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The string landscape
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from [1101.1619]

Many choices:
Compactification 

manifold

Brane configuration
Fluxes

Non-perturbative effects

Gauge groups ...

Looking for vacua<=>scanning over vast parameter space



The string landscape
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?Is there an efficient way to do this?

Look for generic features using Random 
Matrix Theory

Random Matrix Theory in physics:


• Nuclear energy levels
• Condensed matter systems

?What general knowledge can be extracted?

?Statistical description of inflation?



Random SUGRA
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V = eK
(
FAF̄

A − 3|W |2
)

∂AV |cp = 0

H = HSUSY +HK(3)︸ ︷︷ ︸
Wishart+Wishart

+Hpure +HK(4)︸ ︷︷ ︸
Wigner

+Hshift

F-term potential:

Critical point condition:

Hessian matrix:

[Ashok&Douglas 2003;Denef&Douglas 2004;Conlon&Quevedo 2004;
Marsh et al.2011/12;Martinez-Pedrera et al 2012]



Random SUGRA
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[1112.3034]



Random SUGRA

Typical spectra contain (many) 
tachyons

Local minima and inflationary 
c.p. are highly atypical

Large fluctuations of extreme 
eigenvalues:
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Nf

Typical spectrum:

Pmin ∼ e−cNp
f +O(N)



Looking for rare events >>> computationally expensive

 For vacua analysis [1112.3034] & [1207.2763]

Is there a cheaper/faster way?

Study the Wigner ensemble since:

we know joint pdf

we can use known analytical results
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Random SUGRA

HSUGRA ∼ Wigner



The Wigner Ensemble
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M = A+A†

dP (λ1, ...,λNf
) = exp



− 1

σ2

Nf∑

i=1

λ2
i




∏

i<j

(λi − λj)
2

Ensemble of matrices:

Joint prob. distrib.function

Dyson: 1D gas of charged particles 

P (min) =

∫ ∞

0

∏

i

dλidP (λ1, . . . ,λNf
)Minima:
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Semi circle law:

The Wigner Ensemble

Large fluctiuations:

P (∀λ > ξ) = e−2Φ(ξ)N2
f

Dean&Majumdar [condmat/
0609651].

Typical spectrum:



Inflation & Wigner Landscape
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ε = 0At a critical point

To get inflationary c.p. look for

VF ∼ m2
3/2M

2
P m2 ∼ m2

3/2Typically: and

Inflation is rare

η ∼ O(1)

Looking for m ! m3/2 when VF ∼ m2
3/2M

2
P

m ! 1 when VF ∼ M4
P⇔

ηsr =
m2

H2
! 1
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Vacua and Inflation

Minima rarer than inflationary c.p.

Inflationary c.p.: 

P (inf)

P (min)
= (e2∆cN2

f − 1)e2∆̃cN2
f ∼ e2ηΦ

′(0)N2
f +O(η2).

∀λ ≥ −η ∼ −O(0.1)

The steeper c.p. are the most abundant



Inflation in the Wigner Landscape
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P (inf) = e−2Φ(−η)N2
f − e−2Φ(η)N2

f .

P (inf) ∼ e−(0.402±0.02)N2
f .

Exact result:

Best fit:

Inflation is exponentially 
rare

but...



Inflation vs. Vacua
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n"Inflation is more abundant 
than minima!

P (inf)

P (min)
∼ e0.1N

2
f

If we are sitting at a minimum there are many inflationary 
inflection points around us



Comparison with full Hessian
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Minima:

P (min) ∼ e0.29N
1.5
f ∼ e0.06N

2
f P (min) ∼ e0.55N

2
f

Difference due to shape of spectrum

>>

Qualitatively similar, c.p. in the full case are much more 
likely

(Full SUGRA) (Wigner)



Dynamics of inflation
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For a given Nf, how many fields are dynamical?

Single field: N_f field:

Strong repulsion

Most probable configuration between extremes
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Dynamics of inflation



Inflation and Strings
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[Cicoli&Quevedo:1108.2659]
[Burgess&McAllister:1108.2660]

Large field:

Small field:

∆φ > MP

∆φ < MP e.g. Kahler moduli IIB

e.g. axion monodromy

Tensor-to-scalar ratio: r = 16ε

∆φ

MP
∼ O(1)

√
r

0.01
Lyth:

Large field:

Small field: r < 0.01

r > 0.01



Small field
dominates:
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Large vs Small field
Assume:

•IIB flux compactifications.
•Large field = Axion monodromy

Nsmall ∼ NCY ×Nc.p. × βmin × βflat−saddle

Nlarge ∼ NCY ×Nc.p. × βmin × βaxion−monod

Drake Eqs.:

βflat−saddle ! 1

βflat−saddle ! βaxion−monod

P∆φ60>MP

P∆φ60<MP

=
Nlarge

Nsmall
∼ βaxion−monod

βflat−saddle
< 1

[Westphal 1206.4034]
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Summary:

๏  Exponentially more inflationary c.p. than        local minima,


๏ Multiple dynamical fields,
 
๏ Small field dominates over large field,


๏ No tensor modes at current level,
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What next?

๏  Almost critical points may play an important role


๏  Generalization to full random SUGRA


๏  How to connect critical points?


๏  What observational signals to expect?


