Supersymmetric Hidden Sectors

for Heterotic Standard Models

Burt Ovrut
Volker Braun, Yang-Hui He

New Developments in Gravity,
Cosmology and Strings
Ludwig Maximillians University
Munich, Germany
March, 2013

The Compactification Vacuum

Calabi-Yau Threefold:

Consider the fiber product $\tilde{X}=B_{1} \times \mathbb{P}_{1} B_{2}$ where B_{1}, B_{2} are both $d P_{9}$ surfaces. In a region of their moduli space such manifolds admit a fixed point free $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ isometry. Then

$$
X=\frac{\tilde{X}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}
$$

is a smooth Calabi-Yau threefold torus-fibered over $d P_{9}$ with fundamental group

$$
\pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}
$$

Its Hodge data is

$$
h^{1,1}=\underset{\substack{b^{\ell / 2} \\ \text { ignore complex structure }}}{3}
$$

Relevant here is the Dolbeault cohomology group

$$
H^{1,1}(X, \mathbb{C})=\operatorname{span}_{\mathbb{C}}\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}
$$

where $\omega_{i}=\omega_{i a \bar{b}} d z^{a} d \bar{z}^{\bar{b}}$ are dimensionless (I, 1)-forms on X with the properties

$$
\omega_{3} \wedge \omega_{3}=0, \quad \omega_{1} \wedge \omega_{3}=3 \omega_{1} \wedge \omega_{1}, \quad \omega_{2} \wedge \omega_{3}=3 \omega_{2} \wedge \omega_{2}
$$

Defining the intersection numbers as

$$
d_{i j k}=\frac{1}{v} \int_{X} \omega_{i} \wedge \omega_{j} \wedge \omega_{k}, \quad i, j, k=1,2,3
$$

where v is a reference volume \Rightarrow

$$
d_{i j k}=\left(\begin{array}{ccc}
\left(0, \frac{1}{3}, 0\right) & \left(\frac{1}{3}, \frac{1}{3}, 1\right) & (0,1,0) \\
\left(\frac{1}{3}, \frac{1}{3}, 1\right) & \left(\frac{1}{3}, 0,0\right) & (1,0,0) \\
(0,1,0) & (1,0,0) & (0,0,0)
\end{array}\right)
$$

The $\{i j\}$-th entry is the triplet $\left(d_{\{i j\} k} \mid k=1,2,3\right)$.

Noting that the structure group of TX is $\mathrm{SU}(3)$, we find that and

$$
\begin{gathered}
c_{1}(T X)=c_{3}(T \nmid)=0 \\
c_{2}(T X)=\frac{1}{v^{2 / 3}}\left(12 \omega_{1} \wedge \omega_{1}+12 \omega_{2} \wedge \omega_{2}\right)
\end{gathered}
$$

Choosing the $\operatorname{SU}(3)$ generators to be hermitian \Rightarrow

$$
c_{2}(T X)=-\frac{1}{16 \pi^{2}} \operatorname{tr} R \wedge R
$$

where \mathbf{R} is the curvature two-form. Note that $H^{2,0}=H^{0,2}=0$ on a Calabi-Yau threefold $\Rightarrow H^{1,1}(X, \mathbb{C})=H^{2}(X, \mathbb{R})$.
Furthermore, each $\omega_{i}, i=1,2,3$ is dual to an effective curve
\Rightarrow the Kahler cone is the positive quadrant

$$
\mathcal{K}=H_{+}^{2}(X, \mathbb{R}) \subset H^{2}(X, \mathbb{R})
$$

\Rightarrow The Kahler form can be expanded as

$$
\omega=a^{i} \omega_{i}, \quad a^{i}>0, \quad i=1,2,3
$$

The a^{i} are the (I,I) Kahler moduli. Define the dimensionless volume modulus

$$
V=\frac{1}{v} \int_{X} \sqrt{{ }^{6} g}=\frac{1}{6 v} \int_{X} \omega \wedge \omega \wedge \omega=\frac{1}{6} d_{i j k} a^{i} a^{j} a^{k}
$$

It is useful to consider the scaled "shape" moduli

$$
b^{i}=V^{-1 / 3} a^{i}, \quad i=1,2,3
$$

They satisfy the constraint

$$
d_{i j k} b^{i} b^{j} b^{k}=6
$$

and, hence, represent only two degrees of freedom.
Note that all moduli a^{i}, V, b^{i} are functions of the four coordinates $x^{\mu}, \mu=0, \ldots 3$ of Minkowski space M_{4}.

