Chirality from Heterotic Orbifolds

Patrick K. S. Vaudrevange

DESY Hamburg

March 23rd, 2012

LMU Munich

Based on:

- M. Fischer, S. Ramos-Sánchez and P. V.: $13 \times x . x \times x x$
$>$ S. Groot Nibbelink and P. V.: 1212.4033, accepted by JHEP
- M. Fischer, M. Ratz, J. Torrado and P. V.: 1209.3906, JHEP 1301 (2013) 084

Summary

- Classification of all toroidal orbifold geometries with heterotic $\mathcal{N}=1$
$\Rightarrow 469$ orbifolds
- (50 orbifold geometries with $\mathcal{N}=2$)
- Computation of Hodge numbers based on SUSY in $d \geq 4$
- 38 orbifold geometries with $h^{1,1}=h^{2,1}$
\Rightarrow always non-chiral using standard heterotic CFT
- Magnetized orbifolds to create chirality in blow-up

Classification of Toroidal Orbifolds

Space group S

- def. S : discrete subgroup of the group of motions in R^{6} with 6 linearly independent translations
- space group elements:

$$
g=(\vartheta, \lambda) \text { for } g \in S
$$

acts on $x \in \mathrm{R}^{6}$ as

$$
x \mapsto g x=\vartheta x+\lambda
$$

- define orbifold

$$
O=\mathrm{R}^{6} / S \text { where } x \sim \vartheta x+\lambda \text { for all } g \in S
$$

define point group: $\vartheta \in P$

Classification of Toroidal Orbifolds

Examples in 2D

- space group generated by

$$
\begin{aligned}
& \left(\mathbb{1}, e_{1}\right),\left(\mathbb{1}, e_{2}\right) \text { and }(\vartheta, 0) \\
& \text { where } \vartheta e_{i}=-e_{i}
\end{aligned}
$$

- orbifold: pillow

Classification of Toroidal Orbifolds

Examples in 2D

- space oroup osenerated by

$$
\begin{aligned}
& \left(\mathbb{1}, e_{1}\right),\left(\mathbb{1}, e_{2}\right) \text { and }\left(\vartheta, \frac{1}{2} e_{1}\right) \\
& \text { where } \vartheta e_{1}=e_{1} \text { and } \vartheta e_{2}=-e_{2}
\end{aligned}
$$

- orbifold: Klein bottle

Classification of Toroidal Orbifolds

Classification

- CARAT: all space groups in up to 6 dim.
\cdot get \mathbb{Q} classes (point groups) $\Rightarrow 7103$ point groups in 6D
- check $\mathcal{N} \geq 1$ using GAP
- create \mathbb{Z}-classes (lattices)
- create affine classes (inequivalent space groups)

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice Λ
- point group P
- orbifolding group G (includes roto-translations)
- equivalences and SUSY
- results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices
520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\stackrel{\rightharpoonup}{ } 162$ with Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice \wedge
- point group P
- orbifolding froup G
- equivalepces and SUSY
- results of classification:
(60)inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices
520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\rightarrow 162$ with Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice \wedge
- point group
- orbifolding group G not all lattices are Lie lattices
- equivalences and SUSY
- results of classification:
(d) inequivalent point groups with $\mathcal{N} \geq 1$
(186) inequivalent lattices

520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\mapsto 162$ with Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice Λ
- point group
- orbifolding group G
- equivalences and SUSY
- results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$
$1 \$ 6$ inequivalent lattices
(520) inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\rightarrow 162$ with Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice Λ
- point group P
- orbifolding group G (includes roto-translations)
- equivalences and SUSY
- results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices
520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\stackrel{\rightharpoonup}{ } 162$ with Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice Λ
- point group P
- orbifolding group G

non-local GUT breaking:

21 space groups from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ 6 space groups from $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ 4 space groups from $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$

- equivalences a 1 L SUSY
- results of classification:

60 ineq ivalent point groups with $\mathcal{N} \geq 1$
186 inequivalent lattices
520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\rightarrow 162$ vith Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Classification of Toroidal Orbifolds

Summary

- space group S
- lattice Λ
- point group P
- orbifolding group G (includes roto-translations)
- equivalences and SUSY
- results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices
520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$
$\stackrel{\rightharpoonup}{ } 162$ with Abelian point group
$\rightarrow 138$ with $\mathcal{N}=1$
$\rightarrow 358$ with non-Abelian point group
$\hookrightarrow 331$ with $\mathcal{N}=1$

Hodge numbers $\left(h^{1,1}, h^{2,1}\right)$

- Standard embedding $\Rightarrow \# 27$ and $\overline{27}$ gives Hodge numbers
- Many more heterotic orbifold compactifications due to gauge embedding (shift, Wilson lines, discrete torsion \Leftrightarrow "flux background")
- For Abelian orbifolds: use "orbifolder"
H.P. Nilles, S. Ramos-Sánchez, P. V. and A. Wingerter 2011
- For non-Abelian orbifolds: use SUSY in $d \geq 4$

