Minimal SUSY

Extended SUSY

Conclusion O

Asymmetric CFTs and GSUGRA II

Michael Fuchs

Max-Planck Institut für Physik München (Werner Heisenberg Institut)

based on 1608.00595 and 1611.04617 by R. Blumenhagen, MF, E. Plauschinn

November 24, 2016

Conclusion O

General Idea

Two separate ways to stabilize moduli:

- SUGRA (TS): Fluxes/gaugings
- CFT (WS): (Asymmetric) Orbifolds

Work on L-R asymmetric torodial orbifolds suggests a connection: After introducing the asymmetry one finds a flux algebra!

[Dabholkar, Hull '02,05; Condeescu, Florakis, Kounnas, Lüst '12,13]

$\underline{G}SUGRA \sim \underline{A}CFT?!$

Conclusion O

Overview

What we did:

Look at Gepner models + L-R asymmetric simple currents [Gepner; Schellekens, Yankielowicz; Schellekens, Gato-Rivera] Compare the result to a SUGRA with NSNS gaugings

Two papers together with R. Blumenhagen and E. Plauschinn:

- 1608.00595 Very concrete examples in 4D with $\mathcal{N}=1$ SUSY
- 1611.04617 Classification of asymmetric Gepner models in 4D, 6D, 8D with extended SUSY to support conjecture.

Our results suggest: Yes! <u>GSUGRA</u> \sim <u>ACFT</u> !

Minimal SUSY

Extended SUSY

Conclusion O

Recap: The 3⁵ Gepner model

Gepners idea: Use tensored minimal SCFTs as the internal CFT of a string compactification.

Example: Take the CFT $(k = 3)^5$ to describe a 6D internal space. The massless states look like e.g.

$$\begin{aligned} & (\mathbf{3}, 4, 1)(\mathbf{2}, 3, 1)(\mathbf{0}, 1, 1)^3 C \to x_1^3 x_2^2 \\ & (\mathbf{2}, 3, 1)(\mathbf{1}, 2, 1)^3 (\mathbf{0}, 1, 1) C \to x_1^2 x_2 x_3 x_4 \end{aligned}$$

 $\label{eq:combinatorics} \begin{array}{l} \Rightarrow \mbox{ Combinatorics of complex structure deformations in $\mathbb{P}_{1,1,1,1,1}[5]$}. \\ \Rightarrow 3^5 \mbox{ model is IIB on the quintic at a certain point in moduli space.} \\ \Rightarrow $\mathcal{N}=2$ target space SUSY. \\ \end{array}$

In general: More complicated $W\mathbb{CP}$

Conclusion O

Now: Add a certain L-R asymmetric simple current in the first factor of the 3⁵ model:

Note: Roughly said a simple current produces a new partition function thus new CFT from an given one.

Result:

- One supercharge from the left-movers, none from the right-movers \rightarrow L-R asymmetry, $\mathcal{N}=1$ target space SUSY.
- 4 minimal factors unaffected \Rightarrow still 4 variables of weight 1.
- Simple current splits first factor in 2 variables of weight 2.

⇒ The model has still the structure of a $W\mathbb{CP}$ with $w_i = 1, 1, 1, 1, 2, 2$ and polynomials of degree 5!

Educated guess: Is this the CFT to the $\mathcal{N} = 2$ SUGRA of IIB on $\mathbb{P}_{1,1,1,1,2,2}[5,3]$ with SUSY breaking fluxes?

Minimal SUSY

Extended SUSY

Conclusion O

 $\mathcal{N}=2
ightarrow \mathcal{N}=1$ breaking: [Louis, Smyth, Triendl '09,10; Louis, Hansen '13]

 Needs simultaneous geometric + non-geometric gaugings thus DFT

No surprise: Our model is L/R asymmetric

• Resulting $\mathcal{N} = 1$ spectrum is highly constrained. For the above $P_{1,1,1,1,2,2}[5,3]^{h_{12},h_{11}=83,2}$ only 6 possibilities:

 $(N_V, N_{\rm ax}) \in \{(80, 0), (80, 1), (81, 0), (81, 1), (82, 1), (82, 2)\}$

Compare: Our model has $(N_V; N_{ax}) = (80, 0) \checkmark$

Observation:

This ACFT looks like the (fully backreacted) string uplift of the GSUGRA of IIB on $P_{1,1,1,1,2,2}[5,3]$ + (SUSY breaking) fluxes!