Observable Sector Vector Bundle:

Consider a holomorphic vector bundle $\tilde{V}^{(1)}$ on \tilde{X} with structure group $S U(4) \subset E_{8}$ constructed as the extension

$$
0 \rightarrow V_{1} \rightarrow \tilde{V}^{(1)} \rightarrow V_{2} \rightarrow 0
$$

of two rank 2 bundles V_{1}, V_{2} that is equivariant under $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
Take the observable sector vector bundle $V^{(1)}$ on X to be

$$
V^{(1)}=\frac{\tilde{V}^{(1)}}{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}
$$

The $\mathrm{SU}(4)$ structure group \Rightarrow

$$
E_{8} \longrightarrow \operatorname{Spin}(10)
$$

The asociated Chern classes are $c_{1}\left(V^{(1)}\right)=0$, and

$$
c_{2}\left(V^{(1)}\right)=\frac{1}{v^{2 / 3}}\left(\omega_{1} \wedge \omega_{1}+4 \omega_{2} \wedge \omega_{2}+4 \omega_{1} \wedge \omega_{2}\right)
$$

$$
c_{3}\left(V^{(1)}\right)=3 \Rightarrow \text { three matter families }
$$

Choosing E_{8} generators \Rightarrow

$$
c_{2}\left(V^{(1)}\right)=-\frac{1}{16 \pi^{2}} t r_{E_{8}} F^{(1)} \wedge F^{(1)}
$$

To preserve $\mathrm{N}=\mathrm{I}$ supersymmetry in four-dimensions, $V^{(1)}$ must be

- slope - stable • vanishing slope
where the slope is defined as

$$
\mu(\mathcal{F})=\frac{1}{\operatorname{rank}(\mathcal{F}) v^{2 / 3}} \int_{X} c_{1}(\mathcal{F}) \wedge \omega \wedge \omega
$$

Clearly

$$
\mu\left(V^{(1)}\right)=0
$$

It will be slope-stable if seven "maximally destabilizing" line sub-bundles have negative slope. This translates into the the following seven conditions.

$$
\begin{array}{r}
-3\left(a^{1}-a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)-18 a^{1} a^{2}<0 \\
3\left(a^{1}-a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)-18 a^{1} a^{2}<0 \\
6\left(a^{1}-a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)<0 \\
-6\left(a^{1}-a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)-18 a^{1} a^{2}<0 \\
-3\left(5 a^{1}-2 a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)+9 a^{1} a^{2}<0 \\
-3\left(4 a^{1}-a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)+9 a^{1} a^{2}<0 \\
3\left(a^{1}-4 a^{2}\right)\left(a^{1}+a^{2}+6 a^{3}\right)+9 a^{1} a^{2}<0
\end{array}
$$

The subspace $\mathcal{K}^{s} \subset \mathcal{K}$ satisfying these conditions is given by

Figure 1: Map projection of the unit sphere intersecting the Kähler cone, that is, the positive octant in $H^{2}(X, \mathbb{R}) \simeq \mathbb{R}^{3}$. The visible sector bundle $V^{(1)}$ is stable inside the red teardrop-shaped region \mathcal{K}^{s}. Every point in the projection represents a ray in the Kähler cone. For example, $\left(a^{1}, a^{2}, a^{3}\right)=(0,1,0)$ generates the ray in the ω_{2} direction.

In addition to $V^{(1)}$ turn on two flat Wilson lines, each generating a different \mathbb{Z}_{3} factor of the $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ homotopy. \Rightarrow

$$
S p i n(10) \longrightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}
$$

Hidden Sector Vector Bundle:

We will consider the bundle entirely as the sum of holomorphic line bundles classified by the elements of

$$
H^{2}(X, \mathbb{Z})=\left\{a \omega_{1}+b \omega_{2}+c \omega_{3} \mid a, b, c \in \mathbb{Z}, a+b=0 \bmod 3\right\}
$$

Denote the line bundle associated with

$$
\mathcal{O}_{X}(a, b, c)
$$

It is not necessary for a, b, c to be even integers since the bundle is always "spin".

