Generalised Geometry of Supergravity

Charles Strickland-Constable
Universität Hamburg

21st March 2013
Based on work with André Coimbra and Daniel Waldram

$$
\text { arxiv: } 1107.1733,1112.3989,1212.1586
$$

Introduction

- Reformulation of supergravity using:

$$
\begin{aligned}
& O(d, d) \times \mathbb{R}^{+} \text {generalised geometry } \leftrightarrow \text { Type II } \\
& E_{d(d)} \times \mathbb{R}^{+} \text {generalised geometry } \leftrightarrow 11 \mathrm{D}
\end{aligned}
$$

- Bosonic sector purely geometrical (exactly like GR)
- SUSY and fermion equations naturally included
- Bosonic symmetries and degrees of freedom both unified
- Mathematically nice structure

Outline of talk

- Review: Features of ordinary geometry and gravity
- Internal sector of 11D supergravity and $E_{d(d)} \times \mathbb{R}^{+}$group
- $E_{d(d)} \times \mathbb{R}^{+}$Generalised Geometry
- Generalised metric and H_{d} structures
\rightarrow Recovering supergravity equations
\rightarrow Example: $d=7$ with $S U(8)$ indices [de Wit \& Nicolai '86]
- Concluding remarks
\rightarrow Connections to other works
\rightarrow Future directions

Ordinary Geometry and GR

- Manifold M of dimension d, with tangent bundle $T M$
- Frame bundle:

$$
F=\left\{\left(x,\left\{\hat{e}_{a}\right\}\right): x \in M \text { and }\left\{\hat{e}_{a}\right\} \text { is a basis for } T_{x} M\right\} .
$$

is principal bundle with structure group $G L(d, \mathbb{R})$

Ordinary Geometry and GR

- Diffeomorphisms
\rightarrow generated by vector fields $v \in T M$
\rightarrow acts by Lie derivative $\delta_{v}=\mathcal{L}_{v}$
\rightarrow algebra $\left[\delta_{v_{1}}, \delta_{v_{2}}\right]=\delta_{\left[v_{1}, v_{2}\right]}$
- Lie derivative is derivative minus adjoint action of $G L(d, \mathbb{R})$

$$
\mathcal{L}_{v}=\partial_{v}-(\partial \otimes v)
$$

thinking of $(\partial \otimes v)^{\mu}{ }_{\nu} \sim \partial_{\nu} v^{\mu}$ as matrix in $\mathfrak{g l}(d, \mathbb{R})$

- E.g. $\left(\mathcal{L}_{v} w\right)^{\mu}=\left(v^{\nu} \partial_{\nu}\right) w^{\mu}-\left(\partial_{\nu} v^{\mu}\right) w^{\nu}$

Ordinary Geometry and GR

- Connection ∇ on $T M ; \quad \nabla_{\mu} v^{a}=\partial_{\mu} v^{a}+\omega_{\mu}{ }^{a}{ }_{b} v^{b}$
- Torsion defined by

$$
T(v)=\mathcal{L}_{v}^{\nabla}-\mathcal{L}_{v}, \quad v \in T M
$$

- Naively $T \in T^{*} M \otimes \operatorname{ad}(F)$ but in fact $T \in T M \otimes \Lambda^{2} T^{*} M$
- All structure so far exists without introducing a metric!

Ordinary Geometry and GR

- Gravity field \leftrightarrow metric $g_{\mu \nu}$ of signature $(d-1,1)$ on $T M$
- Metric equivalent to principal $O(d-1,1)$ sub-bundle

$$
P=\left\{\left(x,\left\{\hat{e}_{a}\right\}\right) \in F: g\left(\hat{e}_{a}, \hat{e}_{b}\right)=\eta_{a b}\right\}
$$

- $\exists \nabla$ torsion-free $O(d-1,1)$ compatible connection (Compatible $\Leftrightarrow \omega^{a}{ }_{b} \in \operatorname{ad}(P) \Leftrightarrow \nabla g=0$)
- Note: Levi-Civita connection exists uniquely
- Curvatures $[\nabla, \nabla]$ give action \& eqns of motion
- All defined purely by the $O(d-1,1)$ structure

Generalised Geometry: The Plan

- Define generalised tangent bundle as generators of bosonic symmetries of SUGRA [Structure group: $O(d, d)$ or $E_{d(d)}$]
- Define analogues of Lie derivative, connections and torsion
- Define principal sub-bundle using bosonic fields of SUGRA [Structure group: $O(d) \times O(d)$ or H_{d}]
- Find analogue of Levi-Civita and resulting curvatures

