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Fig. 10.— We compare the constraints on the ΛCDM+r model with predictions from models of inflation in the ns − r plane. We show
the two-dimensional constraints on r and ns as colored contours at the 68% and 95% confidence levels for three datasets: WMAP7 (grey
contours), CMB (red contours), and CMB+H0+BAO (blue contours). Adding the SPT bandpowers partially breaks the degeneracy
between ns and r in the WMAP7 constraint, which can be seen clearly moving between the grey and red contours. Plotted over the
constraint contours are predictions for several models of inflation. We restrict our comparison with model predictions to the simplest cases
of slow-roll inflation due to a single scalar field as reviewed in Baumann et al. (2009).

Solid black line: The predictions of exponential inflation (V (φ) ∝ exp
[√

16πφ2/(p M2
Pl)

]
) lie on this line. In exponential inflation,

increasing p moves the prediction towards the Harrison-Zel’dovich-Peebles point ns = 1, r = 0.
Black lines with colored circles: The predictions of chaotic inflation models (V (φ) ∝ (φ/µ)p, p > 0) for five different values of p lie on
the corresponding line. The predictions in the r – ns plane are a function of N , where N is expected to be in the range N ∈ [50, 60].
Purple region: The predictions of large-field hill-top inflation models (V (φ) ∝ 1− (φ/µ)2) lie within the colored region, which is shown
for N ∈ [50, 60].

We now turn to a comparison of model predictions
with data constraints in the ns-r plane. This compar-
ison is illustrated in Figure 10, where we show the two-
dimensional marginalized constraints from three combi-
nations of data with predictions from simple models of
inflation over-plotted. First, we note that the confidence
contours for the CMB-only case in Fig. 10 show the ex-
pected positive correlation between ns and r. Essen-
tially, the suppression of large-scale power when increas-
ing ns can be countered by adding extra large-scale power
sourced by tensors. The SPT data disfavor large values
of ns (and hence r), significantly reducing the degeneracy
between these two parameters. With BAO data added to
SPT+WMAP7, the ns − r correlation nearly disappears.
Adding H0 data has little effect on constraints from the
CMB or CMB+BAO datasets, removing only the small-
est allowed values of ns in both cases. As mentioned
above, we are approaching the cosmic variance limit for
the temperature anisotropy on measuring r – at which

point improved knowledge of the six ΛCDM parameters
no longer translates into better limits on r.
We restrict the model comparisons to the simplest

cases of single-field, slow-roll inflation, as reviewed in
Baumann et al. (2009). Models can be broadly char-
acterized according to how much the inflaton field φ
changes from the time perturbations on observably large
scales were being produced until the end of inflation; this
change in φ defined at ∆φ. Models in which ∆φ is larger
than the Planck mass (MPl) are classified as “large-field”
models, while those in which ∆φ < MPl are classified as
“small-field” models. The dividing line between the two
cases corresponds to r = 0.01.
Here we look at large-field inflation models, consid-

ering several forms of the inflaton effective potential:
large-field chaotic inflation models (V (φ) ∝ (φ/µ)p,
p > 0), large-field hill-top inflation models (V (φ) ∝
1 − (φ/µ)2), and exponential inflation models (V (φ) ∝
exp

[√
16πφ2/(p M2

Pl)
]
).

yesterday < 12 pm CET:SPT + WMAP 7yr + BAO + H0

fibre inflation, R+R2, Higgs inflation 
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Fig. 4.— The SPT bandpowers (blue), WMAP7 bandpowers (orange), and the lensed ΛCDM+foregrounds theory spectrum that
provides the best fit to the SPT+WMAP7 data shown for the CMB-only component (dashed line), and the CMB+foregrounds spectrum
(solid line). As in Figure 3, the bandpower errors shown in this plot do not include beam or calibration uncertainties.

for a departure from ΛCDM, a systematic error in one
or more of the data sets, or simply a statistical fluctua-
tion. We assume the uncertainties reported for each of
the datasets are correct and combine them to produce
many of the results presented here.

6.5. SPT-only ΛCDM constraints

We begin by examining parameter constraints from the
SPT bandpowers alone. The SPT-only parameter con-
straints provide an independent test of ΛCDM cosmology
and allow for consistency checks between the SPT data
and other datasets. Because the scalar amplitude ∆2

R
and the optical depth τ are completely degenerate for
the SPT bandpowers, we impose a WMAP7-based prior
of τ = 0.088± 0.015 for the SPT-only constraints.
We present the constraints on the ΛCDM model from

SPT andWMAP7 data in columns two to four of Table 3.
As shown in Figure 5, the SPT bandpowers (including
a prior on τ from WMAP7) constrain the ΛCDM pa-
rameters approximately as well as WMAP7. The SPT
and WMAP7 parameter constraints are consistent for

all parameters; θs changes the most significantly among
the five free ΛCDM parameters, moving by 1.5σ and
tightening by a factor of 2.2 from WMAP7 to SPT. The
SPT bandpowers measure θs extremely well by virtue of
the sheer number of acoustic peaks – seven – measured
by the SPT bandpowers. The SPT constraint on ns is
broader than the constraint from WMAP7 due to the
fact that WMAP7 probes a much greater dynamic range
of angular scales. Degeneracies with ns degrade the SPT
constraints on ∆2

R, the baryon density and, to a lesser
extent, the dark matter density.

6.6. Combined ΛCDM constraints

Next, we present the constraints on the ΛCDM
model from the combination of SPT and WMAP7 data.
As previously mentioned, we will refer to the joint
SPT+WMAP7 likelihood as the CMB likelihood. We
then extend the discussion to include constraints from
CMB data in combination with BAO and/or H0 data.
We present the CMB constraints on the six ΛCDM

parameters in the fourth column of Table 3. Adding
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Fig. 10.— We compare the constraints on the ΛCDM+r model with predictions from models of inflation in the ns − r plane. We show
the two-dimensional constraints on r and ns as colored contours at the 68% and 95% confidence levels for three datasets: WMAP7 (grey
contours), CMB (red contours), and CMB+H0+BAO (blue contours). Adding the SPT bandpowers partially breaks the degeneracy
between ns and r in the WMAP7 constraint, which can be seen clearly moving between the grey and red contours. Plotted over the
constraint contours are predictions for several models of inflation. We restrict our comparison with model predictions to the simplest cases
of slow-roll inflation due to a single scalar field as reviewed in Baumann et al. (2009).

Solid black line: The predictions of exponential inflation (V (φ) ∝ exp
[√

16πφ2/(p M2
Pl)

]
) lie on this line. In exponential inflation,

increasing p moves the prediction towards the Harrison-Zel’dovich-Peebles point ns = 1, r = 0.
Black lines with colored circles: The predictions of chaotic inflation models (V (φ) ∝ (φ/µ)p, p > 0) for five different values of p lie on
the corresponding line. The predictions in the r – ns plane are a function of N , where N is expected to be in the range N ∈ [50, 60].
Purple region: The predictions of large-field hill-top inflation models (V (φ) ∝ 1− (φ/µ)2) lie within the colored region, which is shown
for N ∈ [50, 60].

