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I Covariant twistorial oscillator construction of positive energy unitary
representations of space-time (super)-algebras and AdS/CFT dualities

I Geometric quasiconformal realizations of noncompact groups versus their
conformal realizations

I Geometric quasiconformal realization of the group SO(d , 2) as the invariance
group of a ”quartic light-cone”.

I Quantization of the geometric quasiconformal realizations and the minimal
unitary representations

I Deformations of the minimal unitary representation of SO(d , 2) and massless
conformal fields in d-dimensions.

I AdS(d+1)/CFTd higher spin algebras as universal enveloping algebras of the
minreps of SO(d , 2) obtained via the quasiconformal approach and their
deformations and supersymmetric extensions.

I AdS/CFT dualities in higher spin theories at one loop.

I Unique exceptional higher spin theory in AdS6 and Romans supergravity.

I Comments and open problems
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Oscillator construction of the positive energy unitary
representations of noncompact Lie groups

MG & Saclioglu (1982)
Simple noncompact Lie groups G that admit positive energy ( lowest weight) unitary
representations are in one to one correspondence with the irreducible noncompact
Hermitian symmetric spaces G/K × U(1) with K × U(1) being the maximal compact
subgroup. The Lie algebra g of G has a three graded decomposition with respect to
the generator E of U(1)

g = g−1 ⊕ g0 ⊕ g+1

[g (m), g (n)] ⊆ g (m+n) m, n = ∓1, 0

Lie algebra of H = K × U(1) = g0. The generators of G are realized as bilinears of
bosonic oscillators transforming in a certain representation of K . In the Fock space F
one chooses a set of lowest energy states |Ω > which transforms irreducibly under H
and which are annihilated by the generators in g−1 space

g−1|Ω >= 0 , g0|Ω >= |Ω′ >↔ irrep of g0

Then by acting on the lowest energy irrep |Ω > repeatedly with the generators in g+1

space one obtains an infinite set of states

|Ω >, g+1|Ω >, g+1g+1|Ω >, ...

which forms the basis of an irreducible unitary lowest weight representation of G . The
irreducibility of the representation of G follows from the irreducibility of |Ω > under
K × U(1).
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Table: The complete list of simple non-compact groups G that admit
positive energy unitary representations:

G K × U(1)

SU(p, q) S(U(p)× U(q))

Sp(2n,R) U(n)

SO∗(2n) U(n)

SO(n, 2) SO(n)× SO(2)

E6(−14) SO(10)× U(1)

E7(−25) E6 × U(1)

Oscillators form irreps under the maximal compact subgroup. If the minimal number
of irreps needed is one or two the corresponding unitary representations of the
noncompact group are called singletons or doubletons, respectively.
Special isomorphisms of conformal groups in 3,4 and 6 dimensions:

SO(3, 2) ≡ Sp(4,R) SO(4, 2) ≡ SU(2, 2) SO(6, 2) ≡ SO∗(8)
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Oscillator construction of the positive energy unitary
representations of noncompact Lie superalgebras

Bars, MG (1983)
Consider a Lie superalgebra g with a three graded decomposition with respect to
compact subsuperalgebra of maximal rank (determined by the generator E of
U(1) ∈ g0):

g = g−1 ⊕ g0 ⊕ g+1

[g (m), g (n)] ⊆ g (m+n) m, n = ∓1, 0

The generators of g are realized as bilinears of superoscillators transforming in a
certain representation of g0. In the super Fock space F one chooses a set of lowest
energy states |Ω > which transforms irreducibly under g0 and which are annihilated by
the generators in g−1 space

g−1|Ω >= 0 , g0|Ω >= |Ω′ >

Then the infinite set of states

|Ω >, g+1|Ω >, g+1g+1|Ω >, ...

form the basis of an irreducible unitary lowest weight representation (positive energy)
of g .
Extension of the oscillator construction to Lie superalgebras that admit only a
5-graded decomposition with respect to a subalgebra of maximal rank. MG 1987
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AdS/CFT in Kaluza-Klein supergravity Aspen 1984

I The Kaluza-Klein spectrum of IIB supergravity on AdS5 × S5 was first obtained
via the oscillator method by simple tensoring of the CPT self-conjugate
doubleton supermultiplet (SCD) of N = 8 AdS5 superalgebra PSU(2, 2 | 4)
repeatedly and restricting to CPT self-conjugate representations.

I (N = 4SYM)× (N = 4SYM)|CPT =⇒ massless graviton supermultiplet in AdS5

I (N = 4SYM)n|CPT =⇒ massive graviton supermultiplets in AdS5 for n > 2

I The CPT self-conjugate doubleton supermultiplet of PSU(2, 2 | 4) symmetry of
AdS5 × S5 solution of IIB supergravity does not have a Poincaré limit in five
dimensions and decouples from the Kaluza-Klein spectrum as gauge modes and
the field theory of CPT self-conjugate doubleton supermultiplet of PSU(2, 2 | 4)
lives on the boundary of AdS5, which can be identified with 4D Minkowski
space on which SO(4, 2) acts as a conformal group, and the unique candidate
for this theory is the four dimensional N = 4 super Yang-Mills theory that was
known to be conformally invariant. MG , Marcus (1984)

I The above results showed how to gauge the maximal supergravity in d = 5
which was subsequently done in MG, Romans and Warner and Pilch and van
Nieuwenhuizen.