- Field content $\left\{g_{\mu \nu}, \mathcal{A}_{\mu \nu \rho}, \psi_{\mu}\right\}$ with $\mathcal{F}=\mathrm{d} \mathcal{A}$
- Bosonic Action

$$
S_{\mathrm{B}} \sim \int\left(\operatorname{vol}_{g} \mathcal{R}-\frac{1}{2} \mathcal{F} \wedge * \mathcal{F}-\frac{1}{6} \mathcal{A} \wedge \mathcal{F} \wedge \mathcal{F}\right)
$$

- Supersymmetry

$$
\delta \psi_{\mu}=\nabla_{\mu} \epsilon+\frac{1}{288}\left(\Gamma_{\mu}^{\nu_{1} \ldots \nu_{4}}-8 \delta_{\mu}^{\nu_{1}} \Gamma^{\nu_{2} \nu_{3} \nu_{4}}\right) \mathcal{F}_{\nu_{1} \ldots \nu_{4}} \epsilon,
$$

Restricting to d dimensions

- Warped metric ansatz $(m, n=1, \ldots, d)$

$$
\mathrm{d} s_{11}^{2}=\mathrm{e}^{2 \Delta(x)} \eta_{\mu \nu} \mathrm{d} y^{\mu} \mathrm{d} y^{\nu}+g_{m n}(x) \mathrm{d} x^{m} \mathrm{~d} x^{n}
$$

- Internal gauge field $A_{m n p}=\mathcal{A}_{m n p}$ and field strength $F=\mathrm{d} A$
- (If $d \geq 7$) Dual field strength $\tilde{F}_{m_{1} \ldots m_{7}} \sim *_{(11)} \mathcal{F}_{m_{1} \ldots m_{7}}$
- Introduce 6-form potential $\tilde{A}_{m_{1} \ldots m_{6}}$ s.t. $\tilde{F}=\mathrm{d} \tilde{A}-\frac{1}{2} A \wedge F$
- Gauge transformation: $\left(\Lambda \in \Lambda^{2} T^{*} M, \tilde{\Lambda} \in \Lambda^{5} T^{*} M\right)$

$$
A^{\prime}=A+\mathrm{d} \Lambda \quad \tilde{A}^{\prime}=\tilde{A}+\mathrm{d} \tilde{\Lambda}-\frac{1}{2} \mathrm{~d} \Lambda \wedge A
$$

Restricting to d dimensions

- Fields are $\left\{g_{m n}, A_{m n p}, \tilde{A}_{m_{1} \ldots m_{6}}, \Delta, \psi_{m}, \rho\right\}$
- Action $(c+d=11)$

$$
S_{\mathrm{B}}=\frac{1}{2 \kappa^{2}} \int \sqrt{g} \mathrm{e}^{c \Delta}\left(\mathcal{R}+c(c-1)(\partial \Delta)^{2}-\frac{1}{2} \frac{1}{4!} F^{2}-\frac{1}{2} \frac{1}{7!} \tilde{F}^{2}\right)
$$

Action of $E_{d(d)} \times \mathbb{R}^{+}$in $G L(d, \mathbb{R})$ representations

- Consider a vector space F of dimension $d \leq 7$, and set

$$
\begin{gathered}
W_{1}=F \oplus \Lambda^{2} F^{*} \oplus \Lambda^{5} F^{*} \oplus\left(F^{*} \otimes \Lambda^{7} F^{*}\right) \\
W_{2}=\mathbb{R} \oplus\left(F \otimes F^{*}\right) \oplus \Lambda^{3} F^{*} \oplus \Lambda^{6} F^{*} \oplus \Lambda^{3} F \oplus \Lambda^{6} F
\end{gathered}
$$

- These are $G L(d, \mathbb{R})$ decompositions

$$
W_{1} \sim\left\{\begin{array}{ll}
\mathbf{1 0} & E_{4(4)} \times \mathbb{R}^{+} \\
\mathbf{1 6} & E_{5(5)} \times \mathbb{R}^{+} \\
\mathbf{2 7} & E_{6(6)} \times \mathbb{R}^{+} \\
\mathbf{5 6} & E_{7(7)} \times \mathbb{R}^{+}
\end{array} \quad W_{2} \sim \operatorname{ad}\left(E_{d(d)} \times \mathbb{R}^{+}\right)\right.
$$

