Chirality from Heterotic Orbifolds

Patrick K. S. Vaudrevange

DESY Hamburg

March 23rd, 2012

LMU Munich

Based on:

- M. Fischer, S. Ramos-Sánchez and P. V.: 13xx.xxxx
- S. Groot Nibbelink and P. V.: 1212.4033, accepted by JHEP
- M. Fischer, M. Ratz, J. Torrado and P. V.: 1209.3906, JHEP 1301 (2013) 084

Summary

 \blacktriangleright Classification of all toroidal orbifold geometries with heterotic $\mathcal{N}=1$

\Rightarrow 469 orbifolds

- (50 orbifold geometries with $\mathcal{N} = 2$)
- Computation of Hodge numbers based on SUSY in $d \ge 4$
- ▶ 38 orbifold geometries with $h^{1,1} = h^{2,1}$

 \Rightarrow always non-chiral using standard heterotic CFT

Magnetized orbifolds to create chirality in blow-up

Space group $\boldsymbol{\mathsf{S}}$

- def. S: discrete subgroup of the group of motions in \mathbb{R}^6 with 6 linearly independent translations
- space group elements:

$$g = (\vartheta, \lambda)$$
 for $g \in S$

acts on $x \in \mathbf{R}^6$ as

$$x \mapsto g x = \vartheta x + \lambda$$

 $\boldsymbol{\cdot} \text{ define orbifold}$

 $O = \mathrm{R}^6/S \text{ where } x \sim \vartheta x + \lambda \text{ for all } g \in S$ define point group: $\vartheta \in P$

Classification

- \cdot CARAT: all space groups in up to 6 dim.
- get \mathbb{Q} classes (point groups) \Rightarrow 7103 point groups in 6D
- $\cdot \ \mathrm{check} \ \mathcal{N} \geq 1 \ \mathrm{using} \ \mathrm{GAP}$
- create \mathbb{Z} -classes (lattices)
- \cdot create affine classes (inequivalent space groups)

Summary

- $\cdot\,{\rm space\ group}\ S$
- $\boldsymbol{\cdot} \; \mathrm{lattice} \; \Lambda$
- $\boldsymbol{\cdot} \operatorname{point} \operatorname{group} P$
- \cdot orbifolding group G (includes roto-translations)
- equivalences and SUSY
- \cdot results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices 520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$ \rightarrow 162 with Abelian point group \rightarrow 138 with $\mathcal{N} = 1$ \rightarrow 358 with non-Abelian point group \rightarrow 331 with $\mathcal{N} = 1$

Summary

- $\cdot\,{\rm space\ group}\ S$
- $\boldsymbol{\cdot} \; \mathrm{lattice} \; \Lambda$
- $\boldsymbol{\cdot} \operatorname{point} \operatorname{group} P$
- \cdot orbifolding group G (includes roto-translations)
- equivalences and SUSY
- \cdot results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices 520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$ \rightarrow 162 with Abelian point group \rightarrow 138 with $\mathcal{N} = 1$ \rightarrow 358 with non-Abelian point group \rightarrow 331 with $\mathcal{N} = 1$

Summary

- $\cdot\,{\rm space\ group}\ S$
- $\boldsymbol{\cdot} \; \mathrm{lattice} \; \Lambda$
- $\boldsymbol{\cdot} \operatorname{point} \operatorname{group} P$
- \cdot orbifolding group G (includes roto-translations)
- equivalences and SUSY
- \cdot results of classification:

60 inequivalent point groups with $\mathcal{N} \geq 1$ 186 inequivalent lattices 520 inequivalent toroidal orbifolds with $\mathcal{N} \geq 1$ \rightarrow 162 with Abelian point group \rightarrow 138 with $\mathcal{N} = 1$ \rightarrow 358 with non-Abelian point group \rightarrow 331 with $\mathcal{N} = 1$ Hodge numbers $(h^{1,1}, h^{2,1})$

- Standard embedding $\Rightarrow \# 27$ and $\overline{27}$ gives Hodge numbers
- For Abelian orbifolds: use "orbifolder"

H.P. Nilles, S. Ramos-Sánchez, P. V. and A. Wingerter 2011

▶ For non–Abelian orbifolds: use SUSY in d ≥ 4

Hodge numbers $(h^{1,1}, h^{2,1})$ from SUSY in $d \ge 4$

- ▶ $(h^{1,1}, h^{2,1})$ from untwisted and twisted sectors
- Untwisted sector: count invariant moduli
- Twisted sectors: fixed points and fixed tori:

 $\mathcal{N} = 2 \text{ in } 4D \Rightarrow (1,1)$ $\mathcal{N} = 1 \text{ in } 4D \Rightarrow (1,0)$