I Fields of maximal N = 8 supergravity in d = 4 fit into the CPT-self-conjugate
doubleton supermultiplet of SU(2, 2|8) with even subgroup SU(2, 2)× U(8).
N = 8 conformal supergravity based on the fields of maximal supergravity in
d = 4 ?! MG , Marcus (1984)

M. Günaydin, Ringberg Castle, Nov. 20-25, 2016 6



I The spectrum of 11D supergravity over AdS7 × S4 were fitted into
supermultiplets of the symmetry superalgebra OSp(8∗|4) with even subalgebra
SO(6, 2)⊕ USp(4). The entire Kaluza-Klein spectrum was obtained by
tensoring (2, 0) doubleton supermultiplet OSp(8∗|4), and restricting to CPT
self-conjugate supermultiplets: MG, van Nieuwenhuizen, Warner ( 1984)

I [(2, 0)CFT ]× [(2, 0)CFT ]|CPT =⇒ Massless graviton supermultiplet of maximal
sugra in AdS7

I [(2, 0)CFT ]nCPT =⇒ massive graviton supermultiplets for n > 2.

I The spectrum of 11D supergravity over over AdS4 × S7 was fitted into
supermultiplets of OSp(8 | 4,R) with even subalgebra SO(8)⊕ SO(3, 2). The
entire spectrum was obtained by tensoring the singleton supermultiplet of
OSp(8 | 4,R) and restricting to the CPT self-conjugate supermutiplets.

MG, Warner (1984)

I The relevant singleton supermultiplet of OSp(8 | 4,R) and doubleton
supermultiplet of OSp(8∗|4) do not have a Poincaré limit in four and seven
dimensions, respectively, and decouple from the respective spectra as gauge
modes. Again it was pointed out that field theories of the singleton and (2, 0)
doubleton supermutiplets live on the boundaries of AdS4 and AdS7 as
superconformally invariant theories.

I The above results on the oscillator construction of the spectra of 11-d
supergravity and type IIB supergravity represent the earliest work on AdS/CFT
dualities within the framework of K-K supergravity in a true Wignerian sense.

I Modern era of AdS/CFT dualities in M/Superstring theory was ushered in by
the famous paper of Maldacena followed by the work of Witten and Gubser,
Klebanov and Polyakov (1998).
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Higher spin algebras and superalgebras and the oscillator
method

Early work on the connection between high spin (super)algebras and the universal
enveloping algebras of singleton representations of AdS Lie(super)algebras:
Fradkin-Vasiliev higher spin algebra in AdS4 as the enveloping algebra of the
singletonic realization of Sp(4,R) and proposal to extend it to AdS5 and AdS7 HS
(super)-algebras using the doubletonic realizations of SU(2, 2) and SO∗(8) and their
supersymmetric extensions. MG (1989)
AdS3 higher spin algebras and universal enveloping algebras. Konstein and Vasiliev
(1989)
The quotient of the universal enveloping algebra (UEA) U(o(d , 2)) of o(d , 2) by its
annihilator on the scalar ”singleton module” is the AdS(d+1)/CFTd higher-spin
algebra. Vasiliev (2003)
The ideal with which to quotient the UEA is the Joseph ideal that annihilates the
minrep. Eastwood ( 2005)
I will adopt this definition and define the AdS(d+1/CFTd higher spin algebras as the
universal enveloping algebras U(SO(d , 2)) of SO(d , 2) quotiented by their Joseph
ideals J (SO(d , 2):

HS(SO(d , 2)) ≡
U(SO(d , 2)

J (SO(d , 2)

The generators JABCD of Joseph ideal vanish identically as operators for the
singletonic realization of the Lie algebra SO(3, 2) = Sp(4,R) as bilinears of covariant
twistorial oscillators. Therefore the AdS4/CFT3 HS algebra is given simply by the
enveloping algebra of the singletonic realization of Sp(4,R).
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Poincare-Birkhoff-Witt theorem: The enveloping algebra U (g) of a Lie algebra g
decomposes into symmetric tensor products of the adjoint representation of g. For
so(d , 2) the symmetric product of the adjoint representation decomposes as:

⊗ = ⊕ ⊕ ⊕ •

where the singlet • is the quadratic Casimir of SO(d , 2).
Vasiliev: the higher spin algebra HS(g) must be a quotient of U (g) since the higher
spin gauge fields are described by traceless two row Young tableaux. Hence the
relevant ideal should quotient out all the diagrams except the first one in the above
decomposition.
The Joseph ideal generators include all the diagrams indicated in red on the RHS and

does not include the “window” diagram . Therefore by quotienting U (g) by the

Joseph ideal generated by JABCD we get rid of all the “unwanted” diagrams and
obtain the standard higher spin algebra HS(d , 2) a la Eastwood & Vasiliev .
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Minimal unitary representation and the Joseph ideal
Among all the unitary representations of a noncompact Lie group the minimal one is
distinguished by the fact that it is annihilated by the Joseph ideal inside its universal
enveloping algebra. Denoting the generators of the Lie algebra of SO(n − 2, 2) as Gab

the Joseph ideal is generated by the following elements of the enveloping algebra:
Eastwood et.al.(2005)

