Towards the I-loop effective action of type IIB orientifolds

Michael Haack, (LMU Munich)
Schloss Ringberg, November 2I, 2016
1407.0027 (with Marcus Berg, Jin U Kang and Stefan Sjörs)

I5II. 03957 (with Jin U Kang)

+ work in progress (with Jin U Kang)

Overview

- Motivation
- Calculational setup
- Results

Motivation

(Perturbative) quantum corrections to effective action can be important

- if "zero effect" at tree level (e.g. no-scale structure of potential)
- for "precision phenomenology" (e.g. structure of soft SUSY breaking terms)
- increase possibilities for model building and moduli stabilization, cf. LVS

$\mathcal{N}=1, d=4$ Supergravity

$$
\begin{array}{r}
\frac{\mathcal{L}_{\text {bos }}}{(-G)^{1 / 2}}=\frac{1}{2 \kappa^{2}} R-K_{, \bar{I} J} D_{\mu} \bar{\Phi}^{\bar{I}} D^{\mu} \Phi^{J}-\frac{1}{4} \operatorname{Re}\left(f_{a b}(\Phi)\right) F_{\mu \nu}^{a} F^{b \mu \nu} \\
-
\end{array}
$$

with $V(\Phi, \bar{\Phi})=e^{K}\left(G^{\bar{I} J} D_{\bar{I}} \bar{W} D_{J} W-3|W|^{2}\right)+\operatorname{Re}\left(f_{a b}\right) \mathcal{D}^{a} \mathcal{D}^{b}$

$$
D_{J} W \equiv \partial_{\phi^{J}} W+\partial_{\phi^{J}} K W
$$

- Superpotential W
- Gauge kinetic function $f_{a b}$
- Kähler potential K

Quantum Corrections

- Superpotential $W=W^{\text {tree }}+W^{\text {non-pert }}$
- Gauge kinetic function $f=f^{\text {tree }}+f^{1-\mathrm{loop}}+f^{\text {non-pert }}$
- Kähler potential $K=K^{\text {tree }}+\sum_{n=1}^{\infty} K^{n-\mathrm{loop}}+K^{\mathrm{non}-\mathrm{pert}}$

Calculational setup

- Focus on type I theory and K for moduli Methods:
\star Truncation of type II results
\star Duality (heterotic theory / F-theory)
\star Scattering amplitudes in type I
focus of this talk
- String amplitudes give corrections in string frame
- Need I-loop correction to:
(i) scalar metric in string frame
(ii) Einstein-Hilbert term
(iii) definition of field variables $\left(\tau=\tau^{(0)}+\delta \tau\right)$
- Reason: in string frame we have

$$
\begin{aligned}
S=\frac{1}{\kappa^{2}} \int d^{4} x \sqrt{-g} & {\left[\left(e^{-2 \phi_{4}}+\delta E\right) \frac{1}{2} R\right.} \\
& \left.+\left(\tilde{G}^{(0)}+\tilde{G}^{(1)}\right) \partial_{\mu} \tau^{(0)} \partial^{\mu} \tau^{(0)}+\ldots\right]
\end{aligned}
$$

(ii) \Longrightarrow Weylrescaling:

$$
g_{\mu \nu}^{(E)}=\underbrace{\left(e^{-2 \Phi_{4}}+\delta E\right)}_{\equiv \Omega^{-2}} g_{\mu \nu}^{(S)}
$$

$\Longrightarrow \bullet \tilde{G}^{(0)}$ is multiplied by Ω^{2}

$$
\begin{aligned}
R^{(S)}=\Omega^{-2} & \left(R^{(E)}-2(D-1) g^{(E) \mu \nu} \nabla_{\mu} \partial_{\nu} \ln \Omega\right. \\
& -(D-2)(D-1) g^{(E) \mu \nu} \underbrace{\left.\partial_{\mu} \ln \Omega \partial_{\nu} \ln \Omega\right)}_{\quad=\frac{1}{\Omega} \partial_{\tau} \Omega \partial_{\mu} \tau+\ldots}
\end{aligned}
$$