We now turn to a comparison of model predictions
with data constraints in the ns-r plane. This compar-
ison is illustrated in Figure 10, where we show the two-
dimensional marginalized constraints from three combi-
nations of data with predictions from simple models of
inflation over-plotted. First, we note that the confidence
contours for the CMB-only case in Fig. 10 show the ex-
pected positive correlation between ns and r. Essen-
tially, the suppression of large-scale power when increas-
ing ns can be countered by adding extra large-scale power
sourced by tensors. The SPT data disfavor large values
of ns (and hence r), significantly reducing the degeneracy
between these two parameters. With BAO data added to
SPT+WMAP7, the ns − r correlation nearly disappears.
Adding H0 data has little effect on constraints from the
CMB or CMB+BAO datasets, removing only the small-
est allowed values of ns in both cases. As mentioned
above, we are approaching the cosmic variance limit for
the temperature anisotropy on measuring r – at which

point improved knowledge of the six ΛCDM parameters
no longer translates into better limits on r.
We restrict the model comparisons to the simplest

cases of single-field, slow-roll inflation, as reviewed in
Baumann et al. (2009). Models can be broadly char-
acterized according to how much the inflaton field φ
changes from the time perturbations on observably large
scales were being produced until the end of inflation; this
change in φ defined at ∆φ. Models in which ∆φ is larger
than the Planck mass (MPl) are classified as “large-field”
models, while those in which ∆φ < MPl are classified as
“small-field” models. The dividing line between the two
cases corresponds to r = 0.01.
Here we look at large-field inflation models, consid-

ering several forms of the inflaton effective potential:
large-field chaotic inflation models (V (φ) ∝ (φ/µ)p,
p > 0), large-field hill-top inflation models (V (φ) ∝
1 − (φ/µ)2), and exponential inflation models (V (φ) ∝
exp

[√
16πφ2/(p M2

Pl)
]
).

yesterday < 12 pm CET:SPT + WMAP 7yr + BAO + H0

ns = 0.9538± 0.0081 (68%)

r < 0.11 (95%)

Ωk = −0.0059± 0.004

−10 < f local
NL < 74

−214 < fequil
NL < 266

fibre inflation, R+R2, Higgs inflation 



Inflation ...

• inflation: period quasi-exponential expansion of the 
very early universe 
 
(solves horizon, flatness problems of hot big bang ...)  
 
 

• driven by the vacuum energy of a slowly rolling light 
scalar field:

e.o.m.: φ̈ + 3Hφ̇ + V ′ = 0

e.g. 3-curvature: ρk ∼ 1
a2 ∼ a2ρrad. , Ωk ≡ ρk

ρcrit.
! 0.01 today

⇒ ρk ∼ e−60ρrad. at GUT epoch



Inflation ...

⇒ ε ≡ − Ḣ

H2
$ 1

2

(
V ′

V

)2

% 1 , η ≡ ε̇

εH
$ V ′′

V
% 1

H2 =
ȧ2

a2
! const. ∼ Vwith the Hubble parameter

• slow-roll inflation:

scale factor grows exponentially : a ∼ eHt if : φ̈! φ̇



• inflation generates metric perturbations:  
scalar (us) & tensor

PT ∼ H2 ∼ Vand

Inflation ...

window to GUT scale &
direct measurement of inflation scale

but caveat: inflaton w/ pseudo-scalar 
couplings to light vector fields can 
source additional B-modes

[Barnaby, Namba & Peloso ’11; Senatore, Silverstein & Zaldarriaga ’11]
[Barnaby, Moxon, Namba, Peloso, Shiu & Zhou ’12]

PR ∼ H2

ε
∼

(
δρ

ρ

)2

∼ knS−1



• inflation generates metric perturbations:  
scalar (us) & tensor

PT ∼ H2 ∼ Vand

Inflation ...

• observables:

PR ∼ H2

ε
∼

(
δρ

ρ

)2

∼ knS−1

nS ≡
d lnPR

d ln k

∣∣∣∣
k=aH

= 1− 6ε + 2η|Ne=50...60

r ≡ PT

PR

∣∣∣∣
k=aH

= 16ε|Ne=50...60

PR|k=aH



• description exact in ε , η: Mukhanov-Sasaki equation 
for variable                            ; can choose gauge 
where  

• higher-order interactions of R - 3-point function:                 

v = zR , z = aφ̇/H

δφ = 0 , gij = a2[(1− 2R)δij + hij ] , ∂ihij = hi
i = 0

Exercise 8 (Mukhanov Action) Confirm Eqn. (183). Hint: use integration by parts.

We define the Fourier expansion of the field v

v(τ,x) =
∫

d3k

(2π)3
vk(τ)eik·x , (184)

where

v′′k +
(

k2 − z′′

z

)
vk = 0 . (185)

Here, we have dropped to vector notation k on the subscript, since (185) depends only on the mag-
nitude of k. The Mukhanov Equation (185) is hard to solve in full generality since the function
z depends on the background dynamics. For a given inflationary background one may solve (185)
numerically. However, to gain a more intuitive understanding of the solutions we will discuss ap-
proximate analytical solutions in the pure de Sitter limit (§12.2.4) and in the slow-roll approximation
(Problem 7).

12.2.2 Quantization

The quantization of the field v is performed in completely analogy with our treatment of the quantum
harmonic oscillator in §11.

As before we promote the field v and its conjugate momentum v′ to quantum operator

v → v̂ =
∫

dk3

(2π)3
[
vk(τ)âkeik·x + v∗k(τ)â†

ke−ik·x
]

. (186)

Alternatively, the Fourier components vk are promoted to operators and expressed via the following
decomposition

vk → v̂k = vk(τ)âk + v∗−k(τ)â†
−k , (187)

where the creation and annihilation operators â†
−k and âk satisfy the canonical commutation relation

[âk, â†
k′ ] = (2π)3δ(k− k′) , (188)

if and only if the mode functions are normalized as follows

〈vk, vk〉 ≡
i

!
(v∗kv

′
k − v∗k

′vk) = 1 . (189)

Eqn. (189) provides one of the boundary conditions on the solutions of Eqn. (185). The second
boundary conditions that fixes the mode functions completely comes from vacuum selection.

12.2.3 Boundary Conditions and Bunch-Davies Vacuum

We must choose a vacuum state for the fluctuations,

âk|0〉 = 0 , (190)

which corresponds to specifying an additional boundary conditions for vk (see e.g. Chapter 3 in
Birell and Davies [25]). The standard choice is the Minkowski vacuum of a comoving observer in
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quadratic action for R from SEH ⇒

tensor perturbationscurvature perturbation

Inflation ...

〈R!k1
R!k2

R!k3
〉 ∼ δ("k1 + "k2 + "k3) BR("k1,"k2,"k3)

• for purely Gaussian fluctuations 3-point function 
vanishes - “non-Gaussianity” has triangular shape in k-
space 



• magnitude of non-Gaussianity:  

• Maldacena’s result for single-field slow-roll:  
 
 
intuitively sensible:  
ε , η describe deviation from free-field action, which 
has purely Gaussian wave functions                 

Inflation ...

fNL ≡
5
18

BR(k, k, k)
PR(k)2

fNL = O(ε, η)

very recently:

- if R non-constant outside horizon -- large local fNL for ~ 10 out of 60  
  e-folds [Chen, Firouzjahi, Namjoo & Sasaki ’13]



• different shapes BR - peak at different triangle 
configurations (k1,k2,k3)  

• can plot BR as a function of:             

Inflation ...

x2 =
k2

k1
≤ 1 , x3 =

k3

k1
≤ 1

We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In
the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ≡ 1.
To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular
region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at
x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 30 illustrates how the different
triangle shapes are distributed in the x2-x3 plane.
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Figure 29: 3D plots of the local and equilateral bispectra. The coordinates x2 and x3 are the
rescaled momenta k2/k1 and k3/k1, respectively. Momenta are order such that x3 <

x2 < 1 and satsify the triangle inequality x2 + x3 > 1.

