Fermionic Entanglement Entropy

Robert C. Helling (LMU) with Hajo Leschke (FAU) and Wolfgang Spitzer (FUH)

Entanglement Entropy

* Similarity to Black Hole Entropy: Area Law
* Quantum Information
* Quality of Numerics (Density Matrix Renormalization Group)
* Ryu-Takanayagi Holographic Computation
* Direct Computation possible

Definition

\% Take a QFT with (quasi-local) operators \mathcal{A}

* Take a state $\omega: \mathcal{A} \rightarrow \mathbb{C}$ (think: ground state of local Hamiltonian $\omega(A)=\langle\Psi| A|\Psi\rangle$
\because Restrict to operators localized in a spatial region $\mathcal{A}(\Omega)$
\because This is also a state on $\mathcal{A}(\Omega)$ but in general it is mixed:

\therefore This reduced state has entropy: $S_{\Omega}=-\operatorname{tr}\left(\rho_{\Omega} \log \rho_{\Omega}\right)$
\because Scaling upon blowing up Ω by a factor R ? Area law: $S_{R \Omega}=O\left(R^{n-1}\right)$

Free Fermions (non-relativistic)

*Wick's theorem: Everything determined form 2-point function

$$
\left\langle c_{k}^{\dagger} c_{k}\right\rangle=\chi_{\ulcorner }(k)=\langle k| P_{\ulcorner }|k\rangle
$$

* Reduce to 1-particle space, projector onto Fermi sea

$$
P_{\sqcap}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{(2 \pi)^{n}} \int e^{i\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \cdot \mathbf{k}} d^{n} k
$$

1 Particle Language

$\%$ Restrict to Ω by projection with $Q_{\Omega}=\chi_{\Omega}(\mathbf{x})$

* 1-particle effective density operator: $\Omega_{\Omega, \Gamma}=Q_{\Omega} P_{P} Q_{\Omega}$
* Entanglement entropy becomes

$$
\begin{aligned}
S_{\Omega, \Gamma} & =\operatorname{tr}\left(\varrho_{\Omega, \Gamma} \log \varrho_{\Omega, \Gamma}-\left(1-\varrho_{\Omega, \Gamma}\right) \log \left(1-\varrho_{\Omega, \Gamma}\right)\right) \\
& \geq \operatorname{tr}\left(\varrho_{\Omega, \Gamma}\left(1-\varrho_{\Omega, \Gamma}\right)\right.
\end{aligned}
$$

Violation of Area Law

* I will show you how to compute

$$
S_{R \Omega, \Gamma} \geq \frac{\ln 2}{\pi^{2}}\left(\frac{R}{2 \pi}\right)^{n-1} \ln R \int_{\partial \Omega \times \partial \Gamma} d \sigma(\mathbf{x}) d \sigma(\mathbf{p})\left|\mathbf{n}_{\mathbf{x}} \cdot \mathbf{n}_{\mathbf{p}}\right|+o\left(R^{n-1} \ln R\right)
$$

In fact, there is equality (for a slightly different coefficient).

* We need Reyni-entropies $\operatorname{tr}\left(e_{\Omega, \mathrm{r}}^{k}\right)$ for $\mathrm{k}=1$ and $\mathrm{k}=2$.
$\because \mathrm{k}=1$ is simple: $\quad \operatorname{tr}\left(\varrho_{R \Omega, \Gamma}^{1}\right)=\left(\frac{R}{2 \pi}\right)^{n} \int_{\Omega} d \mathbf{x} \int_{\Gamma} d \mathbf{p} 1=\left(\frac{R}{2 \pi}\right)^{n}|\Omega \||\Gamma|$

$\mathrm{k}=2$
* This is more work:
$\because \operatorname{tr}\left(Q_{R \Omega} P_{\digamma} Q_{R \Omega} P_{\subsetneq}\right)=\int_{R \Omega} d \mathbf{x} \int_{R \Omega} d \mathbf{x}^{\prime}\left|P_{\digamma}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)\right|^{2}=\int_{R(\Omega-\Omega)} d \mathbf{v}\left|P_{G}(\mathbf{v})\right|^{2}|R \Omega \cap(R \Omega-\mathbf{v})|$
\because Since $\quad P_{\Gamma}(v) \sim \frac{1}{v^{(n-1) / 2}}$

$$
|R \Omega \cap(R \Omega-v)|=R^{n}|\Omega|+R^{n-1} \int_{\partial \Omega} d \sigma(\mathbf{x}) \max \left(0, \mathbf{v} \cdot \mathbf{n}_{\mathbf{x}}\right)+R^{n-2} O\left(|v|^{2}\right)
$$

\% First term yields $\left(\frac{R}{2 \pi}\right)^{n}|\Omega||\Gamma|$ which cancels $\mathrm{k}=1$ term.