Hodge numbers $\left(h^{1,1}, h^{2,1}\right)$ from SUSY in $d \geq 4$

- $\left(h^{1,1}, h^{2,1}\right)$ from untwisted and twisted sectors
- Untwisted sector: count invariant moduli
- Twisted sectors: fixed points and fixed tori:

$$
\begin{aligned}
& \mathcal{N}=2 \text { in } 4 \mathrm{D} \Rightarrow(1,1) \\
& \mathcal{N}=1 \text { in } 4 \mathrm{D} \Rightarrow(1,0)
\end{aligned}
$$

- Fixed point: $4 \mathrm{D} \mathcal{N}=1 \Rightarrow(1,0)$
- Fixed torus: $6 \mathrm{D} \mathcal{N}=1$ equal to $4 \mathrm{D} \mathcal{N}=2 \Rightarrow(1,1)$

But, further orbifold action:
fixed torus is orbifolded $\Rightarrow \mathcal{N}=1$ in 4 D , hence $(1,0)$
fixed torus is not orbifolded $\Rightarrow \mathcal{N}=2$ in 4D, hence (1,1)

$h^{2,1}$ vs. $h^{1,1}$ for Abelian orbifold geometries

Number of generations for Abelian orbifold geometries

M. Fischer, M. Ratz, J. Torrado and P. V. 2012

Number of generations for Abelian orbifold geometries

- $h^{1,1}-h^{2,1}$ always divisible by six
- Only exception: $\left(h^{1,1}, h^{2,1}\right)=(20,0)$
- No geometry with three generations
\Rightarrow discrete Wilson lines needed for three generations
$h^{2,1}$ vs. $h^{1,1}$ for non-Abelian orbifold geometries

(preliminary)
M. Fischer, S. Ramos-Sánchez and P. V. 2013

Number of generations for non-Abelian orbifold geometries

[^0]Number of generations for Abelian orbifold geometries

- No pattern for $h^{1,1}-h^{2,1}$
- Two geometries with three generations:

$$
\begin{array}{lll}
T^{6} / A_{4} & \text { orbifold with } & \left(h^{1,1}, h^{2,1}\right)=(6,3) \\
T^{6} / S_{4} & \text { orbifold with } & \left(h^{1,1}, h^{2,1}\right)=(5,2)
\end{array}
$$

$h^{2,1}$ vs. $h^{1,1}$ for all orbifold geometries

(preliminary)
M. Fischer, S. Ramos-Sánchez and P. V. 2013

Number of generations for all orbifold geometries

[^1]
Number of generations for all orbifold geometries

- 38 orbifold geometries with $h^{1,1}=h^{2,1}$:

23	$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$	orbifolds
11	T^{6} / S_{3}	orbifolds
1	T^{6} / D_{4}	orbifold
3	T^{6} / A_{4}	orbifolds

- Here: chiral spectrum not possible using standard CFT
- Remark: (heterotic) $h^{1,1}=h^{2,1}$ implies (spontaneously broken) $\mathcal{N}=2$
A. Kashani-Poor, R. Minasian, H. Triendl arXiv:1301.5031
- Conjecture: $h^{1,1}=h^{2,1}$ and $h_{T}^{1,1}=h_{T}^{2,1}=0$ implies (spontaneously broken) $\mathcal{N}=4$

Schoen manifold with line bundles as resolved magnetized orbifold

S. Groot Nibbelink and P. V. 2012

- Schoen manifold $=$ resolved $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold with roto-translation (DW(0-2)) R. Donagi and k. Wendland 2008
- Heterotic DW(0-2) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold always non-chiral (SUSY in $d \geq 4$)
- Blow-up thereof also non-chiral

Schoen manifold with line bundles as resolved magnetized orbifold

S. Groot Nibbelink and P. V. 2012

- But: heterotic Schoen manifold with line bundles can be chiral using SU(5) bundles: e.g. R. Donagi, B. Ovrut, T. Pantev and D. Waldram 2000
- Way-out: resolved $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold with magnetized tori (flux on i-th torus $B_{i}, i=1,2,3$)
- Description only known in SUGRA limit
- Conjecture how torus-flux enters CFT modular invariance and string mass conditions:

$$
\begin{aligned}
V^{2}=\frac{3}{2} \bmod 1 & \Rightarrow V^{2}=\frac{3}{2}+\frac{1}{4} B_{i} \cdot B_{3} \bmod 1 \\
\frac{1}{2}(p+V)^{2}+\tilde{N}-\frac{3}{4}=0 & \Rightarrow \frac{1}{2}(p+V)^{2}+\tilde{N}-\frac{3}{4}-\frac{1}{8} B_{i} \cdot B_{3}=0
\end{aligned}
$$

Summary

- Classification of all toroidal orbifold geometries with heterotic $\mathcal{N}=1$
$\Rightarrow 469$ orbifolds
- (50 orbifold geometries with $\mathcal{N}=2$)
- Computation of Hodge numbers based on SUSY in $d \geq 4$
- 38 orbifold geometries with $h^{1,1}=h^{2,1}$
\Rightarrow always non-chiral using standard heterotic CFT
- Magnetized orbifolds to create chirality in blow-up

[^0]: (preliminary) M. Fischer, S. Ramos-Sánchez and P. V. 2013

[^1]: (preliminary) M. Fischer, S. Ramos-Sánchez and P. V. 2013