More examples in our paper.

Extended SUSY

Conclusion O

ACFT/GSUGRA conjecture:

A certain class of aymmetric Gepner models can be identified with the fully backreacted $\mathcal{N}=1$ vacua of a $\mathcal{N}=2$ GSUGRA.

Comments:

- We can compare the ACFT only to the *kinematics* of the GSUGRA, therefore its massless multiplet structure.
- Recall the flux scaling scenario from our group: Non-geometric (thus winding) fluxes generically have a backreaction $\mathcal{O}(1)$ onto the geometry and no dilute flux limit ("want so shrink their cycle").

 \Rightarrow [Blumenhagen, Font, MF, Herschmann, Plauschinn, Sekiguchi, Wolf '15]

Our claim: After adjusting accordingly the minima of the GSUGRA can be uplifted to a full string solution.

Minimal SUSY

Extended SUSY

Conclusion O

ACFT/GSUGRA conjecture:

A certain class of aymmetric Gepner models can be identified with the fully backreacted $\mathcal{N}=1$ vacua of a $\mathcal{N}=2$ GSUGRA.

Consequences:

- Partial SUSY breaking possible beyond leading order.
- Minima of GSUGRA can correspond to classical vacua of string theory. The GSUGRA correctly captures the *kinematics* but is unlikely to describe the *dynamics* in a LEEA.
- Non-geometric fluxes/gaugings (DFT!) are part of the string dofs and correspond to ACFTs. See also [Dabholkar, Hull '02,05; Condeescu, Florakis, Kounnas, Lüst '12,13]

Similar spirit: [Garcia-Etxebarria, Regalado]

Extended SUSY

Conclusion O

Extended SUSY

Advantage: No superpotential, masses only through Higgs. \Rightarrow Perfect to test the conjecture in a more controlled setup

Ralphs talk: Asymmetric Gepner models in 6D & 8D.

- \mathbb{T}^2 , K3: No NS-NS fluxes supportable
- \mathbb{T}^4 : SUSY breaking kinematically forbidden
- \Rightarrow No explanation in terms of a GSUGRA possible!

✓ All models we found are (asymmetric) orbifolds of \mathbb{T}^2 , \mathbb{T}^4 , K3. Note: $(-1)^{F_L}$ factor appeared often.E.g. the one from [Hellerman, McGreevy, Williams]

In the following: The more interesting 4D case!

Conclusion O

4D: SUSY breaking

Still: No superpotential, only Higgs.

But: NS-NS fluxes supportable, more SUSY breakings allowed!

[Deser, Zumino '77; Cremmer, e.a. '78,79; Andrianopoli, D'Auria, Ferrara, Lledo '02]

Example: IIB on \mathbb{T}^6 has $\mathcal{N} = 8$ and therefore only the SUGRA multiplet $\mathcal{G}_{(8)}$ at the massless level. Some possible breakings:

$$\begin{split} \mathcal{G}_{(8)} &\to \mathcal{G}_{(6)} + 2 \cdot \overline{S}_{(6)}^{\frac{3}{2}\text{massive}} \\ \mathcal{G}_{(8)} &\to \mathcal{G}_{(4)} + (6 - 2k) \cdot \mathcal{V}_{(4)} + k \cdot \overline{\mathcal{V}}_{(4)}^{\text{massive}} \qquad k \in \mathbb{N}_0 \end{split}$$

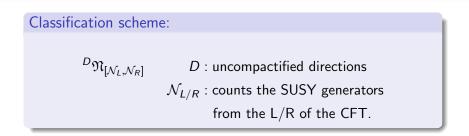
Task

Run a stochastic search with up to 4 simultaneous simple currents to classify all asymmetric (non-geometric) Gepner models and see whether they are compatible with ACFT/GSUGRA! $\mathcal{O}_{(10^8) \text{ models}}$