δE depends on τ

$$
\begin{aligned}
(i i i) \Longrightarrow & \tilde{G}^{(0)}\left(\tau^{(0)}\right) \partial_{\mu} \tau^{(0)} \partial^{\mu} \tau^{(0)} \\
= & \tilde{G}^{(0)}(\tau) \partial_{\mu} \tau \partial^{\mu} \tau \\
& -\partial_{\tau} \tilde{G}^{(0)}(\tau) \delta \tau \partial_{\mu} \tau \partial^{\mu} \tau-2 \tilde{G}^{(0)}(\tau)\left(\partial_{\tau(0)} \delta \tau\right) \partial_{\mu} \tau \partial^{\mu} \tau
\end{aligned}
$$

Some generalities of the amplitude calculations

- Aim: read off scalar metric from scalar 2-pt fct.
- 2-pt fct. $=0$ on-shell
- Trick: use $p_{1}+p_{2} \neq 0 \Longleftrightarrow \delta \equiv p_{1} \cdot p_{2} \neq 0$ in intermediate steps
- $\left\langle\Phi_{i} \Phi_{j}\right\rangle=\delta G_{i j}+\mathcal{O}\left(\delta^{2}\right)$
[Atick, Dixon, Sen; Minahan;
Antoniadis, Bachas, Fabre, Partouche,Taylor; Antoniadis, Kirtsis, Rizos; cf. also Kiritsis, Kounnas, ...]
- Similarly for gravitons: $\langle h h\rangle \sim \delta E p_{2}^{\mu} \epsilon_{1 \mu \nu} \eta^{\nu \lambda} \epsilon_{2 \lambda \rho} p_{1}^{\rho}$

$T^{6} / \mathbb{Z}_{6}^{\prime}$

- $\Theta Z^{1}=e^{2 \pi i v_{1}} Z^{1}$
$\Theta Z^{2}=e^{2 \pi i v_{2}} Z^{2}$
$\Theta Z^{3}=e^{2 \pi i v_{3}} Z^{3}$
$\left(v_{1}, v_{2}, v_{3}\right)=\left(\frac{1}{6},-\frac{1}{2}, \frac{1}{3}\right)$

a

- Resulting 4D effective action has $\mathcal{N}=1$
- Model contains D9- and D5-branes
(wrapped around 3rd torus)
- In addition to torus, need to calculate:

Klein bottle:

All of them have Euler number $\chi=2-2 h-b-c=0$

- E.g. annulus:

$$
\begin{aligned}
\mathcal{A} & \sim \int_{0}^{\infty} \frac{d t}{t} \operatorname{Tr}_{\text {open }}\left(\left[\frac{1}{6} \sum_{k=0}^{5} \Theta^{k}\right] q^{\left(p^{2}+m^{2}\right) / 2} V V\right) \\
& =\frac{1}{6} \sum_{k=0}^{5} \int_{0}^{\infty} \frac{d t}{t} \operatorname{Tr}_{\text {open }}\left(\Theta^{k} q^{\left(p^{2}+m^{2}\right) / 2} V V\right)
\end{aligned}
$$

- $\mathcal{N}=1$ contribution, if strings twisted along all 3 tori

Results: Scalar kinetic term

10 D dilaton

- Concretely considered: $\tau=\operatorname{Im}\left(T_{3}\right)$ with $\tau^{(0)} \sim e^{-\Phi} \mathcal{V}_{3}$ volume of 3 rd torus measured with string frame metric
- Prior results: sphere, torus and $\mathcal{N}=2$-sectors:

$$
\begin{gathered}
\tilde{G}^{(0)}=-\frac{e^{-2 \Phi} \mathcal{V}}{4\left(\tau^{(0)}\right)^{2}}\left(1+\frac{\zeta(3) \chi}{\mathcal{V}}\right) \text { overall string frame volume } \\
\tilde{G}^{(1)} \sim \frac{\chi}{\left(\tau^{(0)}\right)^{2}}+a_{1} \frac{e^{-\Phi}}{\left(\tau^{(0)}\right)^{3}} E_{2}\left(U_{3}\right)+a_{2} \frac{\mathcal{V}_{2}}{\left(\tau^{(0)}\right)^{2}} E_{2}\left(-1 / U_{2}\right) \\
\text { complex structure of 3rd torus } \quad E_{2}(U) \equiv \sum_{(m, n) \neq(0,0)} \frac{(\operatorname{Im}(\mathrm{U}))^{2}}{|m+n U|^{2}}
\end{gathered}
$$