$\mathrm{k}=2$ (cont.)

\% Write $\max \left(0, \mathbf{v} \cdot \mathbf{n}_{\mathbf{x}}\right)=\theta\left(\mathbf{v} \cdot \mathbf{n}_{x}\right) \mathbf{v} \cdot \mathbf{n}_{x}$ and use Gauß' theorem

$$
(2 \pi)^{n} \mathbf{v} P_{\Gamma}(\mathbf{v})=\mathbf{v} \int_{\Gamma} d \mathbf{p} e^{i \mathbf{v} \cdot \mathbf{p}}=-i \int_{\partial \Gamma} d \sigma(\mathbf{p}) \mathbf{n}_{\mathbf{p}} e^{i \mathbf{v} \cdot \mathbf{p}}
$$

*We still need to compute

$$
\int_{R(\Omega-\Omega)} d \mathbf{v} \theta\left(\mathbf{v} \cdot \mathbf{n}_{\mathbf{x}}\right) P_{\digamma}(-\mathbf{v}) e^{i \mathbf{v} \cdot \mathbf{p}}
$$

$$
\int_{R(\Omega-\Omega)} d \mathbf{v} \theta\left(\mathbf{v} \cdot \mathbf{n}_{\mathbf{x}}\right) P_{\Gamma}(-\mathbf{v}) e^{i \mathbf{v} \cdot \mathbf{p}}
$$

\& Once more Gauß: $\quad \frac{1}{(2 \pi)^{n}} P_{\Gamma}(-\mathbf{v})=\frac{i \mathbf{v}}{|\mathbf{v}|^{2}} \cdot \int_{\partial \Gamma} d \sigma\left(\mathbf{p}^{\prime}\right) \mathbf{n}_{\mathbf{p}^{\prime}} e^{-i \mathbf{v} \cdot \mathbf{p}^{\prime}}$

\because Use coordinates with $v=(0,0, \ldots, 0, V)$ and the boundary $\partial\left\ulcorner\ni \mathbf{p}^{\prime}=(\mathbf{t}, f(\mathbf{t}))\right.$
\therefore Then $d \sigma\left(\mathbf{p}^{\prime}\right)=\sqrt{1+|\nabla f|^{2}} d \mathbf{t}$ and $n_{\mathbf{p}^{\prime}}=\operatorname{sgn}\left(\mathbf{v} \cdot \mathbf{p}^{\prime}\right)(-\nabla f, 1) / \sqrt{1+|\nabla f|^{2}}$

* Using stationary phase we find

Gauß curvature

$$
\begin{aligned}
P_{\Gamma}(-\mathbf{v}) & =-(2 \pi)^{n} \frac{1}{v} \int d \mathbf{t} \operatorname{sgn}(f(\mathbf{t})) e^{-i v f(\mathbf{t})} \\
& =-i(2 \pi v)^{-(n+1) / 2} \sum_{\mathbf{k}_{a}} \frac{\operatorname{sgn}\left(\mathbf{v} \cdot \mathbf{k}_{a}\right)}{\sqrt{\left|\operatorname{det} f_{i j}\left(\mathbf{t}_{a}\right)\right|}} e^{-i \mathbf{v} \cdot \mathbf{k}_{a}-i \frac{\pi}{4} \operatorname{sgn}\left(f_{i j}\left(\mathbf{t}_{a}\right)\right)}+o\left(v^{-(n+1) / 2}\right)
\end{aligned}
$$

$\int_{R(\Omega-\Omega)} d \mathbf{v} \theta\left(\mathbf{v} \cdot \mathbf{n}_{\mathbf{x}}\right) P_{\Gamma}(-\mathbf{v}) e^{i \mathbf{v} \cdot \mathbf{p}}\left(\mathrm{CO} \mathbf{t}_{\bullet}\right)$
\because Use coordinates in which p is vertical, $\partial(\Omega-\Omega) \ni(\mathbf{u}, h(\mathbf{u}))$ and write $\mathbf{v}=\lambda(\mathbf{u}, h(\mathbf{u}))$ and $\mathbf{k}_{a}(\mathbf{0}, h(\mathbf{0}))=\mathbf{p}$.
\because Phase in dv-integration is $\mathbf{v} \cdot\left(\mathbf{p}-\mathbf{k}_{a}(\mathbf{v})\right)=\lambda h(\mathbf{0})\left(\mathbf{p}-\mathbf{k}_{a}(\mathbf{0})\right)_{n}+\lambda \frac{f_{i j}^{-1}\left(\mathbf{k}_{a}(\mathbf{0})\right)}{2 h(\mathbf{0})} u_{i} u_{j}$