Action of $\Lambda^{3} F^{*} \oplus \Lambda^{6} F^{*}$

- Take $a \in \Lambda^{3} F^{*}$ and $\tilde{a} \in \Lambda^{6} F^{*}$ and

$$
V=v+\omega+\sigma+\tau \in W_{1}
$$

- Then action of $a+\tilde{a}$ on V given by

$$
(a+\tilde{a}) \cdot V=(0)+(v\lrcorner a)+(v\lrcorner \tilde{a}+a \wedge \omega)+(j a \wedge \sigma-j \tilde{a} \wedge \omega)
$$

- This exponentiates to

$$
\begin{aligned}
\mathrm{e}^{a+\tilde{a}} \cdot V=v & +\left(\omega+i_{v} a\right) \\
& +\left(\sigma+a \wedge \omega+\frac{1}{2} a \wedge i_{v} a+i_{v} \tilde{a}\right) \\
& +\left(\tau+j a \wedge \sigma-j \tilde{a} \wedge \omega+\frac{1}{2} j a \wedge a \wedge \omega\right. \\
& \left.+\frac{1}{2} j a \wedge i_{v} \tilde{a}-\frac{1}{2} j \tilde{a} \wedge i_{v} a+\frac{1}{6} j a \wedge a \wedge i_{v} a\right)
\end{aligned}
$$

Generators of Supergravity Symmetries

- Have the following actions of symmetries

Symmetry	Generator	Action
Diffeo	$v \in T M$	$\delta_{v}=\mathcal{L}_{v}$
Gauge	$\omega \in \Lambda^{2} T^{*} M$	$\left\{\begin{array}{l}\delta A=\mathrm{d} \omega \\ \delta \tilde{A}=-\frac{1}{2} \mathrm{~d} \omega \wedge A \\ \text { Gauge }\end{array}\right.$
	$\sigma \in \Lambda^{5} T^{*} M$	$\delta \tilde{A}=\mathrm{d} \sigma$

- But A, \tilde{A} only locally defined on $U_{(i)} \subset M$

$$
\begin{aligned}
& A_{(i)}=A_{(j)}+\mathrm{d} \Lambda_{(i j)} \\
& \tilde{A}_{(i)}=\tilde{A}_{(j)}+\mathrm{d} \tilde{\Lambda}_{(i j)}-\frac{1}{2} \mathrm{~d} \Lambda_{(i j)} \wedge A_{(j)}
\end{aligned}
$$

- This \Rightarrow patching rules for v, ω, σ

Generalised Tangent Bundle pual or: Pasteoo e watam ool

- Consider a bundle

$$
E \simeq T M \oplus \Lambda^{2} T^{*} M \oplus \Lambda^{5} T^{*} M \oplus\left(T^{*} M \otimes \Lambda^{7} T^{*} M\right)
$$

- Define s.t. on patches $U_{(i)} \subset M$ represent section as

$$
V_{(i)} \in \Gamma\left(T U_{i} \oplus \Lambda^{2} T^{*} U_{i} \oplus \Lambda^{5} T^{*} U_{i} \oplus\left(T^{*} U_{i} \otimes \Lambda^{7} T^{*} U_{i}\right)\right)
$$

- Twisted by gauge transformations between patches

$$
V_{(i)}=\mathrm{e}^{\mathrm{d} \Lambda_{(i j)}+\mathrm{d} \tilde{\Lambda}_{(i j)}} \cdot V_{(j)}
$$

- This ensures sections of $E \leftrightarrow$ generators of symmetries

Generalised Tangent Bundle mul or: pasheoo © Wadeam oul

- Crucially $\mathrm{e}^{\mathrm{d} \Lambda_{(i j)}+\mathrm{d} \tilde{\Lambda}_{(i j)}} \in E_{d(d)} \times \mathbb{R}^{+}$
- Parabolic ("geometric") subgroup

$$
G L(d, \mathbb{R}) \ltimes " \text { Gauge" } \subset E_{d(d)} \times \mathbb{R}^{+}
$$

- E contains topological data of $T M$ and gauge fields

Generalised Frame Bundle

- Can choose coordinates x^{m} on patch $U_{(i)}$
- Construct coordinate basis for E as

$$
\left\{\hat{E}_{M}\right\}=\left\{\frac{\partial}{\partial x^{m}}\right\} \oplus\left\{\frac{1}{2} \mathrm{~d} x^{m} \wedge \mathrm{~d} x^{n}\right\} \oplus \ldots
$$

- Coordinate index $M=1, \ldots, \operatorname{dim}(E)$ for $V \in \Gamma(E)$

$$
V_{(i)}=V^{M} \hat{E}_{M}=v_{(i)}^{m} \frac{\partial}{\partial x^{m}}+\frac{1}{2} \omega_{(i) m n} \mathrm{~d} x^{m} \wedge \mathrm{~d} x^{n}+\ldots
$$