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

squeezed equilateral

folded

iso
sce
les

elongated
x2

x3

Figure 30: Shapes of Non-Gaussianity. The coordinates x2 and x3 are the rescaled momenta k2/k1

and k3/k1, respectively. Momenta are order such that x3 < x2 < 1 and satsify the
triangle inequality x2 + x3 > 1.
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local shape:
multi-field inflation, e.g. curvaton

equilateral shape:
single-field non-slow roll, 
e.g. DBI-inflation

We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In
the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ≡ 1.
To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular
region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at
x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 30 illustrates how the different
triangle shapes are distributed in the x2-x3 plane.
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Figure 29: 3D plots of the local and equilateral bispectra. The coordinates x2 and x3 are the
rescaled momenta k2/k1 and k3/k1, respectively. Momenta are order such that x3 <

x2 < 1 and satsify the triangle inequality x2 + x3 > 1.
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Figure 30: Shapes of Non-Gaussianity. The coordinates x2 and x3 are the rescaled momenta k2/k1

and k3/k1, respectively. Momenta are order such that x3 < x2 < 1 and satsify the
triangle inequality x2 + x3 > 1.
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peaks at:

peaks at:

We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In
the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ≡ 1.
To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular
region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at
x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 30 illustrates how the different
triangle shapes are distributed in the x2-x3 plane.
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equilateral

plots: [Baumann '09]



Inflation ...

We have ordered the momenta such that x3 ≤ x2 ≤ 1. The triangle inequality implies x2+x3 > 1. In
the following we plot S(1, x2, x3) (see Figs. 29, 31, and 32). We use the normalization, S(1, 1, 1) ≡ 1.
To avoid showing equivalent configurations twice S(1, x2, x3) is set to zero outside the triangular
region 1 − x2 ≤ x3 ≤ x2. We see in Fig. 29 that the signal for the local shape is concentrated at
x3 ≈ 0, x2 ≈ 1, while the equilateral shape peaks at x2 ≈ x3 ≈ 1. Fig. 30 illustrates how the different
triangle shapes are distributed in the x2-x3 plane.
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plot: [Baumann '09]



• if field excursion sub-Planckian,  no measurable 
gravity waves: [Lyth ’97]

Inflation ... field range vs tensor mode power

there are exceptions to this general rule:

- if ε evolves non-monotonically, r can be enhanced for O(MP) field 
  range - this is non-generic & needs tuning

- if inflaton does not provide graceful exit:
  hybrid inflation - then ε may decrease from initially larger values

[Ben-Dayan & Brustein ’09]
[Hotchkiss, Mazumdar & Nadathur ’11]

r ≡ PT

PR
= 16ε ≤ 0.003

(
50
Ne

)2 (
∆φ

MP

)2





no B-mode/E-mode polarization yet!
full release of polarization and all 30 months of 
temperature data in 2014
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Fig. 10.— We compare the constraints on the ΛCDM+r model with predictions from models of inflation in the ns − r plane. We show
the two-dimensional constraints on r and ns as colored contours at the 68% and 95% confidence levels for three datasets: WMAP7 (grey
contours), CMB (red contours), and CMB+H0+BAO (blue contours). Adding the SPT bandpowers partially breaks the degeneracy
between ns and r in the WMAP7 constraint, which can be seen clearly moving between the grey and red contours. Plotted over the
constraint contours are predictions for several models of inflation. We restrict our comparison with model predictions to the simplest cases
of slow-roll inflation due to a single scalar field as reviewed in Baumann et al. (2009).

Solid black line: The predictions of exponential inflation (V (φ) ∝ exp
[√

16πφ2/(p M2
Pl)

]
) lie on this line. In exponential inflation,

increasing p moves the prediction towards the Harrison-Zel’dovich-Peebles point ns = 1, r = 0.
Black lines with colored circles: The predictions of chaotic inflation models (V (φ) ∝ (φ/µ)p, p > 0) for five different values of p lie on
the corresponding line. The predictions in the r – ns plane are a function of N , where N is expected to be in the range N ∈ [50, 60].
Purple region: The predictions of large-field hill-top inflation models (V (φ) ∝ 1− (φ/µ)2) lie within the colored region, which is shown
for N ∈ [50, 60].

We now turn to a comparison of model predictions
with data constraints in the ns-r plane. This compar-
ison is illustrated in Figure 10, where we show the two-
dimensional marginalized constraints from three combi-
nations of data with predictions from simple models of
inflation over-plotted. First, we note that the confidence
contours for the CMB-only case in Fig. 10 show the ex-
pected positive correlation between ns and r. Essen-
tially, the suppression of large-scale power when increas-
ing ns can be countered by adding extra large-scale power
sourced by tensors. The SPT data disfavor large values
of ns (and hence r), significantly reducing the degeneracy
between these two parameters. With BAO data added to
SPT+WMAP7, the ns − r correlation nearly disappears.
Adding H0 data has little effect on constraints from the
CMB or CMB+BAO datasets, removing only the small-
est allowed values of ns in both cases. As mentioned
above, we are approaching the cosmic variance limit for
the temperature anisotropy on measuring r – at which

point improved knowledge of the six ΛCDM parameters
no longer translates into better limits on r.
We restrict the model comparisons to the simplest

cases of single-field, slow-roll inflation, as reviewed in
Baumann et al. (2009). Models can be broadly char-
acterized according to how much the inflaton field φ
changes from the time perturbations on observably large
scales were being produced until the end of inflation; this
change in φ defined at ∆φ. Models in which ∆φ is larger
than the Planck mass (MPl) are classified as “large-field”
models, while those in which ∆φ < MPl are classified as
“small-field” models. The dividing line between the two
cases corresponds to r = 0.01.
Here we look at large-field inflation models, consid-

ering several forms of the inflaton effective potential:
large-field chaotic inflation models (V (φ) ∝ (φ/µ)p,
p > 0), large-field hill-top inflation models (V (φ) ∝
1 − (φ/µ)2), and exponential inflation models (V (φ) ∝
exp

[√
16πφ2/(p M2

Pl)
]
).

yesterday < 12 pm CET:SPT + WMAP 7yr + BAO + H0

ns = 0.9538± 0.0081 (68%)

r < 0.11 (95%)

Ωk = −0.0059± 0.004

−10 < f local
NL < 74

−214 < fequil
NL < 266

fibre inflation, R+R2, Higgs inflation 
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Fig. 4.— The SPT bandpowers (blue), WMAP7 bandpowers (orange), and the lensed ΛCDM+foregrounds theory spectrum that
provides the best fit to the SPT+WMAP7 data shown for the CMB-only component (dashed line), and the CMB+foregrounds spectrum
(solid line). As in Figure 3, the bandpower errors shown in this plot do not include beam or calibration uncertainties.

for a departure from ΛCDM, a systematic error in one
or more of the data sets, or simply a statistical fluctua-
tion. We assume the uncertainties reported for each of
the datasets are correct and combine them to produce
many of the results presented here.