Choose the hidden sector bundle to be

$$
V^{(2)}=\oplus_{r=1}^{R} L_{r}, \quad L_{r}=\mathcal{O}_{X}\left(l_{r}^{1}, l_{r}^{2}, l_{r}^{3}\right)
$$

where

$$
l_{r}^{1}+l_{r}^{2}=0 \bmod 3, \quad r=1, \ldots, R
$$

The structure group is $U(1)^{R}$ where each factor group has a specific embedding into the hidden E_{8}.
Since $V^{(2)}$ is a sum of line bundles \Rightarrow

$$
c_{1}\left(V^{(2)}\right)=\sum_{r=1}^{R} c_{1}\left(L_{r}\right), \quad c_{1}\left(L_{r}\right)=\frac{1}{v^{2 / 3}}\left(l_{r}^{1} \omega_{1}+l_{r}^{2} \omega_{2}+l_{r}^{3} \omega_{3}\right)
$$

and

$$
c_{2}\left(V^{(2)}\right)=c_{3}\left(V^{(2)}\right)=0
$$

However, the relevant quantity is

$$
c h_{2}\left(V^{(2)}\right)=\sum_{r=1}^{R} c h_{2}\left(L_{r}\right)=\sum_{r=1}^{R} \frac{1}{2} c_{1}\left(L_{r}\right) \wedge c_{1}\left(L_{r}\right)
$$

Specifically, we will need
where

$$
\frac{1}{16 \pi^{2}} \operatorname{tr}_{E_{8}} F^{(2)} \wedge F^{(2)}=\sum_{r=1}^{R} a_{r} c_{1}\left(L_{r}\right) \wedge c_{1}\left(L_{r}\right)
$$

$$
a_{r}=\frac{1}{4} \operatorname{tr}_{E_{8}} Q_{r}^{2}
$$

Q_{r} is the generator of the i-th $\mathrm{U}(\mathrm{I})$ factor embedded into the 248 representation of the hidden E_{8}

Wrapped Five-Branes:

The vacuum can also contain five-branes wrapped on two-cycles $\mathcal{C}_{2}^{(n)}, n=1, \ldots, M$ in X. \Rightarrow Each five-brane is described by a $(2,2)$-form $W^{(n)}$ Poincare dual to $\mathcal{C}_{2}^{(n)}$. To preserve $\mathbf{N}=$ I supersymmetry, each $W^{(n)}$ must be an effective class.

The Vacuum Constraint Conditions

Anomaly Cancellation:

$-\frac{1}{16 \pi^{2}} \operatorname{tr} R \wedge R+\frac{1}{16 \pi^{2}} \operatorname{tr}_{E_{8}} F^{(1)} \wedge F^{(1)}+\frac{1}{16 \pi^{2}} \operatorname{tr}_{E_{8}} F^{(2)} \wedge F^{(2)}-\sum_{m=1}^{M} W^{(m)}=0$ or equivalently

$$
c_{2}(T X)-c_{2}\left(V^{(1)}\right)+\sum_{r=1}^{R} a_{r} c_{1}\left(L_{r}\right) \wedge c_{1}\left(L_{r}\right)-W=0, \quad W=\sum_{m=1}^{M} W^{(m)}
$$

This can be expanded in the basis of $H^{4}(X, \mathbb{R})$ dual to $\left(\omega_{1}, \omega_{2}, \omega_{3}\right)$.
The coefficient of the i-th vector in this basis is found by wedging each term with ω_{i} and integrating over X .
We find

$$
\begin{aligned}
& \frac{1}{v^{1 / 3}} \int_{X}\left(c_{2}(T X)-c_{2}\left(V^{(1)}\right)\right) \wedge \omega_{1,2,3}=\left(\frac{4}{3}, \frac{7}{3},-4\right) \\
& \frac{1}{v^{1 / 3}} \int_{X} c_{1}\left(L_{r}\right) \wedge c_{1}\left(L_{r}\right) \wedge \omega_{i}=d_{i j k} \ell_{r}^{j} \ell_{r}^{k}, \quad i=1,2,3 \\
& W_{i}=\left(\frac{4}{3}, \frac{7}{3},-4\right)_{i}+\sum_{r=1}^{R} a_{r} d_{i j k} k_{r}^{j} \ell_{r}^{k} \geq 0, \quad i=1,2,3
\end{aligned}
$$