Jabcd = GabGcd − Gab } Gcd −
1

2
[Gab,Gcd ] +

n − 4

4(n − 1)(n − 2)
.〈Gab,Gcd 〉

where 〈Gab,Gcd 〉 is the Killing form, Gab } Gcd is the Cartan product:

Gab } Gcd ≡
1

3
GabGcd +

1

3
GdcGba +

1

6
GacGbd −

1

6
GadGbc +

1

6
GdbGca −

1

6
GcbGda

−
1

2(n − 2)

(
GaeG

e
c ηbd − GbeG

e
c ηad + GbeG

e
d ηac − GaeG

e
d ηbc

)
−

1

2(n − 2)

(
GceG

e
a ηbd − GceG

e
b ηad + GdeG

e
b ηac − GdeG

e
a δbc

)
+

1

(n − 1)(n − 2)
Gef G

ef (ηacηbd − ηbcηad )

where ηab is the SO(n − 2, 2) invariant metric.
For the singletonic realization of Sp(4,R) = SO(3, 2), Jabcd vanish identically as
operators. However for doubletonic realizations of SO(4, 2) and SO(6, 2) in terms of
twistorial oscillators they do not vanish as operators.
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Quasiconformal Realizations of Non-compact Groups

I Not all groups have conformal realizations. The exceptional groups G2, F4 and
E8 do not admit a three-graded decomposition with respect to any subalgebra of
maximal rank.

I However all simple Lie algebras g admit a 5-graded decomposition with respect
to a subalgebra g0 of maximal rank of the form

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

such that dim(g±2) = 1.

I The Lie algebra g admits a geometric quasiconformal realization on a 2n + 1
dimensional space, where 2n = dim(g1), which leaves invariant light-like
separations with respect to a quartic distance function (”quartic light-cone”).

MG, Koepsell, Nicolai, 2000

I The quasiconformal realization of a noncompact Lie algebra g corresponds to an
extension of conformal realizations of certain subgroups of g.

I Conformal SO(d , 2) =⇒ quasiconformal SO(d + 2, 4).
Conformal E7(7) =⇒ quasiconformal E8(8).
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Geometric realization of SO(d , 2) as a quasiconformal group over a
(2d − 3)-dimensional space T with coordinates X =

(
X i,a, x

)
,

MG, Koepsell, Nicolai (GKN) (2000) & MG, Pavlyk (2005)

so(d , 2) = K− ⊕ Ui,a ⊕
[
∆⊕ Lij ⊕Mab

]
⊕ Ũi,a ⊕ K+

where Lij and Mab are the generators of SO(d − 2) and SU(1, 1) subgroups.

K+ =
1

2

(
2x2 − I4

) ∂

∂x
−

1

4

∂I4

∂X i,a
ηij εab

∂

∂X j,b
+ x X i,a ∂

∂X i,a

Ui,a =
∂

∂X i,a
− ηij εab X j,b ∂

∂x

Lij = ηikX
k,a ∂

∂X j,a
− ηjkX k,a ∂

∂X i,a

Mab = εacX
i,c ∂

∂X i,b
+ εbcX

i,c ∂

∂X i,a

K− =
∂

∂x
, ∆ = 2 x

∂

∂x
+ X i,a ∂

∂X i,a
, Ũi,a =

[
Ui,a , K+

]
I4(X ) = δijδkl εacεbdX

i,aX j,bX k,cX l,d

εab = −εba i , j , · · · = 1, . . . , d − 2; a, b, · · · = 1, 2
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The quartic norm (length) of a vector X =
(
X i,a, x

)
∈ T is defined as

Q (X ) = I4 (X ) + 2 x2 .

To see the geometric picture behind the above nonlinear realization, one defines a
quartic distance function between any two points X and Y in the (2d − 3)
dimensional space T as

d (X ,Y) = Q (δ (X ,Y))

where the “symplectic” difference δ (X ,Y) is defined as

δ (X ,Y) =
(
X i,a − Y i,a , x − y − ηij εab X i,aY j,b

)
= −δ (Y,X ) .

where ηij εab X
i,aY j,b a skew symmetric bilinear form.

The lightlike separations between any two points with respect to the quartic distance
function are left invariant under the quasiconformal action of SO(d , 2). In other
words, SO(d , 2) acts as the invariance group of a “light-cone” with respect to a
quartic distance function in a (2d − 3)-dimensional space.

I4(X ) = δijδkl εacεbdX
i,aX j,bX k,cX l,d

εab = −εba i , j , · · · = 1, . . . , d − 2; a, b, · · · = 1, 2
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Minimal Unitary Representations and Quasiconformal Realizations
of Groups: GKN (2001) & MG, Pavlyk (2005)

I Quantization of the quasiconformal realization of a non-compact Lie group leads
directly to its minimal unitary representation ⇒ Unitary representation over an
Hilbert space of square integrable functions of smallest number of variables
possible.

