
Ringberg, November 22nd 2016

Fermionic Entanglement Entropy
Robert C. Helling (LMU) with Hajo Leschke (FAU) and Wolfgang Spitzer (FUH)



Entanglement Entropy

✤ Similarity to Black Hole Entropy: Area Law

✤ Quantum Information

✤ Quality of Numerics (Density Matrix Renormalization Group)

✤ Ryu-Takanayagi Holographic Computation

✤ Direct Computation possible



Definition

✤ Take a QFT with (quasi-local) operators 

✤ Take a state                  (think: ground state of local Hamiltonian 

✤ Restrict to operators localized in a spatial region 

✤ This is also a state on         but in general it is mixed:  
 

✤ This reduced state has entropy:

✤ Scaling upon blowing up    by  a factor   ?   Area law: 
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Free Fermions (non-relativistic)

✤ Wick’s theorem: Everything determined form 2-point function  
 

✤ Reduce to 1-particle space, projector onto Fermi sea 

hc†kcki = ��(k) = hk|P�|ki

P�(x,x
0) =

1

(2⇡)n

Z

�
ei(x�x

0)·k dnk



1 Particle Language

✤ Restrict to      by projection with 

✤ 1-particle effective density operator:

✤ Entanglement entropy becomes 
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Violation of Area Law

✤ I will show you how to compute  
 
 
 
In fact, there is equality (for a slightly different coefficient).

✤ We need Reyni-entropies           for k=1 and k=2.

✤ k=1 is simple:
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k=2

✤ This is more work:

✤  

✤ Since  
 

✤ First term yields                      which cancels k=1 term.
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k=2 (cont.)

✤ Write                                        and use Gauß’ theorem 
 

✤ We still need to compute 
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✤ Once more Gauß:

✤ Use coordinates with                           and the boundary 

✤ Then                                and 

✤ Using stationary phase we find 
 

v = (0, 0, . . . , 0, V )
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                      (cont.)

✤ Use coordinates in which p is vertical,                            and write  
and                      .

✤ Phase in dv-integration is

✤ u-integration by stationary phase cancels Gauß curvature and leaves
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✤ This integral is over              but up to an O(1) error, we can change it to  

✤ Collecting everything:
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As Quantization

✤ Instead of scaling     , we can also place R more democratically in the 
exponent          (up to an overall factor).

✤ This shows that R actually plays the role of      .

✤ In an informal, semi-classical expansion 

✤                                                          so for the discontinuous symbols we find a 
semi-classical term at 
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log(R) term

✤ Double discontinuity in phase space is essential for area law violation.

✤ There is a simple extension when         or         are multiplied by smooth functions.

✤ At finite temperature, the entropy has a bulk term (as we no longer start from a pure 
state) plus a strict surface term that goes as  η(T,∂Ω) = (1/12)J(∂Γμ,∂Ω) ln(T0/T) + … 
and becomes the area law violating term at zero temperature

✤ The explicit form suggests there should be a more direct derivation (as an anomaly?).

✤ Holographic derivation from Fermi surface?
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