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Entanglement Entropy

+ Similarity to Black Hole Entropy: Area Law

* Quantum Information

+ Quality of Numerics (Density Matrix Renormalization Group)
+ Ryu-Takanayagi Holographic Computation

* Direct Computation possible



Defimition

+ Take a QFT with (quasi-local) operators A
+ Take a state w: A — C (think: ground state of local Hamiltonian w(4) = (¥|A|¥)
+ Restrict to operators localized in a spatial region A((2)

+ This is also a state on A(2)but in general it is mixed:

wla@)(A) =tr(pA) with po = trrrzr\a)|¥) (¥

* This reduced state has entropy: S = —tr(pq log po)

+ Scaling upon blowing up( by a factor?? Arealaw: Sro = O(R"™)



Free Fermions (non-relativistic)

+* Wick’s theorem: Everything determined form 2-point function
(ckew) = x1 (k) = (k|P: k)

+ Reduce to 1-particle space, projector onto Fermi sea

1 - /
P (X,X/) e (27T)n / 6z(x—x )-k A"k



I Particle Language

+ Restrict to o by projection with Qu = xo(x)
+ 1-particle effective density operator: ¢o. =@l Qo

+ Entanglement entropy becomes

Sar =tr(earlogoar — (1 —ear)log(l — gar))
> tr(oq.r(l — oar)



Violation of Area Law

+ [ will show you how to compute

n2 R,
X

Tl 27T

In fact, there is equality (for a slightly different coefficient).

* We need Reyni-entropies tr(¢q, ) for k=1 and k=2. “
+ k=11s simple: tr(oko, )= (%) /dX/dpl— (—) Q1]




<+ This is more work:

* aQuPQuP)= [ ax [ ad|Px-x)P=[  av|Pa@)PIRON (RO - v)
RO RO R(Q—)
1
=T

* Since Pr(v) ~

RN (R —v)| = R™|Q| + Rt / do(x) max(0,v - ny) + R”_ZO(MZ)
02

* First term yields (%) 'l which cancels k=1 term.



k=2 (conl.,

“ Write max(0,v-ny) =60(v-n;)v-n, and use Gaufs’ theorem

(2miviE ) — V/dp o — —z'/ do(p) npe''P
o,

+ We still need to compute

/ dv (v - ny) P, (—v)eV'P
R(2—Q)



/ dv (v - ny )P (—v)eV'P
R(Q2—9)

1
* Once more Gaufs: (27)"

P (—-v)=—

+ Use coordinates with »=(0,0,...,0,v) and the boundary o >p’ = (t, £(t))

+ Then do(p’) = V1+ |VfRdt and ny =sen(v-p)(=Vf,1)/\/1+ VS|

+ Using stationary phase we find
Gaulfs curvature

P (—v) = —@n)" [ dtsga(f())e ™/

U

—(n+1)/2 sgn(v - k) —iv-ka—i Tsgn(fi;(ta)) 1)
270 Z \/| e fw & e g + o(v )




/R(QQ)dV e A (COHt)

+ Use coordinates in which p is vertical, 9(2— Q)3 (u,h(u)) and write v =A(u,h(u))
and k,((0,h(0) =p.

+ Phase in dv-integration is v (p —ku(v)) = M(0)(p — ku(0)), + A~

Ui Uy

* u-integration by stationary phase cancels Gauf$ curvature and leaves

6’&)\h(0) (p—ka, (O))n
/ dA X



£iAR(0)(p—ka(0)),
/ d\ .

This integral is over € [0, z] but up to an O(1) error, we can change it to xe1, &

Rd/\ eA(0)(P—ks(0))r - RO for p ko (0, —0
l A - 1O(1) else

Collecting everything:

In2 e RO i
triorar(l —orar)) = (—) IHR/a : do(x)do(p) |nx - ng| + o( R" ' 1n R)
(2%



AS Quaﬂtizati()ﬂ /c?Qx(’) FOIR GO B iy Hpp /mxa GO

+ Instead of scaling r, we can also place R more democratically in the
exponent ¢/ (up to an overall factor).

+ This shows that R actually plays the role of 1/%.

* In an informal, semi-classical expansion

tr(QoPr@Qalfr) = tr(QoQaPrPr) + tr(Qo|Pr, Qo) Fr)
:tr(QQP )—I—tr(QQﬁ{P ,QQ}P)

“{P,Quo} =Vyx - Vxao~d(ped)ixe ) so for the discontinuous symbols we find a
semi-classical term at O(log h)



log(R) term

Double discontinuity in phase space is essential for area law violation.
There is a simple extension when xe(z)or xr(r)are multiplied by smooth functions.

At finite temperature, the entropy has a bulk term (as we no longer start from a pure
state) plus a strict surface term that goes as 1(T,0Q2) = (1/12)J(oI',,,0Q2) In(To/T) + ...
and becomes the area law violating term at zero temperature

The explicit form suggests there should be a more direct derivation (as an anomaly?).

Holographic derivation from Fermi surface?