I Lie algebra g of a quantized quasiconformal realization of a group G :

g = E ⊕ Eα ⊕ (Ja + ∆)⊕ Fα ⊕ F

∆ = − i
2

(yp + py) ([y , p] = i) determines the 5-grading and Ωαβ is the

symplectic invariant tensor of h generated by Ja and
[
ξα , ξβ

]
= Ωαβ

(α, β, .. = 1, 2, ..., 2n)

E =
1

2
y2 Eα = y ξα, Ja = −

1

2
λaαβξ

αξβ

F =
1

2
p2 +

κI4(ξα)

y2
, Fα = [Eα,F ]

I4(ξα) = Sαβγδξ
αξβξγξδ ⇔ quartic invariant of h

Choosing a polarization ξα = (x i , pj ) one has [x i , pj ] = iδij (i , j = 1, 2, .., n)

I (E ,F ,∆) =⇒ SL(2,R) of Calogero model or conformal quantum mechanics
with the quartic invariant I4 playing the role of coupling constant.

E + F = 1
2

(y2 + p2) + κI4(ξα)

y2 ↔ Calogero Hamiltonian.
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The minimal unitary realization of so(d , 2) from its quasiconformal
realization:

so(d , 2) = g(−2) ⊕ g(−1) ⊕ [ ∆⊕ so(d − 2)⊕ su(1, 1) ]⊕ g(+1) ⊕ g+2)

K− ⊕
(

Ui

U†i

)
⊕
(
∆ + Lij + Mab

)
⊕
(

Wi

W †i

)
⊕ K+

K− = x2/2 , ∆ = 1
2

(xp + px) , K+ = 1
2
p2 + 1

x2 G =⇒ Calogero SL(2,R)

(
Ui

U†i

)
=

(
x ai
x a†i

)
,

(
Wi

W †i

)
= −i

(
[Ui ,K+]

[U†i ,K+]

)

Lij = i
(
a†i aj − a†j ai

)
, M+ =

1

2
a†i a
†
i M− =

1

2
aiai M0 =

1

4

(
a†i ai + aia

†
i

)
SO(d − 2) , SU(1, 1)

L2 = LijLij M2 = M0
2 −

1

2
(M+M− + M−M+)

L2 = 8M2 −
1

2
(d − 2) (d − 6)

G =
1

4
L2 +

1

8
(d − 3) (d − 5) = 2M2 +

3

8

G plays the role analogous coupling constant in conformal quantum mechanics or
Calogero model.
i , j , · · · = 1, 2, . . . , (d − 2)
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K−

TP
i TX

i

L− −−−
(
DX ⊕ Lij ⊕ DP

)
−−− L+

KX
i KP

i

K+

Table: The 5× 5 grading of the Lie algebra of so(d , 2) in an Hermitian basis. The
vertical 5-grading is determined by ∆ = 1/2(xp + px) = 1/2(DX + DP) and the
horizontal 5-grading is determined by L0 = (XiPi + PiXi ) = 1/2(DX − DP).

[TX
i ,K

X
j ] = −2iδijD

X + 2iLij

[TP
i ,K

P
j ] = 2iδijD

P − 2iLij

[TX
i ,K

P
j ] = iL+

[TP
i ,K

X
j ] = iL−

where L+ = PiPi and L− = XiXi .
Therefore the quasiconformal realization of SO(d , 2) can be interpreted as the
minimal Lie algebra containing the Euclidean conformal Lie algebra acting on
transverse coordinates and the dual Euclidean conformal Lie algebra acting on the
corresponding transverse momenta. The common subgroup of these two Euclidean
conformal groups is SO(d − 2).
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Considered as a conformal group SO(d , 2) has a three-graded decomposition
determined by the dilatation generator D:

so(d , 2) = Kµ ⊕ (Mµν +D)⊕ Pµ

For the minrep the Poincare mass operator vanishes identically : PµPνηµν = 0
By going to the compact three graded decomposition determined by the conformal
Hamiltonian H = 1

2
(K+ + K−) + M0 :

so(d , 2) = C− ⊕ (so(d) + H)⊕ C+ .

one finds that the minrep is a unitary lowest weight (positive energy) representation
with the lowest weight vector

H ψ
αg

0 (x) |0〉 =
1

4
(d − 2)ψ

αg

0 (x) |0〉

ψ
(αg )
0 (x) = C0 x

αg e−x2/2 , αg =
(d − 3)

2
, ai |0〉 = 0

The Hilbert space of the minrep is spanned by states that are in the tensor product of
Fock space of (d − 2) ordinary bosonic oscillators and the states of the singular
oscillator that form irrep of SU(1, 1)K subgroup with the lowest weight vector

ψ
(αg )
0 (x).