- Fixed point: 4D $\mathcal{N} = 1 \Rightarrow (1,0)$
- ► Fixed torus: 6D N = 1 equal to 4D N = 2 ⇒ (1,1) But, further orbifold action:

fixed torus is orbifolded $\Rightarrow \mathcal{N} = 1$ in 4D, hence (1,0) fixed torus is not orbifolded $\Rightarrow \mathcal{N} = 2$ in 4D, hence (1,1)

 $h^{2,1}$ vs. $h^{1,1}$ for Abelian orbifold geometries

M. Fischer, M. Ratz, J. Torrado and P. V. 2012

Number of generations for Abelian orbifold geometries

M. Fischer, M. Ratz, J. Torrado and P. V. 2012

Number of generations for Abelian orbifold geometries

- $h^{1,1} h^{2,1}$ always divisible by six
- Only exception: $(h^{1,1}, h^{2,1}) = (20, 0)$
- No geometry with three generations
 ⇒ discrete Wilson lines needed for three generations

 $h^{2,1}$ vs. $h^{1,1}$ for non–Abelian orbifold geometries

(preliminary) M. Fischer, S. Ramos-Sánchez and P. V. 2013

Number of generations for non-Abelian orbifold geometries

(preliminary) M. Fischer, S. Ramos-Sánchez and P. V. 2013

Number of generations for Abelian orbifold geometries

- No pattern for $h^{1,1} h^{2,1}$
- Two geometries with three generations:

$$T^6/A_4$$
 orbifold with $(h^{1,1}, h^{2,1}) = (6,3)$
 T^6/S_4 orbifold with $(h^{1,1}, h^{2,1}) = (5,2)$

$h^{2,1}$ vs. $h^{1,1}$ for all orbifold geometries

(preliminary) M. Fischer, S. Ramos-Sánchez and P. V. 2013

Number of generations for all orbifold geometries

(preliminary) M. Fischer, S. Ramos-Sánchez and P. V. 2013

Number of generations for all orbifold geometries

▶ 38 orbifold geometries with $h^{1,1} = h^{2,1}$:

23	$T^6/\mathbb{Z}_2 imes\mathbb{Z}_2$	orbifolds
11	T^{6}/S_{3}	orbifolds
1	T^6/D_4	orbifold
3	T^{6}/A_{4}	orbifolds

- Here: chiral spectrum not possible using standard CFT
- Remark:

(heterotic) $h^{1,1} = h^{2,1}$ implies (spontaneously broken) $\mathcal{N} = 2$

A. Kashani-Poor, R. Minasian, H. Triendl arXiv:1301.5031

• Conjecture: $h^{1,1} = h^{2,1}$ and $h_T^{1,1} = h_T^{2,1} = 0$ implies (spontaneously broken) $\mathcal{N} = 4$

Schoen manifold with line bundles as resolved magnetized orbifold

- S. Groot Nibbelink and P. V. 2012
 - Schoen manifold = resolved Z₂ × Z₂ orbifold with roto-translation (DW(0-2)) R. Donagi and K. Wendland 2008
 - ▶ Heterotic DW(0-2) Z₂ × Z₂ orbifold always non-chiral (SUSY in d ≥ 4)
 - Blow-up thereof also non-chiral

Schoen manifold with line bundles as resolved magnetized orbifold

- S. Groot Nibbelink and P. V. 2012
 - But: heterotic Schoen manifold with line bundles can be chiral

using $\mathrm{SU}(5)$ bundles: e.g. R. Donagi, B. Ovrut, T. Pantev and D. Waldram 2000

- ► Way-out: resolved Z₂ × Z₂ orbifold with magnetized tori (flux on *i*-th torus B_i, i = 1, 2, 3)
- Description only known in SUGRA limit
- Conjecture how torus–flux enters CFT modular invariance and string mass conditions:

$$V^{2} = \frac{3}{2} \mod 1 \quad \Rightarrow \quad V^{2} = \frac{3}{2} + \frac{1}{4}B_{i} \cdot B_{3} \mod 1$$
$$\frac{1}{2}(p+V)^{2} + \tilde{N} - \frac{3}{4} = 0 \quad \Rightarrow \quad \frac{1}{2}(p+V)^{2} + \tilde{N} - \frac{3}{4} - \frac{1}{8}B_{i} \cdot B_{3} = 0$$

Summary

 \blacktriangleright Classification of all toroidal orbifold geometries with heterotic $\mathcal{N}=1$

\Rightarrow 469 orbifolds

- (50 orbifold geometries with $\mathcal{N} = 2$)
- Computation of Hodge numbers based on SUSY in $d \ge 4$
- ▶ 38 orbifold geometries with $h^{1,1} = h^{2,1}$

 \Rightarrow always non-chiral using standard heterotic CFT

Magnetized orbifolds to create chirality in blow-up