- Generalised frame bundle

$$
F=\left\{\left(x,\left\{\hat{E}_{A}\right\}\right): x \in M \&\left\{\hat{E}_{A}\right\} \text { related to }\left\{\hat{E}_{M}\right\} \text { by } E_{d(d)} \times \mathbb{R}^{+}\right\}
$$

Partial Derivative

- Have embedding

$$
T^{*} M \rightarrow E^{*} \simeq T^{*} M \oplus \Lambda^{2} T M \oplus \ldots
$$

- So can write

$$
\partial_{M}= \begin{cases}\partial_{m} & \mathrm{M}=\mathrm{m} \\ 0 & \text { otherwise }\end{cases}
$$

Dorfman Derivative

- For $V \in \Gamma(E)$ define a derivative

$$
L_{V}=V \cdot \partial-\left(\partial \times_{\operatorname{ad}(F)} V\right)
$$

- Diffeo and gauge invariant \Rightarrow well-defined on E
- Leibnitz property

$$
\left[L_{U}, L_{V}\right]=L_{L_{U} V}
$$

- $\delta_{V}=L_{V}$ generates the bosonic symmetries of SUGRA

$$
L_{V} \sim\left[\mathcal{L}_{v}-(\mathrm{d} \omega+\mathrm{d} \sigma) \cdot\right]
$$

- Exceptional Courant bracket: $\llbracket V, V^{\prime} \rrbracket=\frac{1}{2}\left(L_{V} V^{\prime}-L_{V^{\prime}} V\right)$

Generalised Connections and Torsion anseseew ε xu op: constisiei on

- Take $\Omega_{M} \in \operatorname{ad}\left(E_{d(d)} \times \mathbb{R}^{+}\right)$and set

$$
D_{M} W^{A}=\partial_{M} W^{A}+\Omega_{M}{ }_{B} W^{B}
$$

- For $E_{d(d)} \times \mathbb{R}^{+}$tensor α, define $T(V) \in \operatorname{ad}\left(E_{d(d)} \times \mathbb{R}^{+}\right)$

$$
T(V) \cdot \alpha=L_{V}^{(\partial \rightarrow D)} \alpha-L_{V} \alpha
$$

- Find that

$$
T_{C}^{A}{ }_{B} \in K \oplus E^{*} \subset E^{*} \otimes \operatorname{ad}\left(E_{d(d)} \times \mathbb{R}^{+}\right)
$$

- K matches the embedding tensor, e.g. $\mathbf{9 1 2}_{-1}$ for $d=7$

The bundle N

- Another $E_{d(d)} \times \mathbb{R}^{+}$bundle is given by $N \subset S^{2} E$

$$
\begin{gathered}
N \simeq T^{*} M \oplus \Lambda^{4} T^{*} M \oplus\left(T^{*} M \otimes \Lambda^{6} T^{*} M\right) \\
\oplus\left(\Lambda^{3} T^{*} M \otimes \Lambda^{7} T^{*} M\right) \oplus\left(\Lambda^{6} T^{*} M \otimes \Lambda^{7} T^{*} M\right) \\
N \sim\left\{\begin{array}{cl}
\mathbf{1 3 3}_{+2} & d=7 \\
\mathbf{2 7}^{\prime}+2 & d=6 \\
\mathbf{1 0}_{+2} & d=5 \\
\mathbf{5}^{\prime}+2 & d=4
\end{array}\right.
\end{gathered}
$$

- Find that $\partial f \times_{N^{*}} \partial g=0$
- Section condition of approaches with extra coordinates
[Berman, H.\& M. Godazger \& Perry '11; Berman, Cederwall, Kleinschmidt \& Thompson '12]

N, Jacobi and Curvature

- Another feature of N is that (for $d \leq 6$)

$$
L_{V} V^{\prime}+L_{V^{\prime}} V=\partial \times_{E}\left(V \times_{N} V^{\prime}\right)
$$

- Jacobiator of Courant bracket

$$
\operatorname{Jac}\left(V, V^{\prime}, V^{\prime \prime}\right) \sim \partial \times_{E}\left(\left[V, V^{\prime}\right] \times_{N} V^{\prime \prime}\right)+\text { "cyclic" }
$$