- New result: $\mathcal{N}=1$ sectors [Berg, M.H., Kang, Sjörs]
- Usual lore: $\mathcal{N}=1$ sectors less interesting, because they do not lead to moduli dependent results
- Moduli dependence in $\mathcal{N}=1$ sectors via:
\star Normalization of vertex operators
\star Weyl rescaling to Einstein frame
- Expect further moduli dependence in $\mathcal{N}=1$ in presence of world volume fluxes or for branes at angles

Gauge coupling thresholds

$$
\frac{1}{g_{a}^{2}(\mu)}=\frac{1}{g_{a, \text { string }}^{2}}+\frac{b_{a}}{16 \pi^{2}} \ln \left(\frac{M_{s}^{2}}{\mu^{2}}\right)+\Delta_{a}
$$

Branes at angles:
[Lüst, Stieberger;
Akerblom, Blumenhagen, Lüst, Schmidt-Sommerfeld]

$$
\Delta_{a} \sim \sum_{b} \ln \left(\frac{\Gamma\left(\varphi_{a b}^{1}\right) \Gamma\left(\varphi_{a b}^{2}\right) \Gamma\left(1+\varphi_{a b}^{3}\right)}{\Gamma\left(1-\varphi_{a b}^{1}\right) \Gamma\left(1-\varphi_{a b}^{2}\right) \Gamma\left(-\varphi_{a b}^{3}\right)}\right)
$$

$\varphi_{a b}=\varphi_{a}-\varphi_{b}$ depend on torus complex structure

- For $\tau=\operatorname{Im}\left(T_{3}\right)$ in \mathbb{Z}_{6}^{\prime} from $\mathcal{A}, \mathcal{M}, \mathcal{K}: \quad$ [Berg, M.H., Kang, Sjörs]

$$
\begin{aligned}
& \tilde{G}_{(\mathcal{N}=1)}^{(1)}=\frac{5}{2^{9} \pi^{3}} \overbrace{\mathrm{Cl}_{2}\left(\frac{\pi}{3}\right)}^{\approx 3.197} \cdot 10^{-4} \\
& \text { 2nd Clausen function } \mathrm{Cl}_{2}(\varphi)=\sum_{k=1}^{\infty} \frac{1}{\left(\tau^{(0)}\right)^{2}} \\
& \sin ^{2}(k \varphi)
\end{aligned}
$$

- This is a correction to the usual torus contribution

$$
\sim \frac{\chi}{\left(\tau^{(0)}\right)^{2}}
$$

Results: EH-term

- Prior results:
* Type II: [Antoniadis, Ferrara, Minasian, Narain]

IIB

$$
S^{(I I)}=\frac{1}{\kappa^{2}} \int d^{4} x \sqrt{-g}\left[e^{-2 \Phi_{4}}+\chi\left(\zeta(3) e^{-2 \Phi_{4}} \pm \frac{\pi^{2}}{6}\right)\right] \frac{R}{2}+\ldots
$$

\star Type I (on $K_{3} \times T^{2}$): [Antoniadis, Bachas, Fabre, Partouche, Taylor]

$$
S^{(I)}=\frac{1}{\kappa^{2}} \int d^{4} x \sqrt{-g}[e^{-2 \Phi_{4}}+a \underbrace{\frac{1}{\mathcal{V}_{T^{2}}} E_{2}(U)}_{\text {from } \mathcal{A}, \mathcal{M}, \mathcal{K}}] \frac{R}{2}+\ldots
$$

* Heterotic string: No I-loop contribution, i.e.

$$
S^{(h e t)}=\frac{1}{\kappa^{2}} \int d^{4} x \sqrt{-g}\left[e^{-2 \Phi_{4}}\left(1+\frac{\chi \zeta(3)}{\mathcal{V}}\right)\right] \frac{R}{2}+\ldots
$$

[Antoniadis, Gava, Narain; Kiritsis, Kounnas]
This can be understood via

- World sheet calculation: integrand of torus \& higher loop graviton 2-point function is total derivative
[Kiritsis, Kounnas, Petropoulos, Rizos]
- $10 D R^{4}$-terms
- Type II: [Gross, Witten; Green, Schwarz; Grisaru, van de Ven, Zanon]

leads to correction to 4D kinetic terms of scalars
leads to correction to 4D EH-term
- Heterotic: [Cai, Nunez; Gross, Sloan;
Sakai,Tanii;Abe, Kubota, Sakai]

$$
\left(\zeta(3) e^{-2 \Phi}+\frac{\pi^{2}}{6}\right) t_{8} t_{8} R^{4}-\zeta(3) e^{-2 \Phi} \epsilon_{10} \epsilon_{10} R^{4}
$$