Intro	d	u	ct	0	n
00					

Extended SUSY

Conclusion O



Examples with only the SUGRA multiplet:

- ${}^{4}\mathfrak{N}_{[4,4]}$ thus $\mathcal{N}=8.$ The \mathbb{T}^{6} compactification.
- ${}^{4}\mathfrak{N}_{[2,4]}$ thus $\mathcal{N} = 6$. Either broken $\mathcal{N} = 8$ or $\mathbb{T}^{6}/(\mathbb{Z}_{2}^{L}S)$
- ${}^{4}\mathfrak{N}_{[1,4]}$ thus $\mathcal{N} = 5$. Only interpretation is $\mathbb{T}^{6}/(\mathbb{Z}_{2}^{L}S, \tilde{\mathbb{Z}}_{2}^{L}\tilde{S})$

Minimal SUSY

Extended SUSY

Conclusion O

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

 ${}^{4}\mathfrak{N}_{[0,4]}$ has $\mathcal{N}=4$

Massless spectrum:

$$\mathcal{G}_{(4)} + n_V imes \mathcal{V}_{(4)} , \qquad n_V = 0, 2, 4, 6, 8, 10, 14, 18$$

 $n_V = 18$: Asymmetric orbifold with $SU(2)^6$ gauge group [Dixon, Kaplunovskiy, Vafa '87] $n_V = 6, \ldots, 18$ Coloumb branch

And the rest?

Minimal SUSY

Extended SUSY

Conclusion O

 ${}^{4}\mathfrak{N}_{[0,4]}$ has $\mathcal{N}=4$

Massless spectrum:

 $\mathcal{G}_{(4)} + n_V \times \mathcal{V}_{(4)} , \qquad n_V = 0, 2, 4, 6, 8, 10, 14, 18$

 $n_V = 18$: Asymmetric orbifold with $SU(2)^6$ gauge group [Dixon, Kaplunovskiy, Vafa '87] $n_V = 6, \ldots, 18$ Coloumb branch

And the rest? Recall the super Higgs!

$$\mathcal{G}_{(8)} \rightarrow \mathcal{G}_{(4)} + (6-2k) \cdot \mathcal{V}_{(4)} + k \cdot \overline{\mathcal{V}}_{(4)}^{\mathrm{massive}} \qquad k \in \mathbb{N}_{0}$$

✓ perfect **match between GSUGRA and ACFT!** Note: A priori no reason for steps of two in the CFT!

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Minimal SUSY

Extended SUSY

Conclusion O

 ${}^{4}\mathfrak{N}_{[1,2]}$ has $\mathcal{N}=3$

Massless spectrum:

 $\mathcal{G}_{(3)} + n_V \times \mathcal{V}_{(3)}$, $n_V = 3, 7, 11, 13, 19$

Fully explainable by super Higgs ($k \in \mathbb{N}_0$):

\mathcal{N}'	\mathcal{N}	massless spectrum	
8 thus \mathbb{T}^6	3	$\mathcal{G}_3 + (3-2k)\cdot\mathcal{V}_3$	
6	3	_	
5	3	_	
4 thus $\mathbb{T}^2 imes K3$	3	$\mathcal{G}_3 + (19-2k)\cdot\mathcal{V}_3$	

Extended SUSY

Conclusion O

 ${}^{4}\mathfrak{N}_{[0,2]}$ has $\mathcal{N}=2$

Massless spectrum: $\mathcal{G}_{(2)} + n_V \times \mathcal{V}_{(2)} + n_H \times \mathcal{H}_{(2)}$

1. $n_H - n_V = 1$ with $n_V = 1, 3, 5, 6, \dots, 15, 17, 19, 20, 21, 22, 23$

2.
$$n_H - n_V = 13$$
 with $n_V = 3, 4, 5, 7, 8, 9, 10, 11$

3.
$$n_V - n_H = 11$$
 with $n_V = 13, 15, 17, 19, 21, 23$

Mechanisms at work:

- a) One basic model (fat) + gauge enhancement with up to 4 (higgsable) $V_{(2)} + H_{(2)}$ pairs (same as in 6D)
- b) SUSY breaking of $\mathbb{T}^2 \times K3$ thus $\mathcal{N} = 4 \rightarrow \mathcal{N} = 2$ with different number of short/long massive gravitino/vector multiplets. Note the steps of one!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Minimal SUSY	Extended SUSY	Conclusion
00	00000		O