6.5. SPT-only ΛCDM constraints

We begin by examining parameter constraints from the
SPT bandpowers alone. The SPT-only parameter con-
straints provide an independent test of ΛCDM cosmology
and allow for consistency checks between the SPT data
and other datasets. Because the scalar amplitude ∆2

R
and the optical depth τ are completely degenerate for
the SPT bandpowers, we impose a WMAP7-based prior
of τ = 0.088± 0.015 for the SPT-only constraints.
We present the constraints on the ΛCDM model from

SPT andWMAP7 data in columns two to four of Table 3.
As shown in Figure 5, the SPT bandpowers (including
a prior on τ from WMAP7) constrain the ΛCDM pa-
rameters approximately as well as WMAP7. The SPT
and WMAP7 parameter constraints are consistent for

all parameters; θs changes the most significantly among
the five free ΛCDM parameters, moving by 1.5σ and
tightening by a factor of 2.2 from WMAP7 to SPT. The
SPT bandpowers measure θs extremely well by virtue of
the sheer number of acoustic peaks – seven – measured
by the SPT bandpowers. The SPT constraint on ns is
broader than the constraint from WMAP7 due to the
fact that WMAP7 probes a much greater dynamic range
of angular scales. Degeneracies with ns degrade the SPT
constraints on ∆2

R, the baryon density and, to a lesser
extent, the dark matter density.

6.6. Combined ΛCDM constraints

Next, we present the constraints on the ΛCDM
model from the combination of SPT and WMAP7 data.
As previously mentioned, we will refer to the joint
SPT+WMAP7 likelihood as the CMB likelihood. We
then extend the discussion to include constraints from
CMB data in combination with BAO and/or H0 data.
We present the CMB constraints on the six ΛCDM

parameters in the fourth column of Table 3. Adding
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Fig. 25. Measured angular power spectra of Planck, WMAP9, ACT, and SPT. The model plotted is Planck’s best-fit model including Planck
temperature, WMAP polarization, ACT, and SPT (the model is labelled [Planck+WP+HighL] in Planck Collaboration XVI (2013)). Error bars
include cosmic variance. The horizontal axis is !0.8.

than that measured using traditional techniques, though in agree-
ment with that determined by other CMB experiments (e.g.,
most notably from the recent WMAP9 analysis where Hinshaw
et al. 2012c find H0 = (69.7 ± 2.4) km s−1 Mpc−1 consis-
tent with the Planck value to within ∼ 1σ). Freedman et al.
(2012), as part of the Carnegie Hubble Program, use Spitzer
Space Telescope mid-infrared observations to recalibrate sec-
ondary distance methods used in the HST Key Project. These
authors find H0 = (74.3±1.5±2.1) km s−1 Mpc−1 where the first
error is statistical and the second systematic. A parallel effort by
Riess et al. (2011) used the Hubble Space Telescope observa-
tions of Cepheid variables in the host galaxies of eight SNe Ia to
calibrate the supernova magnitude-redshift relation. Their ‘best
estimate’ of the Hubble constant, from fitting the calibrated SNe
magnitude-redshift relation is, H0 = (73.8 ± 2.4) km s−1 Mpc−1

where the error is 1σ and includes known sources of systematic
errors. At face value, these measurements are discrepant with the
current Planck estimate at about the 2.5σ level. This discrep-
ancy is discussed further in Planck Collaboration XVI (2013).

Extending the Hubble diagram to higher redshifts we note
that the best-fitΛCDM model provides strong predictions for the
distance scale. This prediction can be compared to the measure-
ments provided by studies of Type Ia SNe and baryon acoustic
oscillations (BAO). Driven in large part by our preference for
a higher matter density we find mild tension with the (relative)
distance scale inferred from compilations of SNe (Conley et al.
2011; Suzuki et al. 2012). In contrast our results are in excellent

agreement with the BAO distance scale compiled in Anderson
et al. (2012).

The Planck data, in combination with polarization measured
by WMAP, high-! anisotropies from ACT and SPT and other,
lower redshift data sets, provides strong constraints on devia-
tions from the minimal model. The low redshift measurements
provided by the BAO allow us to break some degeneracies still
present in the Planck data and significantly tighten constraints on
cosmological parameters in these model extensions. The ACT
and SPT data help to fix our foreground model at high !. The
combination of these experiments provides our best constraints
on the standard 6-parameter model; values of some key parame-
ters in this model are summarized in Table 9.

From an analysis of an extensive grid of models, we find no
strong evidence to favour any extension to the base ΛCDM cos-
mology, either from the CMB temperature power spectrum alone
or in combination with Planck lensing power spectrum and other
astrophysical datasets. For the wide range of extensions which
we have considered, the posteriors for extra parameters gener-
ally overlap the fiducial model within 1σ. The measured values
of the ΛCDM parameters are relatively robust to the inclusion
of different parameters, though a few do broaden significantly if
additional degeneracies are introduced. When the Planck likeli-
hood does provide marginal evidence for extensions to the base
ΛCDM model, this comes predominantly from a deficit of power
(compared to the base model) in the data at ! < 30.

The primordial power spectrum is well described by a
power-law over three decades in wave number, with no evidence
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ns = 0.9608± 0.0054 (68%)

r < 0.11 (95%)

Ωk = −0.0004± 0.00036 (68%)

f local
NL = 2.7± 5.8 (68%)

fequil
NL = −42± 75 (68%)

forth
NL = −25± 39 (68%)

Neff = 3.32+0.54
−0.52 (95%)

∑
mν < 0.28 eV (95%)

yesterday > 12 pm CET:PLANCK+ WP + highL + BAO

15.5 months of 
temperature data



the upshot: 
inflation is fully consistent with single-field slow-roll !!


in particular, the constraint on local NG implies:
effects of multiple fields can only be of %-level in fNL 
compared to their natural size - inflation is effectively 
single-field


rules also out a part of ekpyrotic alternatives to 
inflation:

alternative:
kinetic conversion
serverely constrained

ekpyrotic/cyclic models: for ’ekpyrotic conversion’
predict:

∣∣f local
NL

∣∣ = 5/12 · c2
1 > 10

because 10 < c1 < 20 to match power spectrum
⇒ ruled out by Planck f local

NL bound!!



single field models ...
• monomial large-field, (n = 2/3 , 1 , 2 , 3 , 4):

• natural (axion) inflation:
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HZ HZ + YP HZ + Neff ΛCDM
105Ωbh2 2296 ± 24 2296 ± 23 2285 ± 23 2205 ± 28
104Ωch2 1088 ± 13 1158 ± 20 1298 ± 43 1199 ± 27
100 θMC 1.04292 ± 0.00054 1.04439 ± 0.00063 1.04052 ± 0.00067 1.04131 ± 0.00063
τ 0.125+0.016

−0.014 0.109+0.013
−0.014 0.105+0.014

−0.013 0.089+0.012
−0.014

ln
(
1010As

)
3.133+0.032

−0.028 3.137+0.027
−0.028 3.143+0.027

−0.026 3.089+0.024
−0.027

ns — — — 0.9603 ± 0.0073
Neff — — 3.98 ± 0.19 —
YP — 0.3194 ± 0.013 — —
−2∆ ln(Lmax) 27.9 2.2 2.8 0

Table 3. Constraints on cosmological parameters and best-fit −2∆ ln(L) with respect to the standard ΛCDM model, using
Planck+WP data, testing the significance of the deviation from the HZ model.