\Rightarrow the anomaly condition becomes

$$
\text { - } \quad W_{i}=\left(\frac{4}{3}, \frac{7}{3},-4\right)_{i}+\sum_{r=1}^{R} a_{r} d_{i j} k_{r}^{j j} r_{r}^{k} \geq 0, \quad i=1,2,3
$$

Supersymmetric Hidden Sector Bundle:

Each $\mathrm{U}(\mathrm{I})$ factor in the structure group of $V^{(2)}$ leads to an an anomalous $U(I)$ gauge group in the $d=4$ effective theory and an associated D-term. Let L_{r} be any of the sub-line bundles. The Fayet-Iliopoulos term is
where

$$
\left.\begin{array}{r}
F I^{U(1)_{r}} \propto \mu\left(L_{r}\right)-\frac{g_{s}^{2} l_{s}^{4}}{v^{2} / 3} \int_{X} c_{1}\left(L_{r}\right) \wedge
\end{array} \begin{array}{c}
\text { Anderson, Gray, Lukas, Ovrut } \mathcal{O}\left(\kappa^{4 / 3}\right) \\
\text { tree levelumhagen, Honecker, Weigand }
\end{array}\right)
$$

$$
g_{s}=e^{\phi_{10}}, l_{s}=2 \pi \sqrt{\alpha^{\prime}}, \lambda_{m} \in\left[-\frac{1}{2}, \frac{1}{2}\right]
$$

are the string coupling/length and m-th five-brane modulus.

Assuming the vev's of all $U(1)^{R}$ charged zero-modes vanish \Rightarrow the hidden sector is $\mathrm{N}=\mathrm{I}$ supersymmetric iff each $F I^{U(1)^{\prime}}=0 . \Rightarrow$

$$
\begin{aligned}
\int_{X} c_{1}\left(L_{r}\right) \wedge \omega & \wedge \omega-g_{s}^{2} l_{s}^{4} \int_{X} c_{1}\left(L_{r}\right) \wedge \\
& \left(\sum_{s=1}^{R} a_{s} c_{1}\left(L_{s}\right) \wedge c_{1}\left(L_{s}\right)+\frac{1}{2} c_{2}(T X)-\sum_{m=1}^{M}\left(\frac{1}{2}+\lambda_{m}\right)^{2} W^{(m)}\right)=0
\end{aligned}
$$

for $r=1, \ldots, R$. Using

$$
\frac{1}{v^{1 / 3}} \int_{X} \frac{1}{2} c_{2}(T X) \wedge \omega_{i}=(2,2,0)_{i}
$$

\Rightarrow the hidden sector supersymmetry condition becomes

- $d_{i j k} l_{r}^{i} a^{j} a^{k}-\frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\left(d_{i j k} \ell_{r}^{i} \sum_{s=1}^{R} a_{s} \ell_{s}^{j} \ell_{s}^{k}+\ell_{r}^{i}(2,2,0)_{i}-\sum_{m=1}^{M}\left(\frac{1}{2}+\lambda_{m}\right)^{2} \ell_{r}^{i} W_{i}^{(m)}\right)=0$ for $r=1, \ldots, R$.

Gauge Threshold Corrections:

The gauge couplings of the non-anomalous components of the observable and hidden sector gauge interactions have been computed to the string one-loop level. Including five-branes these are
and

$$
\begin{array}{r}
\frac{4 \pi}{g^{(1) 2}}=\frac{1}{6 v} \int_{X} \omega \wedge \omega \wedge \omega-\frac{g_{s}^{2} l_{s}^{4}}{2 v} \int_{X} \omega \wedge \\
\left(-c_{2}\left(V^{(1)}\right)+\frac{1}{2} c_{2}(T X)-\sum_{\substack{m=1 \\
\text { one level }- \text { loop }}}^{M}\left(\frac{1}{2}-\lambda_{m}\right)^{2} W^{(m)}\right)
\end{array}
$$