The minrep describes a massless conformal scalar field in d dimensional Minkowski
space.
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Deformations of the minimal unitary realization of so(d , 2) :
MG, Fernando 2015

so(d , 2) = g(−2) ⊕ g(−1) ⊕ [ ∆⊕ so(d − 2)⊕ su(1, 1) ]⊕ g(+1) ⊕ g+2)

K− ⊕
(

Ui

U†i

)
⊕
(
∆ + Lij + Mab

)
⊕
(

Wi

W †i

)
⊕ K+

K− = x2/2 , ∆ = 1
2

(xp + px) , K+ = 1
2
p2 + 1

x2 G =⇒ Calogero SL(2,R)(
Ui

U†i

)
=

(
x ai
x a†i

)
,

(
Wi

W †i

)
= −i

(
[Ui ,K+]

[U†i ,K+]

)
Jij = Lij + Sij , M+ =

1

2
a†i a
†
i M− =

1

2
aiai M0 =

1

4

(
a†i ai + aia

†
i

)
Sij = ” Spin Generators of little group” , S2 = SijSij , J 2 = JijJij ,L2 = LijLij

Coupling ”constant” G =

(
1

2
J 2 −

1

4
L2 −

(d − 6)

2(d − 2)
S2 +

1

8
(d − 3) (d − 5)

)
Jacobi identities require

∆ij = SikSjk + SjkSik −
2

(d − 2)
S2 δij = 0

Remarkably these are precisely the identities satisfied by the massless representations
of Poincaré group in d dimensions that extend to the unitary representations of
conformal group! ( Angelopoulos & Laoues 1997).

Therefore there exists a one-to-one correspondence between the minrep
of SO(d , 2) and its deformations and massless conformal fields in d
dimensions.M. Günaydin, Ringberg Castle, Nov. 20-25, 2016 18



Deformations of the minrep of SO(d , 2) for odd d :
There is a unique deformation of the minrep given by realizing the spin generators Sij
of SO(d − 2) as:

Sij =
1

4
[γi , γj ]

where γi are Euclidean gamma matrices in (d − 2) dimensions.

G =
1

4
L2 + εL · S + ε

1

2
(d − 3) +

1

8
(d − 3) (d − 5)

ε = 0 for the minrep =⇒ Scalar singleton ( massless conformal field)
Lowest energy irrep ( K-type) is a singlet of SO(d).
ε = 1 deformed minrep =⇒ spinor singleton ( massless spinor field).
Lowest energy irrep ( K-type) is a spinor of SO(d).
They are the analogs of the remarkable representations of SO(3, 2) discovered by
Dirac.

Deformations of the minrep of SO(d , 2) for even d :
There exist infinitely many deformations of the minrep of SO(d , 2) for even d . One
can realize the generators Sij of the little group SO(d − 2) in the Fock space of
fermionic oscillators transforming irreducibly under the subgroup U((d − 2)/2).
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Construction of the representations of the little group SO(d − 2)S of massless
particles, generated by Sij over the Fock space of Fermionic oscillators using its
3-grading w.r.t u((d − 2)/2):

so(d − 2)S = g(−1) ⊕ g(0) ⊕ g(+1) = Zrs ⊕ Trs ⊕ Z†rs

Zrs = ~αr · ~βs − ~αs · ~βr + ε ξr ξs

Trs = ~α†r · ~αs − ~βs · ~β†r +
ε

2

(
ξ†r ξs − ξsξ†r

)
Z†rs = −~α†r · ~β†s + ~α†s · ~β†r − ε ξ†r ξ†s

where r , s, · · · = 1, 2, . . . , (d − 2)/2 ; ε = 0, 1 and ~αr · ~βs =
∑P

K=1 αr (K)βs(K) .
The representations of even orthogonal groups SO(d − 2) that satisfy the constraint
∆ij = 0 are

(0, . . . , 0, 0, f )D =

(
f

2
, . . . ,

f

2
,
f

2

)
GZ

(0, . . . , 0, f , 0)D =

(
f

2
, . . . ,

f

2
,−

f

2

)
GZ

where f = 2P + ε is the number of colors of fermionic oscillators.
They have the following lowest weight vectors of SO(d − 2) in the fermionic Fock
space:

(0, . . . , 0, 0, f )D ⇐⇒ |0〉

(0, . . . , 0, f , 0)D ⇐⇒ α†
(r1

(1)β†s1
(1)α†r2 (2)β†s2

(2) . . . α†rP (P)β†sP (P)ξ†
t)
|0〉 ≡ |Symvac〉

and (r1, s1, . . . , t) denotes complete symmetrization of indices.
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Minimal unitary realization of SO(5, 2) Fernando, MG 2014

so(5, 2) = 1̄⊕ (3, 2)⊕ [ so(1, 1)⊕ su(2)⊕ su(1, 1) ]⊕ (3, 2)⊕ 1

= K− ⊕ (Ui , U
†
i )⊕ (Li ,∆ , (M+,M−,M0))⊕ (Wi + W †i )⊕ K+

K− =
1

2
x2 Ui = x ai U†i = x a†i . i = 1, 2, 3

su(1, 1)⇒ M+ =
1

2
a†i a
†
i M− =

1

2
aiai M0 =

1

4

(
a†i ai + aia

†
i

)
su(2)⇒ Li = εijka

†
j ak L2 = Li Li

K+ =
1

2
p2 +

1

4 x2

(
8M2 +

3

2

)
=

1

2
p2 +

1

2 x2
L2

The minrep of SO(5, 2) describes a massless conformal scalar field in d = 5.
Deformation of the minimal unitary representation of SO(5, 2) :

Li =⇒ Ji = Li + Si Si =
1

2
ζ† σi ζ , ζ =

(
α1

α2

)