- If $V \otimes_{N} V^{\prime}=0$ then we have linear curvature operator

$$
\left[D_{V}, D_{V^{\prime}}\right]-D_{\llbracket V, V^{\prime} \rrbracket}
$$

- Projections to N measure the failure of all of these things

H_{d} Group

- Maximal compact subgroup of $E_{d(d)} \times \mathbb{R}^{+}$

$E_{d(d)}$	\tilde{H}_{d}	$h^{\perp}=\operatorname{ad}\left(E_{d(d)} \times \mathbb{R}^{+}\right) / \operatorname{ad}\left(H_{d}\right)$
$E_{7(7)}$	$S U(8)$	
$E_{6(6)}$	$U S p(8)$	$\mathbf{3 5}+\mathbf{3 5}+\mathbf{1}$
$\operatorname{Spin}(5,5)$	$\operatorname{Spin}(5) \times \operatorname{Spin}(5)$	$(\mathbf{5}, \mathbf{5})+(\mathbf{1}, \mathbf{1})$
$\operatorname{SL}(5, \mathbb{R})$	$\operatorname{Spin}(5)$	$\mathbf{1 4}+\mathbf{1}$

Supergravity Fields and the Generalised Metric

- Well known that

$$
\left\{g_{m n}, A_{m n p}, \tilde{A}_{m_{1} \ldots m_{6}}, \Delta\right\} \in \frac{E_{d(d)} \times \mathbb{R}^{+}}{H_{d}}
$$

- On patch $U_{i} \subset M$ can build generalised metric G from fields.
- Patching of gauge fields

$$
\begin{aligned}
& A_{(i)}=A_{(j)}+\mathrm{d} \Lambda_{(i j)} \\
& \tilde{A}_{(i)}=\tilde{A}_{(j)}+\mathrm{d} \tilde{\Lambda}_{(i j)}-\frac{1}{2} \mathrm{~d} \Lambda_{(i j)} \wedge A_{(j)}
\end{aligned}
$$

ensures that $G\left(V, V^{\prime}\right)$ is well-defined scalar

Conformal Split Frame

- Special class of frames \sim "vielbeins" of G
- Take $\left\{\hat{e}_{a}\right\}$ vielbein for $g_{m n}$ and dual basis $\left\{e^{a}\right\}$ for $T^{*} M$
- Build "conformal split frame"

$$
\begin{aligned}
\hat{E}_{a}= & \mathrm{e}^{\Delta}\left(\hat{e}_{a}+i_{\hat{e}_{a}} A+i_{\hat{e}_{a}} \tilde{A}+\frac{1}{2} A \wedge i_{\hat{e}_{a}} A\right. \\
& \left.\quad+j A \wedge i_{\hat{e}_{a}} \tilde{A}+\frac{1}{6} j A \wedge A \wedge i_{\hat{e}_{a}} A\right), \\
\hat{E}^{a b}= & \mathrm{e}^{\Delta}\left(e^{a b}+A \wedge e^{a b}-j \tilde{A} \wedge e^{a b}+\frac{1}{2} j A \wedge A \wedge e^{a b}\right), \\
\hat{E}^{a_{1} \ldots a_{5}}= & \mathrm{e}^{\Delta}\left(e^{a_{1} \ldots a_{5}}+j A \wedge e^{a_{1} \ldots a_{5}}\right), \\
\hat{E}^{a, a_{1} \ldots a_{7}}= & \mathrm{e}^{\Delta} e^{a, a_{1} \ldots a_{7}},
\end{aligned}
$$

Conformal Split Frame

- In this frame write
$V=v^{a} \hat{E}_{a}+\frac{1}{2} \omega_{a b} \hat{E}^{a b}+\frac{1}{5!} \sigma_{a_{1} \ldots a_{5}} \hat{E}^{a_{1} \ldots a_{5}}+\frac{1}{7!} \tau_{a, a_{1} \ldots a_{7}} \hat{E}^{a, a_{1} \ldots a_{7}}$
- Set $v=v^{a} \hat{e}_{a} \in T M, \omega=\frac{1}{2} \omega_{a b} e^{a b} \in \Lambda^{2} T^{*} M$, etc...
- Remark: These are patch independent!
- In this frame

$$
G(V, V)=|v|^{2}+|\omega|^{2}+|\sigma|^{2}+|\tau|^{2}
$$

- General H_{d} frame defined by this
- H_{d} frames define principal sub-bundle $P \subset F$ with fibre H_{d}

Volume form

- H_{d} structure provides volume form related to $\operatorname{det}(G)$
- In coordinate frame this evaluates as

$$
\operatorname{vol}_{G}=\sqrt{g} \mathrm{e}^{(c-2) \Delta}
$$

Compatible Connections

- H_{d} compatible connection defined by

$$
D G=0
$$

- Can build from Levi-Civita for $g_{m n}$

$$
D_{M} V^{A}=D_{M}^{(\nabla)} V^{A}+\Sigma_{M}^{A}{ }_{B} V^{B}
$$

- \exists family of Σ s.t. D torsion-free compatible (Not unique!!!)
- $T=0 \Rightarrow$ Some cpts of Σ fixed to be $F, \tilde{F}, \mathrm{~d} \Delta$