- How is this compatible with heterotic / type I duality?
[Tseytlin; Green, Rudra]

$$
g_{\mu \nu}^{(I)}=e^{-\Phi_{h e t}} g_{\mu \nu}^{(h e t)} \quad, \quad \Phi_{I}=-\Phi_{h e t}
$$

- How is this compatible with heterotic / type I duality?
[Tseytlin; Green, Rudra]

$$
g_{\mu \nu}^{(I)}=e^{-\Phi_{h e t}} g_{\mu \nu}^{(h e t)} \quad, \quad \Phi_{I}=-\Phi_{h e t}
$$

- Possible answer: $S^{(h e t)}$ in IOD contains
[Green, Rudra]

$$
\sqrt{g^{(h e t)}} e^{-\Phi_{h e t} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{h e t}}\right)-\sqrt{g^{(h e t)}} \frac{\pi^{2}}{6} \mathcal{I}_{2}
$$

$$
\begin{aligned}
& \star J_{0}=t_{8} t_{8} R^{4}-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4} \\
& \star \mathcal{I}_{2}=-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4}+\ldots \\
& \star E_{3 / 2}=\zeta(3) e^{-3 / 2 \Phi_{\text {het }}}+\frac{\pi^{2}}{6} e^{\Phi_{h e t} / 2}+\text { non }- \text { pert. }
\end{aligned}
$$

- How is this compatible with heterotic / type I duality?
[Tseytlin; Green, Rudra]

$$
g_{\mu \nu}^{(I)}=e^{-\Phi_{h e t}} g_{\mu \nu}^{(h e t)} \quad, \quad \Phi_{I}=-\Phi_{h e t}
$$

- Possible answer: $S^{(h e t)}$ in IOD contains
[Green, Rudra]

$$
\begin{aligned}
& \sqrt{g^{(h e t)}} e^{-\Phi_{h e t} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{h e t}}\right)-\sqrt{g^{(h e t)}} \frac{\pi^{2}}{6} \mathcal{I}_{2} \\
\rightarrow & \sqrt{g^{(I)}} e^{-\Phi_{I} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{I}}\right) \\
& J_{0}=t_{8} t_{8} R^{4}-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4} \\
& \mathcal{I}_{2}=-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4}+\ldots \\
& E_{3 / 2}=\zeta(3) e^{-3 / 2 \Phi_{h e t}}+\frac{\pi^{2}}{6} e^{\Phi_{h e t} / 2}+\text { non }- \text { pert }
\end{aligned}
$$

- How is this compatible with heterotic / type I duality?
[Tseytlin; Green, Rudra]

$$
g_{\mu \nu}^{(I)}=e^{-\Phi_{h e t}} g_{\mu \nu}^{(h e t)} \quad, \quad \Phi_{I}=-\Phi_{h e t}
$$

- Possible answer: $S^{(h e t)}$ in IOD contains
[Green, Rudra]

$$
\begin{aligned}
&{ }^{\sqrt{g^{(h e t)}} e^{-\Phi_{h e t} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{h e t}}\right)}-\underbrace{e}_{\rightarrow \sqrt{g^{(I)}} \frac{\pi^{2}}{6}} e^{-\Phi_{I}} \mathcal{I}_{2} \\
& \rightarrow \sqrt{g^{(I)}} e^{-\Phi_{I} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{I}}\right) \\
& \star J_{0}=t_{8} t_{8} R^{4}-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4} \\
& \star \mathcal{I}_{2}=-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4}+\ldots \\
& \star E_{3 / 2}=\zeta(3) e^{-3 / 2 \Phi_{h e t}}+\frac{\pi^{2}}{6} e^{\Phi_{h e t} / 2}+\text { non }- \text { pert. } .
\end{aligned}
$$