K+ =
1

2
p2 +

1

2 x2

(
2J 2 − L2 +

2

3
S2

)
Deformed minrep describes a massless conformal spinor field in d = 5. No other
deformations!. Scalar and spinor singletons in d = 5 similar to the situation in d = 3.
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Minimal unitary representation of the 5d superconformal
algebra F (4) with the even subalgebra SO(5, 2)⊕ SU(2)
Fernando, MG 2014

f(4) = g(−2) ⊕ g(−1) ⊕ g(0) ⊕ g(+1) ⊕ g(+2)

= 1B ⊕ (6B ⊕ 4F )⊕ [d(2, 1; 2)⊕∆]⊕ (6B ⊕ 4F )⊕ 1B

The d(2, 1; 2) has the even subalgebra su(2)⊕ su(2)⊕ su(1, 1) and admits a
10-dimensional linear representation.
The conformal superalgebra f(4) has a noncompact 5-grading in a manifestly
SO(4, 1) = USp(2, 2) covariant form:

f(4) = Kµ ⊕ Sαr ⊕ [D ,Mµν , T±,0 ] ⊕ Qαr ⊕ Pµ

where µ, ν = 0, 1, 2, 3, 4; α = 1, 2, 3, 4; and r = 1, 2.
Mµν are the generators of Spin(4, 1) ≈ USp(2, 2). Kµ are the special conformal
generators and Pµ are the translations. The Sαr and Qαr are the special conformal
and Poincare supersymmetry generators.
Supersymmetry generators Ξr

α in the (8, 2) representation of SO(5, 2)× SU(2)T
satisfy: {

Ξr
α , Ξs

β

}
= iεrs MAB

(
ΣABC7

)
αβ

+ 3i (C7)αβ (iσ2σ
i )rs Ti

where r , s = 1, 2 are the SU(2)T spinor indices, MAB are the SO(5, 2) generators
The minimal unitary supermultiplet of F (4) consists of two scalar singletons in a
doublet of R-symmetry group SU(2)T and a spinor singleton which is a singlet of
SU(2)T .
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Quasiconformal construction of the minrep and its deformations
and higher spin algebras:
I For the minrep obtained by quantization of the quasiconformal realization of

SO(d , 2) the generators of Joseph ideal vanish identically as operators (
JABCD ≡ 0)

I The universal enveloping algebras of the minreps of SO(d , 2) obtained by
quasiconformal methods yield directly the higher spin algebras in the respective
dimensions: The resulting enveloping algebra decomposes into operators whose
SO(d , 2) Young tableaux have only two rows corresponding to higher spin gauge
fields described by traceless two row Y-Ts. The operators in the symmetric
product of the generators with four rows and one column and one row and two
columns vanish identically. K. Govil & MG for d = 3, 4, 6 and Fernando & MG
for d = 5 and d > 6.

∞∑
n=1

⊕ · · ·

I Deformations of the minrep as obtained via the quasiconformal approach are
in one-to-one correspondence with the massless conformal fields. The
enveloping algebras of the deformed minreps yield all the higher spin algebras
in d > 2. They correspond to quotients

HS(SO(d , 2)) ≡
U(SO(d , 2))

Jdef (SO(d , 2))

I The enveloping algebras of minimal unitary realizations of AdS superalgebras
and their deformations yield all the supersymmetric extensions of the higher
spin algebras in d ≤ 6.

M. Günaydin, Ringberg Castle, Nov. 20-25, 2016 23



AdS6/CFT5 higher spin algebras and superalgebra

Fernando & MG (2014)
The Joseph ideal generators vanish identically as operators for the minrep of SO(5, 2)
and a certain deformation of the Joseph ideal vanishes for the deformed minrep.
The enveloping algebra of the minrep ( scalar singleton) of SO(5, 2) defines the
AdS6/CFT5 bosonic higher spin algebra

HS(5, 2; t = 0) = U(SO(5,2))
J (SO(5,2))

and admits a single deformation

HS(5, 2; t = 1/2) = U(SO(5,2))
J(t=1/2)(SO(5,2))

The enveloping algebra of the minimal unitary realization of F (4) defines the unique
AdS6/CFT5 higher spin superalgebra.
Existence of a scalar and a spinor singleton for SO(5, 2) is similar to
SO(3, 2) = Sp(4,R). However only a unique R-symmetry group exists for
supersymmetric extension, i.e F (4) with even subalgebra SO(5, 2)⊕ SU(2).
F (4) is the superconformal algebra of the unique exceptional superspace coordinatized
by the exceptional Jordan superalgebra with 6 bosonic and 4 fermionic coordinates. It
has no realization in terms of associative super matrices.
Minkowski spacetime is coordinatized by the Jordan algebra JC2 of 2× 2 Hermitian
matrices.
Rot(JC2 = SU(2) Lor(JC2 ) = SL(2,C) Con(JC2 ) = SU(2, 2)
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THE EXCEPTIONAL SUPERSPACE:

I Rotation Lie superalgebra the exceptional superspace coordinatized by JF (6/4)
is
OSp(1/2)× OSp(1/2) ⊃ SO(4) = SU(2)× SU(2).