1.
$$n_H - n_V = 1$$
 with $n_V = 1, 3, 5, 6, \dots, 15, 17, 19, 20, 21, 22, 23$

 $n_V = 19$ is the \mathbb{T}^2 reduction of $\mathbb{T}^4 / \{\Theta, \Theta S(-1)^{F_L}\} \in {}^6\mathfrak{N}_{[1,0]}$ [Hellerman, McGreevy, Williams '04]: Θ reflectsion, *S* momentum shift Again: Up to 4 additional $\mathcal{V} + \mathcal{H}$ pairs!

Alternatively $\mathcal{N} = 4 \rightarrow \mathcal{N} = 2$ breaking of $K3 \times \mathbb{T}^2$ with (only) short massive gravitino multiplets yields

$$n_V = 19 - k \qquad n_H = 20 - k \quad \checkmark$$

Minimal SUSY 00000 Extended SUSY

Conclusion O

2. $n_H - n_V = 13$ with $n_V = 3, 4, 5, 7, 8, 9, 10, 11$

 $\mathcal{N}=4\to\mathcal{N}=2$ breaking of $K3\times\mathbb{T}^2$ with no short gravitino and six short vector multiplets gives

$$n_V = 7 - k$$
 $n_H = 20 - k \checkmark$

Alternatively, the model with $n_V = 7$ is the K3 reduction of the $\mathbb{T}^2/\{(-1)^{F_L}SW\} \in {}^8\mathfrak{N}_{[1,0]}$ model, therefore

$$rac{\mathbb{T}^4 imes\mathbb{T}^2}{\{\mathbb{Z}_2,(-1)^{F_L}SW\}}$$
 .

Allows for discrete torsion $\epsilon = \pm 1$ between the \mathbb{Z}_2 factors! $\epsilon = -1$ gives $n_V = 19$ and $n_H = 8$. Indeed:

3. $n_V - n_H = 11$ with $n_V = 13, 15, 17, 19, 21, 23$ Again in both cases: Up to 4 additional V + H pairs! Minimal SUSY Extended SUSY Conc 000000 0000000 0

For completeness: ${}^{4}\mathfrak{N}_{[2,2]}$ (symmetric) has $\mathcal{N}=4$

Massless spectrum:

 $\mathcal{G}_{(4)} + (2+n) \times \mathcal{V}_{(4)}$, $n_V = 2 + n = 22, 14, 10, 6, 4$

Clearly $n_V = 22$ is IIB on $\mathbb{T}^2 \times K3$. Rest is:

$$\operatorname{Orb}_{n,m} = \frac{\mathbb{T}^4 \times \mathbb{T}^2}{\mathbb{Z}_n S_m}$$

Orb _{n,m}	twisted sector vectors	massless spectrum
(2,2)	$(1,\theta)=(6,0)$	$\mathcal{G}_{(4)} + 6 \cdot \mathcal{V}_{(4)}$
(3,3)	$(1, heta, heta^2) = (4,0,0)$	$\mathcal{G}_{(4)} + 4 \cdot \mathcal{V}_{(4)}$
(4, 2)	$(1, heta, heta^2, heta^3)=(4,0,10,0)$	$\mathcal{G}_{(4)} + 14 \cdot \mathcal{V}_{(4)}$
(6,3)	$(1, \theta, \theta^2, \theta^3, \theta^4, \theta^5) = (4, 0, 0, 6, 0, 0)$	$\mathcal{G}_{(4)} + 10 \cdot \mathcal{V}_{(4)}$

Extended SUSY

Conclusion

Conclusion

- Concrete examples in 4D with $\mathcal{N}=1$
- Classification of all asymmetric Gepner models in 4D, 6D and 8D with more SUSY

All examples support: $\textbf{ACFT} \sim \textbf{GSUGRA}$

Concretely: The asymmetric Gepner models we constructed correspond to fully backreacted minima of GSUGRA with geometric + non-geometric gaugings/fluxes.