S-duality invariant

- How is this compatible with heterotic / type I duality?
[Tseytlin; Green, Rudra]

$$
g_{\mu \nu}^{(I)}=e^{-\Phi_{h e t}} g_{\mu \nu}^{(h e t)} \quad, \quad \Phi_{I}=-\Phi_{h e t}
$$

- Possible answer: $S^{(h e t)}$ in IOD contains

[Green, Rudra]

$$
\begin{aligned}
& \sqrt{g^{(h e t)}} e^{-\Phi_{h e t} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{h e t}}\right)-\sqrt{g^{(h e t)}} \frac{\pi^{2}}{6} \mathcal{I}_{2} \\
& \rightarrow \sqrt{g^{(I)}} e^{-\Phi_{I} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{I}}\right) \\
& \text { * } J_{0}=t_{8} t_{8} R^{4}-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4} \\
& \left.\rightarrow \sqrt{g^{(I)}} \frac{\pi^{2}}{6} e^{-\Phi}\right) \mathcal{I}_{2} \\
& \text { Disk leve!! } \\
& \star \mathcal{I}_{2}=-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4}+\ldots \\
& \star E_{3 / 2}=\zeta(3) e^{-3 / 2 \Phi_{h e t}}+\frac{\pi^{2}}{6} e^{\Phi_{h e t} / 2}+\text { non }- \text { pert } . \\
& \text { S-duality invariant }
\end{aligned}
$$

- How is this compatible with heterotic / type I duality?
[Tseytlin; Green, Rudra]

$$
g_{\mu \nu}^{(I)}=e^{-\Phi_{h e t}} g_{\mu \nu}^{(h e t)} \quad, \quad \Phi_{I}=-\Phi_{h e t}
$$

- Possible answer: $S^{(h e t)}$ in IOD contains

[Green, Rudra]

$$
\begin{aligned}
& \sqrt{g^{(h e t)}} e^{-\Phi_{h e t} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{h e t}}\right)-\sqrt{g^{(h e t)}} \frac{\pi^{2}}{6} \mathcal{I}_{2} \\
& \rightarrow \sqrt{g^{(I)}} e^{-\Phi_{I} / 2} J_{0} E_{3 / 2}\left(e^{-\Phi_{I}}\right) \\
& \text { * } J_{0}=t_{8} t_{8} R^{4}-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4} \\
& \star \mathcal{I}_{2}=-\frac{1}{8} \epsilon_{10} \epsilon_{10} R^{4}+\ldots \\
& \rightarrow \sqrt{g^{(I)}} \frac{\pi^{2}}{6} e^{-\Phi} \mathcal{I}_{2} \\
& \text { Disk leve!! } \\
& \text { Disk level correction } \\
& \text { to 4D EH-term? } \\
& \star E_{3 / 2}=\zeta(3) e^{-3 / 2 \Phi_{\text {het }}}+\frac{\pi^{2}}{6} e^{\Phi_{\text {het }} / 2}+\text { non }- \text { pert } . \\
& \text { S-duality invariant }
\end{aligned}
$$

- New results for \mathbb{Z}_{6}^{\prime} : [M.H., Kang] from $\mathcal{N}=1$-sectors of $\mathcal{A}, \mathcal{M}, \mathcal{K}$

$$
\begin{aligned}
& \delta E=\frac{\chi}{(2 \pi)^{3}}\left(2 \zeta(3) e^{-2 \Phi}+\frac{\pi^{2}}{3}\right)+\frac{5}{64 \pi^{2}} \mathrm{Cl}_{2}\left(\frac{\pi}{3}\right) \\
& \rightarrow-\frac{5}{256 \pi^{2}}\left[\frac{64 \pi^{2} \alpha^{\prime}}{\mathcal{V}_{3}} E_{2}\left(U_{3}\right)-\frac{12 \pi^{2} \alpha^{\prime}}{\mathcal{V}_{2}} E_{2}\left(U_{2}\right)-\frac{3 \mathcal{V}_{2}}{4 \pi^{2} \alpha^{\prime}} E_{2}\left(-1 / U_{2}\right)\right] \\
& \text { from } \mathcal{N}=2 \text {-sectors of } \mathcal{A}, \mathcal{M}, \mathcal{K}
\end{aligned}
$$

- Follows closely a calculation by [Epple]
- Generalization to \mathbb{Z}_{3} [M.H., Kang] and $\mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{12}$