Torsion-free compatible connection

- H_{d} algebra $\sim \Lambda^{2} T^{*} M \oplus \Lambda^{3} T^{*} M \oplus \Lambda^{6} T^{*} M$ under $S O(d)$
- $\Sigma(V)=V^{M} \Sigma_{M} \in \operatorname{ad}\left(H_{d}\right)$ then acts as

$$
\begin{aligned}
\Sigma(V)_{a b}= & \mathrm{e}^{\Delta}\left(2\left(\frac{7-d}{d-1}\right) v_{[a} \partial_{b]} \Delta\right.
\end{aligned}+\frac{1}{4!} \omega_{c d} F^{c d}{ }_{a b} .
$$

- $C(V)$ the undetermined parts

Spinors and \tilde{H}_{d} representations

- Actually take double cover \tilde{H}_{d}
- Can embed \tilde{H}_{d} algebra in $\operatorname{Cliff}(d)$ as $\left\{\gamma^{(2)}, \pm \gamma^{(3)}, \gamma^{(6)}\right\}$
- Spinor of $\operatorname{Spin}(d)$ becomes $S^{ \pm}$, fundamentals of \tilde{H}_{d}
- Gravitino ψ_{m} becomes representations $J^{ \pm}$of \tilde{H}_{d}

Even d	Odd d
$S \simeq S^{+} \simeq S^{-}$	$S=S^{+} \oplus S^{-}$
$J \simeq J^{+} \simeq J^{-}$	$J=J^{+} \oplus J^{-}$

Torsion-free compatible (spin) connection hilimam bo, coman a ari inl

- Connection can then act on spinor $\left(\in S^{ \pm}\right)$by

$$
\begin{aligned}
D_{a}= & \mathrm{e}^{\Delta}\left(\nabla_{a}+\frac{1}{2}\left(\frac{7-d}{d-1}\right)\left(\partial_{b} \Delta\right) \gamma_{a}^{b} \pm \frac{1}{2} \frac{1}{4!} F_{a b_{1} b_{2} b_{3}} \gamma^{b_{1} b_{2} b_{3}}\right. \\
& \left.\quad-\frac{1}{2} \frac{1}{7!} \tilde{F}_{a b_{1} \ldots b_{6}} \gamma^{b_{1} \ldots b_{6}}+\not_{a}\right) \\
D^{a_{1} a_{2}}= & \mathrm{e}^{\Delta}\left(\frac{1}{4} \frac{2!}{4!} F^{a_{1} a_{2}}{ }_{b_{1} b_{2}} \gamma^{b_{1} b_{2}} \pm \frac{3}{(d-1)(d-2)}\left(\partial_{b} \Delta\right) \gamma^{a_{1} a_{2} b}+\not^{a_{1} a_{2}}\right. \\
D^{a_{1} \ldots a_{5}}= & \mathrm{e}^{\Delta}\left(\frac{1}{4} \frac{5!}{4!} \tilde{F}^{a_{1} \ldots a_{5}}{ }_{b_{1} b_{2}} \gamma^{b_{1} b_{2}}+中^{a_{1} \ldots a_{5}}\right) \\
D^{a, a_{1} \ldots a_{7}}= & \mathrm{e}^{\Delta}\left(\phi^{a, a_{1} \ldots a_{7}}\right)
\end{aligned}
$$

Unique operators

For torsion-free compatible D, and $\varepsilon \in S, \psi \in J$

$$
\begin{array}{ll}
D \times_{J} \varepsilon & D \times_{S} \varepsilon \\
D \times_{J} \psi & D \times_{S} \psi
\end{array}
$$

are uniquely defined operators, independent of the choice of D

SUSY and fermion equations

- SUGRA theory contains fermions ψ_{m} and ρ
- These can be promoted to \tilde{H}_{d} objects $\psi \in J$ and $\rho \in S$
- Their SUSY variations are

$$
\begin{aligned}
\delta \psi & =\left(D \times_{J} \varepsilon\right) \\
\delta \rho & =\left(D \times_{S} \varepsilon\right)
\end{aligned}
$$

- Their equations of motion are

$$
\begin{aligned}
& \left(D \times_{J} \psi\right)+\left(D \times_{J} \rho\right)=0 \\
& \left(D \times_{S} \psi\right)+\left(D \times_{S} \rho\right)=0
\end{aligned}
$$