I Lorentz Lie superalgebra of JF (6/4) is
OSp(2/4) ⊃ SO(2)× Sp(4)

I Superconformal Lie algebra of JF (6/4) is
F (4) ⊃ SO(5, 2)× SU(2)
Non-linear action of F (4) on the exceptional superspace can be obtained using
the quadratic Jordan formulation. MG (1990).

I The exceptional N = 2 superconformal algebra F (4) in five dimensions can not
be embedded in any six dimensional super conformal algebra
OSp(8∗|2N) ⊃ SO(6, 2)× USp(2N) as expected from the exceptionality of the
superspace defined by JF (6/4).

I According to Nahm’s classification d = 6 is the maximal dimension for the
existence of superconformal field theories based on simple superconformal
algebras!
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Higher Spin Theories and AdS(d+1)/CFTd Correspondence :

Free CFT of a massless scalar field satisfying �φ = 0 has an infinite set of conserved
currents :

Ja1...as = φ∂a1 · · · ∂asφ =⇒ ∂aJaa2...as = 0

The corresponding charges Qs form an infinite dimensional algebra which is the higher
spin algebra and has SO(d , 2) as a subalgebra. On the AdS side these conserved
charges correspond to gauge symmetries described by massless HS fields:

∂mJmabc... = 0 ⇐⇒ δΦmabc... = ∇mξabc... + ...

I TYPE A HST: Minimal unitary representation of SO(d , 2) describes a massless
scalar field and is sometimes called Rac. With one complex scalar one can
construct conserved higher-spin currents, which are totally-symmetric tensors:

Js = φ̄∂sφ+ ... , ∆ = d + s − 2 ,

J0 = φ̄φ , ∆ = d − 2 ,

Operator product expansion (OPE) in a free CFT ↔ the tensor product
decomposition of the conformal algebra representations, which in the case of φ̄φ
OPE leads to :

Rac ⊗ Rac =
∑
s

Js .
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The spectrum of the Type-A theory consists of bosonic totally-symmetric HS fields (
Fronsdal fields) that are duals of Js and an additional scalar field Φ0 that is dual to
φ2. At the free level Fronsdal fields s = 0, 1, 2, 3, ... obey(

−∇2 + M2
s

) (
Φα(s) +∇αξα(s−1)

)
= 0 , M2

s = (d + s − 2)(s − 2)− s ,

where ξα(s−1) represent the gauge parameters. The ”mass-like term” is determined by
the conformal weight of the conserved HS current it is dual to.

I TYPE B HST: Spinor singleton( doubleton) describes a massless fermion
/∂ψ = 0 ↔ Di . In a free theory of Di ’s the spectrum of single-trace operators
have the symmetry of all hook Young diagrams Y(s, 1p) with a single column
and a single row:

Js,p = Ja1...as ,m1...mp = ψ̄γasm1...mp∂a1...as−1ψ + ...

The spectrum of single-trace operators is given by the tensor product Di ⊗ Di :

Di ⊗ Di =
∑
s,p

Js,p .

Hence the spectrum of the Type-B theory consist of mixed-symmetry gauge
fields with spin Y(s, 1p), s > 1, ∀p or s = 1, p = 0:(

−∇2 + M2
s,1p
) (

Φa(s),m[p] +∇aξa(s−1),m[p] + ...
)

= 0 ,

M2
s,1p = (d + s − 2)(s − 2)− s − p .
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SUSY HS Theories: The simplest super-symmetric HS theories are dual to CFT’s
constructed out of a number of free scalars (Rac) and fermions (Di). The single-trace
operators include those of Type-A and Type-B as well as the super-currents:

J
s=m+

1
2

= φ∂mψ + ... ⇐⇒ Ja(m);α = φ∂a1 ...∂amψα + ... .

The super-currents correspond to representations in Di ⊗ Rac :

Di ⊗ Rac =
∑
m=0

J
s=m+

1
2

.

The super-currents are dual to totally-symmetric spinorial HS fields (Fang-Fronsdal
fields):

( /∇+ m)
(

Φa(s);α +∇aξa(s−1);α
)

= 0 , m2 = −
(
s + d−4

2

)2
.

AdS/CFT implies a mapping between the correlation function of the conserved
currents 〈J J J...J〉 and the interaction vertices in the dual HST theory in AdS(d+1)

=⇒ constructive approach to HST.
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I For Type A theories nonlinear Vasiliev’s equations are known for any d .

I For Type B Vasiliev’s equations are not known for d > 3.

I Note in d = 3 higher spin gauge fields are pure symmetric tensors in both Type
A and Type B theories

I Dimension d = 5 i.e AdS6 is very special since the only massless 5d conformal
fields are the scalar and spinor singletons and Type B theory has mixed
symmetry gauge fields and there exists a unique conformal superalgebra F (4) in
AdS6 .

I For even d there exit infinitely many massless conformal fields ( doubletons) and
supersymmetric extensions exist for any number of susy generators in d = 4, 6.