Results: Field redefinitions

- Examples:

* Type II on CY: $\quad e^{-2 \tilde{\Phi}_{4}}=e^{-2 \Phi_{4}}\left(1+a_{1} \frac{\chi}{\mathcal{V}}+\ldots\right)$
[Antoniadis, Minasian, Theisen, Vanhove]

$$
\tilde{\mathcal{V}}=\mathcal{V}\left(1+a_{2} \chi e^{2 \Phi_{4}}+\ldots\right)
$$

Kählerness of metric and shift symmetry in c, i.e.
$G_{\tau_{i} \tau_{j}}=G_{\tau_{i} \tau_{j}}(\tau), G_{c_{i} c_{j}}=G_{c_{i} c_{j}}(\tau), K=K(\tau)$,
fix the field variables $T=c+i \tau$ completely!

- $K_{T \bar{T}} \partial_{\mu} T \partial^{\mu} \bar{T}=\frac{1}{4} K_{\tau \tau}\left(\partial_{\mu} c \partial^{\mu} c+\partial_{\mu} \tau \partial^{\mu} \tau\right)$ implies:
$\star \quad G_{c_{i} \tau_{j}}=0$

$$
G_{\tau_{i} \tau_{j}}=\frac{1}{4} \frac{\partial^{2} K}{\partial \tau_{i} \partial \tau_{j}}=G_{c_{i} c_{j}}
$$

$$
\star \partial_{\tau_{k}} G_{c_{i} c_{j}}=\partial_{\tau_{i}} G_{c_{j} c_{k}}=\partial_{\tau_{j}} G_{c_{k} c_{i}}
$$

$\delta c_{i}=0$
E.g. (for $\left.\mathbb{Z}_{6}^{\prime}\right)$
$\mathcal{T}, \mathcal{A}, \mathcal{M}, \mathcal{K}$
$\mathcal{N}=1$
$\left.\begin{array}{rl}\delta \tau_{3}= & a_{1} \sqrt{\frac{T_{3}^{(0)}-\bar{T}_{3}^{(0)}}{\left(S^{(0)}-\bar{S}^{(0)}\right)\left(T_{1}^{(0)}-\bar{T}_{1}^{(0)}\right)\left(T_{2}^{(0)}-\bar{T}_{2}^{(0)}\right)}} \\ e^{-\Phi} \mathcal{V} \xrightarrow{ } \\ +a_{2} \frac{\left(T_{3}^{(0)}-\bar{T}_{3}^{(0)}\right) E_{2}\left(U_{2}\right)}{\left(S^{(0)}-\bar{S}^{(0)}\right)\left(T_{2}^{(0)}-\bar{T}_{2}^{(0)}\right)} \\ & +a_{3} \frac{E_{2}\left(-1 / U_{2}\right)}{\left(T_{1}^{(0)}-\bar{T}_{1}^{(0)}\right)}+a_{4} \frac{E_{2}\left(U_{3}\right)}{\left(S^{(0)}-\bar{S}^{(0)}\right)}\end{array}\right\}$ <
$\mathcal{A}, \mathcal{M}, \mathcal{K}$
$\mathcal{N}=2$

- E.g. (for \mathbb{Z}_{6}^{\prime})

$\mathcal{T}, \mathcal{A}, \mathcal{M}, \mathcal{K}$

$\mathcal{N}=1$
$\left.\begin{array}{l}\delta \tau_{3}=a_{1} \sqrt{\frac{T_{3}^{(0)}-\bar{T}_{3}^{(0)}}{\left(S^{(0)}-\bar{S}^{(0)}\right)\left(T_{1}^{(0)}-\bar{T}_{1}^{(0)}\right)\left(T_{2}^{(0)}-\bar{T}_{2}^{(0)}\right)}} \\ e^{-\Phi} \mathcal{V}-a_{2} \frac{\left(T_{3}^{(0)}-\bar{T}_{3}^{(0)}\right) E_{2}\left(U_{2}\right)}{\left(S^{(0)}-\bar{S}^{(0)}\right)\left(T_{2}^{(0)}-\bar{T}_{2}^{(0)}\right)} \\ \quad+a_{3} \frac{E_{2}\left(-1 / U_{2}\right)}{\left(T_{1}^{(0)}-\bar{T}_{1}^{(0)}\right)}+a_{4} \frac{E_{2}\left(U_{3}\right)}{\left(S^{(0)}-\bar{S}^{(0)}\right)}\end{array}\right\}$
analog of correction by
[Antoniadis, Bachas, Fabre,
Partouche, Taylor]