Curvatures and bosonic equations

- Closure of SUSY algebra \Rightarrow tensors R^{0} and R

$$
\begin{aligned}
& D \times_{J}\left(D \times_{J} \varepsilon\right)+D \times_{J}\left(D \times_{S} \varepsilon\right)=R^{0} \cdot \varepsilon \\
& D \times_{S}\left(D \times_{J} \varepsilon\right)+D \times_{S}\left(D \times_{S} \varepsilon\right)=R \varepsilon
\end{aligned}
$$

- R^{0} and R are the 2 parts of Ricci tensor $R_{A B}$
- $R_{A B}$ lives in the representation h^{\perp}
- I.e. $R_{A B}$ has same degrees of freedom as bosonic fields

Alternative Form of Curvature

- Can also write the curvature as

$$
\begin{aligned}
& (D \wedge D) \times_{J} \varepsilon+\left(D \times_{N^{*}} D\right) \times_{J} \varepsilon=R^{0} \cdot \varepsilon \\
& (D \wedge D) \times_{S} \varepsilon+\left(D \times_{N^{*}} D\right) \times_{S} \varepsilon=R \varepsilon
\end{aligned}
$$

- This guarantees that 2nd partial derivatives of ε vanish since

$$
\partial \wedge \partial=0 \quad \partial \times_{N^{*}} \partial=0
$$

$d=7$ in $S U(8)$ indices

- Under $S U(8)$ have $E \sim \mathbf{5 6} \rightarrow \mathbf{2 8}+\mathbf{2 8}$ so that

$$
\left(V^{A}\right) \rightarrow\left(V^{[\alpha \beta]}, \bar{V}_{[\alpha \beta]}\right)
$$

- Spin representations:

$$
\begin{array}{ll}
S \sim \mathbf{8}+\overline{\mathbf{8}} & J \sim \mathbf{5 6}+\mathbf{5 6} \\
\varepsilon \rightarrow\left(\varepsilon^{\alpha}, \bar{\varepsilon}_{\alpha}\right) & \psi \rightarrow\left(\psi^{[\alpha \beta \gamma]}, \bar{\psi}_{[\alpha \beta \gamma]}\right)
\end{array}
$$

- Generalised metric $G\left(V, V^{\prime}\right)=\frac{1}{2}\left(V^{\alpha \beta} \bar{V}^{\prime}{ }_{\alpha \beta}+\bar{V}_{\alpha \beta} V^{\prime \alpha \beta}\right)$

- Unique derivatives are

$$
\begin{array}{ll}
D^{[\alpha \beta} \varepsilon^{\gamma]} & \bar{D}_{\alpha \beta} \varepsilon^{\beta} \\
\epsilon_{[\alpha \beta \gamma] \theta_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{5}} D^{\theta_{1} \theta_{2}} \psi^{\theta_{3} \theta_{4} \theta_{5}} & \bar{D}_{\beta \gamma} \psi^{\alpha \beta \gamma}
\end{array}
$$

- SUSY variations of fermions

$$
\delta \psi^{\alpha \beta \gamma}=D^{[\alpha \beta} \varepsilon^{\gamma]} \quad \delta \rho_{\alpha}=-\bar{D}_{\alpha \beta} \varepsilon^{\beta}
$$

- Fermion equations of motion

$$
\begin{aligned}
-\frac{1}{12} \epsilon_{[\alpha \beta \gamma] \theta_{1} \theta_{2} \theta_{3} \theta_{4} \theta_{5}} D^{\theta_{1} \theta_{2}} \psi^{\theta_{3} \theta_{4} \theta_{5}}+2 \bar{D}_{[\alpha \beta} \rho_{\gamma]} & =0 \\
D^{\alpha \beta} \rho_{\beta}-\frac{1}{2} \bar{D}_{\beta \gamma} \psi^{\alpha \beta \gamma} & =0
\end{aligned}
$$

- Curvature

$$
\begin{aligned}
-\frac{1}{12} \epsilon_{\alpha \beta \gamma \delta \delta^{\prime} \epsilon \epsilon^{\prime} \theta} D^{\delta \delta^{\prime}} D^{\epsilon \epsilon^{\prime}} \varepsilon^{\theta}+2 \bar{D}_{[\alpha \beta} \bar{D}_{\gamma] \delta} \varepsilon^{\delta} & =R_{[\alpha \beta \gamma \delta]}^{0} \varepsilon^{\delta} \\
D^{\alpha \beta} \bar{D}_{\beta \gamma} \varepsilon^{\gamma}-\frac{1}{2} \bar{D}_{\beta \gamma} D^{[\alpha \beta} \varepsilon^{\gamma]} & =R \varepsilon^{\alpha}
\end{aligned}
$$