I Tensor product of singletons (d = 2n + 1) and doubletons (d = 2n) decompose
into massless representations in AdS(d+1)
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One loop tests of AdS/CFT duality in HSTs:
The AdS partition function

ZAdS =

∫ ∏
k

DΦk e
S[Φs ] ,

G is the bulk coupling constant leads to the following expansion of the free energy
FAdS :

− lnZAdS = FAdS =
1

G
F 0
AdS + F 1

AdS + GF 2
AdS + ... ,

where the first term is the classical action evaluated at an extremum. F 1 stands for
one-loop corrections, etc. The large-N counting implies that G−1 ∼ N. On the dual
CFT side we have

− lnZCFT = FCFT = NF 0
CFT + F 1

CFT +
1

N
F 2
CFT + ... .

For a free CFT only the first term is non-zero, which should match F 0
AdS . Since the

full classical action is not known, we do not know how to compute F 0
AdS and compare

it to F 0
CFT . AdS/CFT requires that the second term, F 1

AdS either vanishes identically

or produces a contribution proportional to F 0
CFT , that modifies the relation G−1 = N

to be of the form G−1 = a(N + integer)
Giombi, Klebanov, Safdi, Tseytlin, Beccaria, Joung, Lal, Bekaert, Boulanger,....
MG, Skvortsov, Tran (2016) ; Giombi, Klebanov, Tan (2016).

M. Günaydin, Ringberg Castle, Nov. 20-25, 2016 30



HST in AdS6 based on the Superalgebra F (4) ⊃ SO(5, 2)⊕ SU(2)
MG, Skvortsov, Tran (2016)

F(4) supersingleton consist of two scalar singletons (Rac = D(3/2; (0, 0)D) in doublet
of SU(2)R and one spinor singleton (Di = D(2; (0, 1)D)
The tensor product of two F (4) super-singletons contains an infinitely many AdS6

massless F (4) supermultiplets that have higher-spin fields which extend the Romans
graviton supermultiplet in AdS6 (Roman’s Tower):

Scalar tower: D(3 + s; (s, 0)D) s

Spinor tower: Dr (7/2 + s; (s, 1)D) s 1
2

Tensor field tower: D(4 + s; (s, 2)D)
s + 1

Vector field tower: Da(4 + s; (s + 1, 0)D) s + 1

Gravitino tower: Dr (9/2 + s; (s + 1, 1)D) s + 1 1
2

Graviton tower: D(5 + s; (s + 2, 0)D) s + 2

where r = 1, 2 and a = 1, 2, 3 are the spinor and adjoint indices of SU(2)R symmetry
and s = 0, 1, 2, .... For each s they describe an irreducible unitary supermultiplet of
F (4).

[F (4) Super Singleton]2 = Romans Tower ⊕ L(8|8) ,

L(8|8) = D(4; (1, 0)D)⊕ Dr (7/2; (0, 1)D)⊕ Da(3; (0, 0))⊕ D(4; (0, 0)) ,

L(8|8) = Aµ ⊕ χr ⊕ φa ⊕ φ
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I The full spectrum of the F (4) HST obtained by squaring the F (4)
super-singleton (2Rac ⊕ Di) passes the one-loop tests ( modulo a known puzzle
in type B theories of all even dimensional AdS spaces) . The contribution from
the short supermultiplet L(8|8) is critical to pass the one loop tests. Hence
AdS/CFT requires that in a consistent formulation of the full nonlinear F (4)
HS theory the Romans tower must be coupled to the fields of the L(8|8)
supermultiplet. The supermultiplet L(8|8) is the linear supermultiplet that plays
an important role in conformal supergravity in 5d .

I The graviton supermultiplet as obtained by the quasiconformal approach
involves a massive anti-symmetric tensor which sits at the bottom of an infinite

tower of mixed symmetry fields
s + 1

.

The fields of Romans gauged supergravity are emµ , ψ
I
µ, A

a
µ, aµ, Bµν , ξi , φ The

field Bµν becomes massive by ”eating” aµ in a Higgslike mechanism and in the
supersymmetric ground state g = 3m where g is the SU(2)R gauge coupling
constant.
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Further comments and open problems

I The above results show that there is a one-to-one correspondence between
massless conformal fields and massless conformal supermultiplets and higher spin
algebras and their deformations and supersymmetric extensions in all dimensions
( d > 2). As such they extend the results of Maldacena and Zhiboedov about
the duality between free conformal field theories in d = 3 and higher spin
theories in AdS4 with unbroken higher spin symmetry to all the deformations of
the AdS(d+1)/CFTd higher spin theories and their susy extensions.

I The quasiconformal construction of the minrep and its deformations are
non-linear , except for d = 3. This raises the question whether there exist
interacting ,but integrable conformal field theories that are dual to unbroken
higher spin gauge theories in higher dimensions.

I The quasiconformal construction of the minrep of D(2, 1 : α) and its
deformations describe the spectra of N = 8 supersymmetric interacting
quantum mechanical models obtained using harmonic superspace techniques by
Fedoruk, Ivanov and Lechtenfeld,... Govil & MG

I Question: could these interacting yet integrable theories correspond to some
dimensionally reduced CFTs ?

I Reformulation of nonlinear quasiconformal realizations of higher spin algebras
and their supersymmetric extensions in terms of covariant fields.

I Reformulation of Vasiliev’s equations for Type A theories within the
quasiconformal approach. MG, E. Skvortsov
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THANK YOU
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