Sampling the power spectrum parameters As, ns, and r is
not the only method for constraining slow roll inflation. Another
possibility is to sample the HFF in the analytic expressions for
the scalar and tensor power spectra (Stewart & Lyth, 1993; Gong
& Stewart, 2001; Leach et al., 2002). In the Appendix, we per-
form a comparison of slow-roll inflationary predictions by sam-
pling the HFF with Planck data, and show that the results ob-
tained in this way agree with those derived by sampling the
power spectrum parameters. This confirms similar studies with
previous data (Hamann et al., 2008c; Finelli et al., 2010).

The spectral index estimated from Planck+WP data is

ns = 0.9603 ± 0.0073. (32)

This tight bound on ns is crucial for constraining inflation. The
Planck constraint on r depends slightly on the pivot scale; we
adopt k∗ = 0.002 Mpc−1 to quote our result, with r0.002 < 0.12
at 95% CL. This bound improves on the most recent results,
including the WMAP 9-year constraint of r < 0.38 (Hinshaw
et al., 2012a), the WMAP7 + ACT limit of r < 0.28 (Sievers
et al., 2013), and the WMAP7 + SPT limit of r < 0.18 (Story
et al., 2012). The new bound from Planck is consistent with
the limit from temperature anisotropies alone (Knox & Turner,
1994). When a possible tensor component is included, the spec-
tral index from Planck+WP is not significantly changed, with
ns = 0.9624 ± 0.0075.

The Planck constraint on r corresponds to an upper bound
on the energy scale of inflation

V∗ =
3π2As

2
r M4

pl = (1.94 × 1016 GeV)4 r∗
0.12

, (33)

at 95% CL. This is equivalent to an upper bound on the Hubble
parameter during inflation of H∗/Mpl < 3.7 × 10−5. In terms of
slow-roll parameters, Planck+WP constraints imply εV < 0.008
at 95% CL, and ηV = −0.010+0.005

−0.011.
The Planck results on ns and r are robust to the addition

of external data sets (see Table 4). When the high-& CMB
ACT+SPT data are added, we obtain ns = 0.9600 ± 0.0072 and
r0.002 < 0.11 at 95% CL. Including the Planck lensing likeli-
hood gives ns = 0.9653 ± 0.0069 and r0.002 < 0.13, and adding
BAO data gives ns = 0.9643 ± 0.0059 and r0.002 < 0.12. These
bounds are robust to the small changes in the polarization likeli-
hood at low multipoles. To test this robustness, instead of using
the WMAP polarization likelihood, we impose a Gaussian prior
τ = 0.07 ± 0.013 to take into account small shifts due to un-
certainties in residual foreground contamination or instrument
systematics in the evaluation of τ, as performed in Appendix B
of Planck Collaboration XVI (2013). We find at most a reduction
of 8% for the upper bound on r.

It is useful to plot the inflationary potentials in the ns–r plane
using the first two slow-roll parameters evaluated at the pivot
scale k∗ = 0.002 Mpc−1 (Dodelson et al., 1997). Given our ig-
norance of the details of the epoch of entropy generation, we
assume that the number of e-folds N∗ to the end of inflation lies
in the interval [50, 60]. This uncertainty is plotted for those po-
tentials predicting an exit from inflation without changing the
potential.

Fig. 1 shows the Planck constraints in the ns − r plane and
indicates the predictions of a number of representative inflation-
ary potentials. The sensitivity of Planck data to high multipoles
removes the degeneracy between ns and r found using WMAP
data. Planck data favour models with a concave potential. As
shown in Fig. 1, most of the joint 95% allowed region lies be-
low the convex potential limit, and concave models with a red
tilt in the range [0.945-0.98] are allowed by Planck at 95% CL.
In the following we consider the status of several illustrative and
commonly discussed inflationary potentials in light of the Planck
observations.

Power law potential and chaotic inflation

The simplest class of inflationary models is characterized by a
single monomial potential of the form

V(φ) = λM4
pl

(
φ

Mpl

)n
. (34)

This class of potentials includes the simplest chaotic models, in
which inflation starts from large values for the inflaton, φ > Mpl.
Inflation ends by violation of the slow-roll regime, and we as-
sume this occurs at εV = 1. According to Eqs. 5, 6, and 15,
this class of potentials predicts to lowest order in slow-roll pa-
rameters ns − 1 ≈ −n(n + 2)M2

pl/φ
2
∗, r ≈ 8n2M2

pl/φ
2
∗, φ

2
∗ ≈

nM2
pl(4N∗ + n)/2. The λφ4 model lies well outside of the joint

99.7% CL region in the ns − r plane. This result confirms pre-
vious findings from e.g., Hinshaw et al. (2012a) in which this
model is well outside the 95% CL for the WMAP 9-year data
and is further excluded by CMB data at smaller scales.

The model with a quadratic potential, n = 2 (Linde, 1983),
often considered the simplest example for inflation, now lies
outside the joint 95% CL for the Planck+WP+high-& data for
N∗ ! 60 e-folds, as shown in Fig. 1.

A linear potential with n = 1 (McAllister et al., 2010), mo-
tivated by axion monodromy, has ηV = 0 and lies within the
95% CL region. Inflation with n = 2/3 (Silverstein & Westphal,
2008), however, also motivated by axion monodromy, now lies
on the boundary of the joint 95% CL region. More permissive
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N∗ ! 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(φ) = Λ4
(
1 − φ

2

µ2

)2
, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ ! 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(φ) = Λ4
[
1 + cos

(
φ

f

)]
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f ! 1.5 Mpl) or small field ( f " 1.5 Mpl) classification scheme.
Therefore, ns ≈ 1 − M2

pl/ f 2 holds for small f and ns ≈ 1 − 2/N,
r ≈ 8/N holds for large f , approximating the m2φ2 potential in
the latter case (with N∗ ≈ (2 f 2/M2

pl) ln[sin(φe/ f )/ sin(φ∗/ f )]).
This model agrees with Planck+WP data for f ! 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, χ, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(φ, χ) = Λ4
(
1 − χ

2

µ2

)2
+ U(φ) +

g2

2
φ2χ2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton φ. The
second field χ is close to the origin during the slow-roll regime
for φ, and inflation ends either by breakdown of slow roll for
the inflaton at εφ ≈ M2

pl(dU/dφ)2/(Λ4 + U(φ))2 ≈ 1 or by the
waterfall transition of χ. The simplest models with

U(φ) =
m2

2
φ2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2φ2/2 ∼ Λ4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(φ) % Λ4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(φ) = αhΛ
4 ln
(
φ

µ

)
, (42)

predicts ns − 1 ≈ −(1 + 3αh/2)/N∗ and r ≈ 8αh/N∗. For αh % 1
and N∗ & 50, ns & 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N∗ < 50 or a non-negligible αh give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
∫

d4x
√−g

M2
pl

2

(
R +

R2

6M2

)
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns−1 ≈ −8(4N∗+9)/(4N∗+3) and r ≈ 192/(4N∗+3)2. Since r
is suppressed by another 1/N∗ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N∗ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
∫

d4x
√−g




M2
pl + ξφ

2

2
R − 1

2
gµν∂µφ∂νφ −

λ

4

(
φ2 − φ2

0

)2

 ,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (φ0 = 0)
agrees with the Planck+WP data for ξ ! 0. Within the range
50 < N∗ < 60, this model is within the Planck+WP joint
95% CL region for ξ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to λ/ξ2
for ξ ( 1, and therefore the problem of tiny values for the in-
flaton self-coupling λ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime φ0 % Mpl is allowed and φ
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ξ ( 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N∗. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ξ < 0 and |ξ|φ2
0/M

2
pl ∼ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton φ > φ0 is
disfavoured by Planck data, whereas the small field case φ < φ0
is in agreement with the data.

ns = 1− n + 2
2Ne

, r =
4n

Ne

∆φ(Ne) =
√

2nNe MP

f ! 1.5 MP : large-field (m2φ2) : ns = 1− 2
Ne

, r =
8

Ne

f " 1.5 MP : small-field : ns ≈ 1− M2
P

f2
, r → 0



single field models ...