* u-integration by stationary phase cancels Gauß curvature and leaves

$$
\int d \lambda \frac{e^{i \lambda h(0)\left(\mathbf{p}-\mathbf{k}_{\mathrm{a}}(0)\right)_{n}}}{\lambda}
$$

$\int d \lambda \frac{e^{i \lambda h(\mathbf{0})\left(\mathbf{p}-\mathbf{k}_{a}(\mathbf{0})\right)_{n}}}{\lambda}$

* This integral is over $\lambda \in[0, R]$ but up to an $\mathrm{O}(1)$ error, we can change it to $\lambda \in[1, R]$

$$
\int_{1}^{R} d \boldsymbol{\lambda} \frac{e^{i \lambda \lambda(\boldsymbol{0})\left(\boldsymbol{p}=\mathbf{k}_{k_{\theta}}(\boldsymbol{0})\right)_{n}}}{\boldsymbol{\lambda}} \equiv\left\{\begin{array}{l}
\ln R+O(1) \text { for } \mathbf{p}-\mathbf{k}_{a}(\mathbf{0})_{n}=0 \\
O(1) \text { else }
\end{array}\right.
$$

* Collecting everything:

$$
\operatorname{tr}\left(\varrho_{R \Omega, \Gamma}\left(1-\varrho_{R \Omega, \Gamma}\right)\right)=\frac{\ln 2}{\pi^{2}}\left(\frac{R}{2 \pi}\right)^{n-1} \ln R \int_{\partial \Omega \times \partial \Gamma} d \sigma(\mathbf{x}) d \sigma(\mathbf{p})\left|\mathbf{n}_{\mathbf{x}} \cdot \mathbf{n}_{\mathbf{p}}\right|+o\left(R^{n-1} \ln R\right)
$$

$\%$ Instead of scaling $R \Omega$, we can also place R more democratically in the exponent $e^{i R \mathrm{x} \cdot \mathrm{p}}$ (up to an overall factor).
\because This shows that R actually plays the role of $1 / \hbar$.
\because In an informal, semi-classical expansion

$$
\begin{aligned}
\operatorname{tr}\left(Q_{\Omega} P_{\subsetneq} Q_{\Omega} P_{\mathrm{C}}\right) & =\operatorname{tr}\left(Q_{\Omega} Q_{\Omega} P_{\subsetneq} P_{\mathrm{\digamma}}\right)+\operatorname{tr}\left(Q_{\Omega}\left[P_{\mathrm{P}}, Q_{\Omega}\right] P_{\mathrm{C}}\right) \\
& =\operatorname{tr}\left(Q_{\Omega} P_{\mathrm{C}}\right)+\operatorname{tr}\left(Q_{\Omega} \hbar\left\{P_{\mathrm{C}}, Q_{\Omega}\right\} P_{\mathrm{P}}\right)
\end{aligned}
$$

$\%\left\{P_{\Gamma}, Q_{\Omega}\right\}=\nabla \chi_{\Gamma} \cdot \nabla \chi_{\Omega} \sim \delta(\mathbf{p} \in \partial \Gamma) \delta(\mathbf{x} \in \partial \Omega)$ so for the discontinuous symbols we find a semi-classical term at $O(\log \hbar)$

$\log (\mathrm{R})$ term

\% Double discontinuity in phase space is essential for area law violation.
$\%$ There is a simple extension when $\chi_{\Omega}(x)$ or $\chi_{\Gamma}(p)$ are multiplied by smooth functions.
$\%$ At finite temperature, the entropy has a bulk term (as we no longer start from a pure state) plus a strict surface term that goes as $\eta(T, \partial \Omega)=(1 / 12) J\left(\partial \Gamma_{\mu}, \partial \Omega\right) \ln \left(T_{0} / T\right)+\ldots$ and becomes the area law violating term at zero temperature
\therefore The explicit form suggests there should be a more direct derivation (as an anomaly?).
: Holographic derivation from Fermi surface?