- $\left(R_{[\alpha \beta \gamma \delta]}^{0}, \bar{R}^{[\alpha \beta \gamma \delta]}\right) \in \mathbf{3 5}+\overline{\mathbf{3 5}}$ (Complex self-duality condition)
- Scalar curvature comes out as

$$
R \propto \mathrm{e}^{2 \Delta}\left(\mathcal{R}-6 \nabla^{2} \Delta-12(\partial \Delta)^{2}-\frac{1}{2} \frac{1}{4!} F^{2}-\frac{1}{2} \frac{1}{7!} \tilde{F}^{2}\right)
$$

- Bosonic action

$$
S_{B} \propto \int \operatorname{vol}_{G} R
$$

Supergravity equations: summary

- Bosons:

$$
S=\int \operatorname{vol}_{G} R \quad \Rightarrow \quad R_{A B}=0
$$

- SUSY

$$
\begin{aligned}
\delta \psi & =\left(D \times_{J} \varepsilon\right) \\
\delta \rho & =\left(D \times_{S} \varepsilon\right) \\
\delta G & =\left(\varepsilon \times_{h^{\perp}} \psi\right)
\end{aligned}
$$

- Fermion equations

$$
\begin{aligned}
& \left(D \times_{J} \psi\right)+\left(D \times_{J} \rho\right)=0 \\
& \left(D \times_{S} \psi\right)+\left(D \times_{S} \rho\right)=0
\end{aligned}
$$

- All defined uniquely by the \tilde{H}_{d} structure on E

- Above used decomposition of 11 d spinors into $\operatorname{Spin}(d)$
- Alternatively can embed

$$
\operatorname{Spin}(10-d, 1) \times \tilde{H}_{d} \rightarrow \operatorname{Cliff}(10,1 ; \mathbb{R})
$$

and act directly on $32 \mathrm{cpt} \operatorname{Spin}(10,1)$ spinors

- Again: 2 inequivalent embeddings/representations

$$
\left\{\Gamma^{m n}, \pm \Gamma^{m n p}, \Gamma^{m_{1} \ldots m_{6}}\right\} \text { on } \hat{S}^{ \pm}
$$

- Find $\epsilon \in \hat{S}^{-}, \rho \in \hat{S}^{+}$and $\psi_{m} \in \hat{J}^{-}$
- Provides dimension independent expressions for fermions

Type II theories with RR flux pual or, Geman, toins, sim. Wadame bol

- Can do same thing with $G L(d-1) \subset E_{d(d)} \times \mathbb{R}^{+}$
- Two inequivalent embeddings $G L(d-1) \subset E_{d(d)} \times \mathbb{R}^{+}$ \rightarrow results in IIA and IIB
- Decompositions related by $\operatorname{Pin}(d-1, d-1)$ transformation

Compactifications

- Globally defined spinors $\{\varepsilon\}$ on $M_{\text {int }}$
\rightarrow SUSY in effective theory
- E.g. $\mathrm{N}=1$ in $4 \mathrm{~d} \Leftrightarrow S U(7)$ structure on M_{7} $\mathrm{N}=2$ in $4 \mathrm{~d} \Leftrightarrow S U(6)$ structure on M_{7}
- For identity structure case (maximal SUSY)

Embedding tensor \leftrightarrow Generalised torsion
[Aldazabal, Grana, Marqus \& Rosabal '13]

Supersymmetric Backgrounds

- Clear that $D_{M} \varepsilon=0 \Rightarrow$ SUSY
- In fact SUSY $\Rightarrow \exists$ torsion-free D s.t. $D_{M} \varepsilon=0$
- Analogue of special holonomy for D
- SUSY background $=$ Torsion-free generalised G-structure

Conclusions

- $E_{d(d)} \times \mathbb{R}^{+}$generalised geometrical description of supergravity
- Bosonic sector \leftrightarrow Einstein gravity in generalised geometry
- Obtain all equations with local \tilde{H}_{d} symmetry

Further extensions?

- What happens for $d \geq 8$?
- Need to understand (non-linear) dual gravity
- Superalgebra?
- $T=0$ gives closure of SUSY algebra
- Higher derivative corrections?
- Other supergravities?
- Non-geometric backgrounds?
- Maths: Interesting new kind of algebroids?
- Thanks for your attention!