• D-term hybrid inflation - disfavored if U(ɸ) is 
curving upward, like m2ɸ2 :

• hill-top small-field:
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-! Planck+WP+BAO

ΛCDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

−2∆ lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ΛCDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k∗ = 0.002 Mpc−1.

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N∗ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(φ) = Λ4 exp
(
−λ φ

Mpl

)
(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) ∝ t2/λ2

. This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = −8(ns − 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(φ) = Λ4
(
φ

Mpl

)−β
(36)

lead to inflation with a(t) ∝ exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + β) and β > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ≈ −8β(ns − 1)/(β − 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any β.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(φ) ≈ Λ4
(
1 − φ

p

µp + ...

)
, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns − 1 ≈ −4M2

pl/µ
2 + 3r/8 and

r ≈ 32φ2
∗M

2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ ! 9 Mpl.

Models with p ≥ 3 predict ns − 1 ≈ −(2/N)(p − 1)/(p − 2)
when r ∼ 0. The hill-top potential with p = 3 lies outside the

p = 2 : large-field, fits Planck for µ ! 9 MP

p ≥ 3 : small-field : ns = 1− 2
Ne

p− 1
p− 2

, r → 0 , fits Planck for p ≥ 4
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N∗ ! 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(φ) = Λ4
(
1 − φ

2

µ2

)2
, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ ! 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(φ) = Λ4
[
1 + cos

(
φ

f

)]
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f ! 1.5 Mpl) or small field ( f " 1.5 Mpl) classification scheme.
Therefore, ns ≈ 1 − M2

pl/ f 2 holds for small f and ns ≈ 1 − 2/N,
r ≈ 8/N holds for large f , approximating the m2φ2 potential in
the latter case (with N∗ ≈ (2 f 2/M2

pl) ln[sin(φe/ f )/ sin(φ∗/ f )]).
This model agrees with Planck+WP data for f ! 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, χ, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(φ, χ) = Λ4
(
1 − χ

2

µ2

)2
+ U(φ) +

g2

2
φ2χ2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton φ. The
second field χ is close to the origin during the slow-roll regime
for φ, and inflation ends either by breakdown of slow roll for
the inflaton at εφ ≈ M2

pl(dU/dφ)2/(Λ4 + U(φ))2 ≈ 1 or by the
waterfall transition of χ. The simplest models with

U(φ) =
m2

2
φ2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2φ2/2 ∼ Λ4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(φ) % Λ4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(φ) = αhΛ
4 ln
(
φ

µ

)
, (42)

predicts ns − 1 ≈ −(1 + 3αh/2)/N∗ and r ≈ 8αh/N∗. For αh % 1
and N∗ & 50, ns & 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N∗ < 50 or a non-negligible αh give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
∫

d4x
√−g

M2
pl

2

(
R +

R2

6M2

)
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns−1 ≈ −8(4N∗+9)/(4N∗+3) and r ≈ 192/(4N∗+3)2. Since r
is suppressed by another 1/N∗ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N∗ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
∫

d4x
√−g




M2
pl + ξφ

2

2
R − 1

2
gµν∂µφ∂νφ −

λ

4

(
φ2 − φ2

0

)2

 ,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (φ0 = 0)
agrees with the Planck+WP data for ξ ! 0. Within the range
50 < N∗ < 60, this model is within the Planck+WP joint
95% CL region for ξ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to λ/ξ2
for ξ ( 1, and therefore the problem of tiny values for the in-
flaton self-coupling λ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime φ0 % Mpl is allowed and φ
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ξ ( 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N∗. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ξ < 0 and |ξ|φ2
0/M

2
pl ∼ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton φ > φ0 is
disfavoured by Planck data, whereas the small field case φ < φ0
is in agreement with the data.
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joint 95% CL region for Planck+WP+BAO data; the case with
p = 4 is also in tension with Planck+WP+BAO, but allowed
within the joint 95% CL region for N∗ ! 50. For larger values of
r these models provide a better fit to the Planck+WP+BAO data.

A simple symmetry breaking potential

The symmetry-breaking potential (Olive, 1990)

V(φ) = Λ4
(
1 − φ

2

µ2

)2
, (38)

can be considered as a self-consistent completion of the hill-top
model with p = 2 (although it has a different limiting large-
field branch for non-zero r). This potential leads to predictions
in agreement with Planck + WP + BAO joint 95% CL contours
for super-Planckian value of µ, i.e. µ ! 13 Mpl.

Natural inflation

Another interesting class of potentials is natural inflation
(Freese et al., 1990; Adams et al., 1993), initially motivated by
its origin in symmetry-breaking in an attempt to naturally give
rise to the extremely flat potentials required for inflationary cos-
mology. In natural inflation the effective one-dimensional po-
tential takes the form

V(φ) = Λ4
[
1 + cos

(
φ

f

)]
, (39)

where f is a scale which determines the slope of the potential.
Depending on the value of f , the model falls into the large field
( f ! 1.5 Mpl) or small field ( f " 1.5 Mpl) classification scheme.
Therefore, ns ≈ 1 − M2

pl/ f 2 holds for small f and ns ≈ 1 − 2/N,
r ≈ 8/N holds for large f , approximating the m2φ2 potential in
the latter case (with N∗ ≈ (2 f 2/M2

pl) ln[sin(φe/ f )/ sin(φ∗/ f )]).
This model agrees with Planck+WP data for f ! 5 Mpl.

Hybrid inflation

In hybrid inflationary models a second field, χ, coupled to the
inflaton, undergoes symmetry breaking. The simplest example
of this class is

V(φ, χ) = Λ4
(
1 − χ

2

µ2

)2
+ U(φ) +

g2

2
φ2χ2 . (40)

For most of their parameter space, these models can be consid-
ered effectively as single field models for the inflaton φ. The
second field χ is close to the origin during the slow-roll regime
for φ, and inflation ends either by breakdown of slow roll for
the inflaton at εφ ≈ M2

pl(dU/dφ)2/(Λ4 + U(φ))2 ≈ 1 or by the
waterfall transition of χ. The simplest models with

U(φ) =
m2

2
φ2 (41)

are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2φ2/2 ∼ Λ4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(φ) % Λ4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
arately. As an example, the spontaneously broken SUSY model
(Dvali et al., 1994)

U(φ) = αhΛ
4 ln
(
φ

µ

)
, (42)

predicts ns − 1 ≈ −(1 + 3αh/2)/N∗ and r ≈ 8αh/N∗. For αh % 1
and N∗ & 50, ns & 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N∗ < 50 or a non-negligible αh give models that
are consistent with the Planck data.