Check of field redefinition of T_{3} from holomorphic gauge kinetic function of D5-branes (wrapped around 3rd torus)

- At disk level: $f_{D 5}=T_{3}^{(0)} \sim e^{-\Phi}$
- I-loop correction to $T_{3}^{(0)}$ appears at $\chi=2-2 h-b-c=-1$:

Preliminary conjecture for Kähler potential of

 untwisted closed moduli for $T^{6} / \mathbb{Z}_{6}^{\prime}$ (up to I-loop):$$
K=-\ln (S-\bar{S})-\ln \left[\left(T_{1}-\bar{T}_{1}\right)\left(T_{2}-\bar{T}_{2}\right)\left(T_{3}-\bar{T}_{3}\right)\right]-\ln \left(U_{2}-\bar{U}_{2}\right)
$$

$$
+c_{1} \chi \zeta(3) \sqrt{\frac{\left(T_{1}-\bar{T}_{1}\right)\left(T_{2}-\bar{T}_{2}\right)\left(T_{3}-\bar{T}_{3}\right)}{(S-\bar{S})^{3}}}
$$

$$
+c_{2} \frac{E_{2}\left(U_{2}\right)}{\left(T_{2}-\bar{T}_{2}\right)(S-\bar{S})}+c_{3} \frac{E_{2}\left(-1 / U_{2}\right)}{\left(T_{1}-\bar{T}_{1}\right)\left(T_{3}-\bar{T}_{3}\right)}+c_{4} \frac{E_{2}\left(U_{3}\right)}{\left(T_{3}-\bar{T}_{3}\right)(S-\bar{S})}
$$

$$
+c_{5} \frac{1}{\sqrt{\left(T_{1}-\bar{T}_{1}\right)\left(T_{2}-\bar{T}_{2}\right)\left(T_{3}-\bar{T}_{3}\right)(S-\bar{S})}}
$$

Preliminary conjecture for Kähler potential of

 untwisted closed moduli for $T^{6} / \mathbb{Z}_{6}^{\prime}$ (up to I-loop):$$
\begin{aligned}
& K=-\ln (S-\bar{S})-\ln \left[\left(T_{1}-\bar{T}_{1}\right)\left(T_{2}-\bar{T}_{2}\right)\left(T_{3}-\bar{T}_{3}\right)\right]-\ln \left(U_{2}-\bar{U}_{2}\right) \\
& +c_{1} \chi \zeta(3) \sqrt{\frac{\left(T_{1}-\bar{T}_{1}\right)\left(T_{2}-\bar{T}_{2}\right)\left(T_{3}-\bar{T}_{3}\right)}{(S-\bar{S})^{3}}} S^{2} \\
& +c_{2} \frac{E_{2}\left(U_{2}\right)}{\left(T_{2}-\bar{T}_{2}\right)(S-\bar{S})}+c_{3} \frac{E_{2}\left(-1 / U_{2}\right)}{\left(T_{1}-\bar{T}_{1}\right)\left(T_{3}-\bar{T}_{3}\right)}+c_{4} \frac{E_{2}\left(U_{3}\right)}{\left(T_{3}-\bar{T}_{3}\right)(S-\bar{S})} \\
& +c_{5} \frac{1}{\sqrt{\left(T_{1}-\bar{T}_{1}\right)\left(T_{2}-\bar{T}_{2}\right)\left(T_{3}-\bar{T}_{3}\right)(S-\bar{S})}} \mathcal{\mathcal { N } , \mathcal { K }} \\
& \mathcal{T}, \mathcal{A}, \mathcal{M}, \mathcal{K} \\
& \mathcal{N}=1
\end{aligned}
$$

Outlook

- Work out coefficients in K and field redefinitions
- Check indirect prediction of field variables by direct string calculation (indirect arguments make many predictions for string calculations)
- Check field redefinition by $\chi=-1$ amplitudes
- Applications to string model building?

Thank You!

Spring School on „Strings, Cosmology
and Particles"
(Serbia 2009, Belgrade and Nis)

