 10	IIB	32	$\mathrm{AdS}_5\times\textit{S}^5$	KG_{10}	-
<i>D</i> = 6	$egin{array}{lll} \mathcal{N}=(2,0) \ \mathcal{N}=(1,0) \end{array}$	16 8	$\mathrm{AdS}_3\times\textit{S}^3$	KG_{6}	-
<i>D</i> = 5	$\mathcal{N}=2$	8	$\begin{array}{l} \mathrm{AdS}_2\times\textit{\textbf{S}}^3\\ \mathrm{AdS}_3\times\textit{\textbf{S}}^2 \end{array}$	KG_5	Gödel-like, NH-BMPV*
<i>D</i> = 4	$\mathcal{N}=2$	8	$\mathrm{AdS}_2\times\textit{S}^2$	KG_4	-

* = near-horizon limit of the BMPV $_{\rm [Breckenridge,Myers,Peet,Vafa]}$ black hole

AdS solutions

- ▶ So far: classification of background *space-time geometries*.
- ▶ Now: focus on *algebraic conditions* and *target space geometry*.
- Most promising: AdS_D (here: $D \ge 4$):
 - Conditions $A_0^2 \sim \mathbb{1}$ and $A_1 = A_2 = 0$ require gauging.
 - May have non-trivial moduli spaces.

Motivation: AdS/CFT correspondence

AdS _D solution with q supercharges	\leftrightarrow	SCFT in $(D-1)$ dim. with $q/2$ supercharges
gauge symmetry	\leftrightarrow	global symmetry
moduli space	\leftrightarrow	conformal manifold

The gauged R-symmetry

- The conditions $A_0^2 \sim \mathbb{1}$ and $A_1 = A_2 = 0$ require $\mathcal{Q}_{\mu} \neq 0$.
- \Rightarrow The R-symmetry group H_R must be gauged by

$$H_R^g \subseteq H_R$$
,

where H_R^g needs to be generated by the vector fields from the gravity multiplet, i.e. the *"graphiphotons"*.

• H_R^g is uniquely determined to be the maximal subgroup of H_R , s.t.

a) A_0 is H_R^g invariant, i.e.

$$[\mathfrak{h}_R^g, \mathbf{A_0}] = \mathbf{0}$$

b) The decomposition of the H_R -representation r_{GP} of the graviphotons w.r.t. H_R^g contains the adjoint representation of H_R^g , i.e.

$$\mathsf{r}_{\mathit{GP}} \to \mathsf{ad}_{\mathit{H}^{\mathsf{g}}_{R}} \oplus \dots$$

Coset spaces

From now on: Focus on theories where the scalar field space is a coset:

$$\mathcal{M}_{scal} = rac{G}{H}, \qquad H = H_R imes H_{mat}$$

• Gauge group: $G^g \subseteq G$, where

$$G^g = G^g_R imes G^g_{mat}$$
,

s.t. H_R^g is the maximal compact subgroup of G_R^g .

► Lie algebra of G:

$$\mathfrak{g}=\mathfrak{h}\oplus\mathfrak{k}$$

Notice: $[\mathfrak{h}, \mathfrak{k}] \subseteq \mathfrak{k}$, i.e. \mathfrak{k} transformes in some \mathfrak{h} representation.

• Decompose \mathfrak{k} into \mathfrak{h}_R^g irreps:

$$\mathfrak{k} = \bigoplus_{i} \mathfrak{k}_{i}, \qquad [\mathfrak{h}_{R}^{g}, \mathfrak{k}_{i}] \subseteq \mathfrak{k}_{i}$$

The moduli space

• Flat directions of the potential $V(\phi)$:

$$\begin{split} \mathfrak{f} &= \{ \delta \phi \in \mathfrak{k} : V(\langle \phi \rangle + \delta \phi) = V(\langle \phi \rangle) \} \\ &= \{ \delta \phi \in \mathfrak{k} : [\delta \phi, \mathfrak{g}_R^g] \subseteq \mathfrak{g}_R^g \} \end{split}$$

(f is the non-compact part of the normalizer $N_{\mathfrak{g}}(\mathfrak{g}_R^g)$)

Observation:

► The moduli 𝔥₀ are the non-compact part of 𝔅₀ = 𝔥₀ ⊕ 𝔅₀ (which is the centralizer C_𝔅(𝔅^𝔅_R)).

$$\Rightarrow \quad \mathcal{M}_{AdS} = \frac{G_0}{H_0}$$

All AdS_D solutions for $D \ge 4$

dim.	SUSY	H_R^g	\mathcal{M}_{AdS}	
D = 7	$\mathcal{N}=4$	$USp(\mathcal{N})$	•	[Pernici,Pilch,van Nieuwenhuizen] [Louis,SL,Rüter (to app.)]
	$\mathcal{N}=2$	000(00)	•	[Louis,SL]
<i>D</i> = 6	$\mathcal{N}=(1,1)$	$SU(2) \otimes SU(2)$	•	[Romans]
D = 5	$\mathcal{N}=8$	SU(4)	SU(1,1)	[Günaydin,Romans,Warner]
			U(1)	[Louis,SL,Rüter]
	$\mathcal{N}=6$		•	[Ferrara,Porrati,Zaffaroni]
	$\mathcal{N}=4$	$U(\mathcal{N}/2)$	SU(1, <i>p</i>)	[Corrado, Günaydin, Warner, Zagermann]
			$U(1) \times SU(p)$	[Louis, Triendl, Zagermann]
	$\mathcal{N}=2$		Kähler	[Louis,Muranaka]
D = 4	$\mathcal{N}=8$		•	[de Wit, Nicolai][Louis,SL,Rüter]
	$\mathcal{N}=5,6$		•	[de Wit,Nicolai]
	$\mathcal{N}=4$	$SO(\mathcal{N})$	•	[Louis, Triendl]
	$\mathcal{N}=3$	50(57)	•	
	$\mathcal{N}=2$		Kähler	[de Alwis, et al.]
	$\mathcal{N}=1$		real	[de Alwis, et al.]

 \rightarrow Perfect agreement with marginal deformations of SCFTs $_{[Cordova,Dumitrescu,Intriligator] 16/17}$

Summary

- Systematic classification of all maximally supersymmetric supergravity backgrounds:
 - no fluxes: only flat space-time and anti-de Sitter.
 - fluxes: generically not possible
 - in the gauged case: same solutions as for ungauged theories
 - all solutions are known and classified

 General recipe for the computation of AdS_D moduli spaces for theories with coset scalar manifold.

Summary

- Systematic classification of all maximally supersymmetric supergravity backgrounds:
 - no fluxes: only flat space-time and anti-de Sitter.
 - fluxes: generically not possible
 - in the gauged case: same solutions as for ungauged theories
 - all solutions are known and classified
- General recipe for the computation of AdS_D moduli spaces for theories with coset scalar manifold.

Thank You!