R2 inflation

Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
∫

d4x
√−g

M2
pl

2

(
R +

R2

6M2

)
, (43)

with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns−1 ≈ −8(4N∗+9)/(4N∗+3) and r ≈ 192/(4N∗+3)2. Since r
is suppressed by another 1/N∗ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N∗ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action

S =
∫

d4x
√−g




M2
pl + ξφ

2

2
R − 1

2
gµν∂µφ∂νφ −

λ

4

(
φ2 − φ2

0

)2

 ,

(44)
leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (φ0 = 0)
agrees with the Planck+WP data for ξ ! 0. Within the range
50 < N∗ < 60, this model is within the Planck+WP joint
95% CL region for ξ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to λ/ξ2
for ξ ( 1, and therefore the problem of tiny values for the in-
flaton self-coupling λ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime φ0 % Mpl is allowed and φ
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ξ ( 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N∗. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ξ < 0 and |ξ|φ2
0/M

2
pl ∼ 1 was also recently

emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton φ > φ0 is
disfavoured by Planck data, whereas the small field case φ < φ0
is in agreement with the data.

ns = 1− 1 + 3αh/2
Ne

r =
8αh

Ne
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second field χ is close to the origin during the slow-roll regime
for φ, and inflation ends either by breakdown of slow roll for
the inflaton at εφ ≈ M2
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are disfavoured for most of the parameter space (Cortês &
Liddle, 2009). Models with m2φ2/2 ∼ Λ4 are disfavoured due to
a high tensor-to-scalar ratio, and models with U(φ) % Λ4 predict
a spectral index ns > 1, also disfavoured by the Planck data.

We discuss hybrid inflationary models predicting ns < 1 sep-
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predicts ns − 1 ≈ −(1 + 3αh/2)/N∗ and r ≈ 8αh/N∗. For αh % 1
and N∗ & 50, ns & 0.98 is disfavoured by Planck+WP+BAO
data at more than 95% CL. However, more permissive reheating
priors allowing N∗ < 50 or a non-negligible αh give models that
are consistent with the Planck data.
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Inflationary models can also be accommodated within extended
theories of gravity. These theories can be analysed either in the
original (Jordan) frame or in the conformally-related Einstein
frame with a Klein-Gordon scalar field. Due to the invariance of
curvature and tensor perturbation power spectra with respect to
this conformal transformation, we can use the same methodol-
ogy described earlier.

The first inflationary model proposed was of this type
and based on higher order gravitational terms in the action
(Starobinsky, 1980)

S =
∫

d4x
√−g
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with the motivation to include semi-classical quantum effects.
The predictions for R2 inflation were first studied in Mukhanov
& Chibisov (1981); Starobinsky (1983) and can be summarized
as: ns−1 ≈ −8(4N∗+9)/(4N∗+3) and r ≈ 192/(4N∗+3)2. Since r
is suppressed by another 1/N∗ with respect to the scalar tilt, this
model predicts a tiny amount of gravitational waves. This model
predicts ns = 0.963 for N∗ = 55 and is fully consistent with the
Planck constraints.

Non-minimally coupled inflaton

A non-minimal coupling of the inflaton to gravity with the action
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leads to several interesting consequences such as a lowering of
the tensor-to-scalar ratio.

The case of a massless self-interacting inflaton (φ0 = 0)
agrees with the Planck+WP data for ξ ! 0. Within the range
50 < N∗ < 60, this model is within the Planck+WP joint
95% CL region for ξ > 0.0019, improving previous bounds
(Okada et al., 2010).

The amplitude of scalar perturbations is proportional to λ/ξ2
for ξ ( 1, and therefore the problem of tiny values for the in-
flaton self-coupling λ can be alleviated (Salopek et al., 1989;
Fakir & Unruh, 1990). The regime φ0 % Mpl is allowed and φ
could be the Standard Model Higgs as proposed in Bezrukov &
Shaposhnikov (2009). The Higgs case with ξ ( 1 has the same
predictions as the R2 model in terms of ns and r as a function
of N∗. The reheating mechanism in the Higgs case can be more
efficient than in R2 case and therefore predicts a slightly larger
ns. This model is fully consistent with Planck constraints.

The case with ξ < 0 and |ξ|φ2
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emphasized in Linde et al. (2011). With the symmetry breaking
potential in Eq. 44, the large field case with inflaton φ > φ0 is
disfavoured by Planck data, whereas the small field case φ < φ0
is in agreement with the data.
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Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-! Planck+WP+BAO

ΛCDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

−2∆ lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ΛCDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k∗ = 0.002 Mpc−1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N∗ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(φ) = Λ4 exp
(
−λ φ

Mpl

)
(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) ∝ t2/λ2

. This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = −8(ns − 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(φ) = Λ4
(
φ

Mpl

)−β
(36)

lead to inflation with a(t) ∝ exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + β) and β > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ≈ −8β(ns − 1)/(β − 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any β.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(φ) ≈ Λ4
(
1 − φ

p

µp + ...

)
, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns − 1 ≈ −4M2

pl/µ
2 + 3r/8 and

r ≈ 32φ2
∗M

2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ ! 9 Mpl.

Models with p ≥ 3 predict ns − 1 ≈ −(2/N)(p − 1)/(p − 2)
when r ∼ 0. The hill-top potential with p = 3 lies outside the
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Model Instantaneous Restrictive Permissive
entropy generation entropy generation entropy generation

ln[E/E0] ∆χ2
eff ln[E/E0] ∆χ2

eff ln[E/E0] ∆χ2
eff

n = 4 −14.9 25.9 −18.8 27.2 −13.2 17.4
n = 2 −4.7 5.4 −7.3 6.3 −6.2 5.0
n = 1 −4.1 3.3 −5.4 2.8 −4.9 2.1
n = 2/3 −4.7 5.1 −5.2 3.1 −5.2 2.3
Natural −6.6 5.2 −8.9 5.5 −8.2 5.0
Hilltop −7.1 6.1 −9.1 7.1 −6.6 2.4
ΛCDM −4940.7 9808.4 ... ... ... ...

Table 7. Inflationary model comparison results. For each model and set of assumptions concerning entropy generation [(1), (2), (3)],
the natural logarithm of the Bayesian evidence ratio as well as ∆χ2

eff for the best-fit model in each category are indicated, relative to
the ΛCDM concordance model (denoted by subscript “0”); lnE0 and −2 lnL0 for the latter are also given.

Due to the non-trivial likelihood surfaces and the large di-
mensionality of the parameter spaces explored in this section,
we use ModeCode coupled with MultiNest v3.07 to map
out the parameter space. In addition to the standard nested sam-
pling (NS) algorithm, MultiNest v3.0 enables nested impor-
tance sampling (NIS), resulting in substantial speed gains8 and
significantly enhancing the accuracy of the Bayesian evidence
computation over NS alone for the same computational setup.

5.1. Results

Table 7 presents model comparison results for the ensemble
of parameterized potential families described above. We report
the Bayesian evidence (model-averaged likelihood) ratio, which
provides a self-consistent framework for calculating the betting
odds between models (see Sect. 3.4). The uncertainty in these
log evidence values is ≈ 0.2. We also report the ∆χ2

eff values
computed from the 2 lnLmax values found by the sampler.

The monomial models have a single-parameter potential, and
the natural and hilltop inflation models have two parameters
each. All reheating scenarios except case (1) contribute one ad-
ditional parameter to the inflationary sector. The evidence ratios
and ∆χ2

eff values are presented with respect to the ΛCDM cos-
mological model.

None of the inflationary models tested here fit the data as
well as the ΛCDM model. This mostly reflects that there is
no evidence in the data for r different from zero. Furthermore,
the priors listed in Table 6 for the ΛCDM primordial sector
are purely phenomenological, roughly corresponding to ranges
somewhat broader than WMAP constraints. Narrowing them
around the best-fit model arbitrarily increases the evidence in its
favour. Instead it is instructive to compare the relative evidence
for the inflationary models presented.

Table 7 shows that the λφ4 model is decisively ruled out by
Planck, confirming previous analyses by the WMAP team (Peiris
et al., 2003; Spergel et al., 2007; Dunkley et al., 2009; Komatsu
et al., 2011) based on the model track plotted on the ns− r plane.
Recent model selection analyses (Martin et al., 2011; Easther &
Peiris, 2012) with WMAP7 found that the model was already
under severe pressure, disfavoured by odds of ∼ 400:1 against.

7 Made available ahead of public release to the Planck Collaboration
by Farhan Feroz and Mike Hobson.

8 We have made extensive tests of NIS vs. NS, and chosen the fol-
lowing settings for the computations presented here: NIS on, constant
efficiency mode on, 300 live points, tolerance and efficiency parameters
set to 0.5 and 0.02, respectively.

With Planck, the odds against this model are at least 500, 000:1
when compared with ΛCDM, for a very broad set of reheating
scenarios. The same conclusion is reflected by the extremely
poor ∆χ2

eff values for the model. Given the strength of our re-
sults in the flexible setting of the permissive entropy generation
scenario, it is possible not just to rule out models where the po-
tential is of the quartic form in the full range from the origin to
the inflationary scales, but also a general class where the poten-
tial is of the n = 4 form in the φ-range where the cosmological
perturbations are generated, but exhibits a different shape near
the origin.

Two other large field models, the quadratic potential and nat-
ural inflation, are under some pressure from Planck data, espe-
cially when broader entropy generation scenarios are considered.
Compared with the ΛCDM model, these models are disfavoured
by ∆χ2

eff ∼ 5–6 depending on the reheating scenario. This re-
flects the analysis of Sect. 4, where the overlap of the model
predictions and the data constraints on the ns − r plane is seen to
be mostly outside the joint 68% CL contour. However, from the
Bayesian evidence point of view, it is too early to declare these
models incompatible with the data. To make this judgement, it
is more conservative to compare these models with the n = 1
case, which has the best evidence with respect to ΛCDM, rather
than with ΛCDM itself, which provides our reference point for
the evidence calculation, but has arbitrary prior ranges. In their
simplest forms – instant entropy generation – the n = 2 and nat-
ural inflation models are only disfavoured by odds of ∼ 1–12:1
against, which does not rise to a high level of significance9.

The models most compatible with the Planck data in the set
considered here are the two interesting axion monodromy poten-
tials, n = 1 (McAllister et al., 2010), and n = 2/3 (Silverstein
& Westphal, 2008), which are motivated by inflationary model
building in the context of string theory. The p = 4 hilltop model
presents an interesting case. This model was previously found to
be compatible with WMAP7 data, performing almost as well as
the monodromy potentials (Easther & Peiris, 2012). However it
exhibits significant tension with the Planck data, both in terms
of evidence ratios and the maximum likelihood. The only ex-
ception is the entropy generation scenario (3) which has odds of
> 1000:1 against compared to ΛCDM, and yet the maximum
likelihood is not significantly different to the n = 1 case. This
indicates that while the extra freedom allowed by the least con-
servative reheating scenario improves the best fit, this prior is
not very predictive of the data. However, the result is counterin-

9 In comparison, odds of 150:1 are considered highly significant in
this context.
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around the best-fit model arbitrarily increases the evidence in its
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Table 7 shows that the λφ4 model is decisively ruled out by
Planck, confirming previous analyses by the WMAP team (Peiris
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under severe pressure, disfavoured by odds of ∼ 400:1 against.
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by Farhan Feroz and Mike Hobson.
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lowing settings for the computations presented here: NIS on, constant
efficiency mode on, 300 live points, tolerance and efficiency parameters
set to 0.5 and 0.02, respectively.

With Planck, the odds against this model are at least 500, 000:1
when compared with ΛCDM, for a very broad set of reheating
scenarios. The same conclusion is reflected by the extremely
poor ∆χ2

eff values for the model. Given the strength of our re-
sults in the flexible setting of the permissive entropy generation
scenario, it is possible not just to rule out models where the po-
tential is of the quartic form in the full range from the origin to
the inflationary scales, but also a general class where the poten-
tial is of the n = 4 form in the φ-range where the cosmological
perturbations are generated, but exhibits a different shape near
the origin.

Two other large field models, the quadratic potential and nat-
ural inflation, are under some pressure from Planck data, espe-
cially when broader entropy generation scenarios are considered.
Compared with the ΛCDM model, these models are disfavoured
by ∆χ2

eff ∼ 5–6 depending on the reheating scenario. This re-
flects the analysis of Sect. 4, where the overlap of the model
predictions and the data constraints on the ns − r plane is seen to
be mostly outside the joint 68% CL contour. However, from the
Bayesian evidence point of view, it is too early to declare these
models incompatible with the data. To make this judgement, it
is more conservative to compare these models with the n = 1
case, which has the best evidence with respect to ΛCDM, rather
than with ΛCDM itself, which provides our reference point for
the evidence calculation, but has arbitrary prior ranges. In their
simplest forms – instant entropy generation – the n = 2 and nat-
ural inflation models are only disfavoured by odds of ∼ 1–12:1
against, which does not rise to a high level of significance9.

The models most compatible with the Planck data in the set
considered here are the two interesting axion monodromy poten-
tials, n = 1 (McAllister et al., 2010), and n = 2/3 (Silverstein
& Westphal, 2008), which are motivated by inflationary model
building in the context of string theory. The p = 4 hilltop model
presents an interesting case. This model was previously found to
be compatible with WMAP7 data, performing almost as well as
the monodromy potentials (Easther & Peiris, 2012). However it
exhibits significant tension with the Planck data, both in terms
of evidence ratios and the maximum likelihood. The only ex-
ception is the entropy generation scenario (3) which has odds of
> 1000:1 against compared to ΛCDM, and yet the maximum
likelihood is not significantly different to the n = 1 case. This
indicates that while the extra freedom allowed by the least con-
servative reheating scenario improves the best fit, this prior is
not very predictive of the data. However, the result is counterin-

9 In comparison, odds of 150:1 are considered highly significant in
this context.



PLANCK ... large-scale anomalies !!

• hemispheric asymmetry of mean power and 
temperature ~ 3 σ  

• quadrupole - octopole alignment 

• cold spot ~ 3 σ


• fit Planck data from high-precision data at l > 100, 
then predict from that power at l < 30:  
too low power at low-l, 10% deficit, ~ 2.7 σ

theory task: explain!
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http://stringpheno2013.desy.de/


Welcome to Hamburg in July 

2013!! 


Hope to see you all there and then!