$$
\begin{aligned}
& \frac{4 \pi}{g^{(2) 2}}=\frac{1}{6 v} \int_{X} \omega \wedge \omega \wedge \omega-\frac{g_{s}^{2} l_{s}^{4}}{2 v} \int_{X} \omega \wedge \\
&\left(\sum_{r=1}^{R} a_{r} c_{1}\left(L_{r}\right) \wedge c_{1}\left(L_{r}\right)+\frac{1}{2} c_{2}(T X)-\sum_{m=1}^{M}\left(\frac{1}{2}+\lambda_{m}\right)^{2} W^{(m)}\right)
\end{aligned}
$$

respectively. Clearly $g^{(1) 2}, g^{(2) 2}$ must be positive. \Rightarrow

$$
\begin{aligned}
\frac{1}{3} \int_{X} \omega \wedge \omega \wedge \omega-g_{s}^{2} l_{s}^{4} \int_{X} \omega \wedge(& -c_{2}\left(V^{(1)}\right) \\
& \left.+\frac{1}{2} c_{2}(T X)-\sum_{m=1}^{M}\left(\frac{1}{2}-\lambda_{m}\right)^{2} W^{(m)}\right)>0 \\
\frac{1}{3} \int_{X} \omega \wedge \omega \wedge \omega-g_{s}^{2} l_{s}^{4} \int_{X} \omega \wedge(& \sum_{r=1}^{R} a_{r} c_{1}\left(L_{r}\right) \wedge c_{1}\left(L_{r}\right) \\
& \left.+\frac{1}{2} c_{2}(T X)-\sum_{m=1}^{M}\left(\frac{1}{2}+\lambda_{m}\right)^{2} W^{(m)}\right)>0
\end{aligned}
$$

Re-writing these in terms of the moduli gives

- $d_{i j k} a^{i} a^{j} a^{k}-3 \frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\left(-\left(\frac{8}{3} a^{1}+\frac{5}{3} a^{2}+4 a^{3}\right)+2\left(a^{1}+a^{2}\right)-\sum_{m=1}^{M}\left(\frac{1}{2}-\lambda_{m}\right)^{2} a^{i} W_{i}^{(m)}\right)>0$ and
- $d_{i j k} a^{i} a^{j} a^{k}-3 \frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\left(d_{i j k} a^{i} \sum_{r=1}^{R} a_{r} \ell_{r}^{j} \ell_{r}^{k}+2\left(a^{1}+a^{2}\right)-\sum_{m=1}^{M}\left(\frac{1}{2}+\lambda_{m}\right)^{2} a^{i} W_{i}^{(m)}\right)>0$
for the observable and hidden gauge couplings respectively.

Example: Constraints For A Single Line Bundle

Consider the case where the hidden sector consists of a single line bundle
with

$$
V^{(2)}=L, \quad L=\mathcal{O}_{X}\left(l^{1}, l^{2}, l^{3}\right)
$$

$$
l^{1}, l^{2}, l^{3} \in \mathbb{Z}, \quad l^{1}+l^{2}=0 \bmod 3
$$

The explicit embedding of L into E_{8} is as follows. Recall

$$
S U(2) \times E_{7} \subset E_{8}
$$

is a maximal subgroup. With respect to $S U(2) \times E_{7}$

$$
\underline{248} \longrightarrow(\underline{1}, \underline{133}) \oplus(\underline{2}, \underline{56}) \oplus(\underline{3}, \underline{1})
$$

We embed the generator Q of the $U(I)$ structure group of L so that under

$$
S U(2) \rightarrow U(1)
$$

the two-dimensional $\operatorname{SU}(2)$ representation decomposes as

$$
\underline{2} \rightarrow \underline{1} \oplus-\underline{1}
$$

It follows that the $\mathrm{U}(\mathrm{I})$ structure group breaks

$$
E_{8} \rightarrow U(1) \times E_{7}
$$

such that

$$
\underline{248} \longrightarrow(0, \underline{133}) \oplus((1, \underline{56}) \oplus(-1, \underline{56})) \oplus((2, \underline{1}) \oplus(0, \underline{1}) \oplus(-2, \underline{1}))
$$

The generator Q can be read off from this expression. It follows that

$$
a=\frac{1}{4} \operatorname{tr}_{E_{8}} Q^{2}=1
$$

For the single line bundle with this embedding--and assuming there is only a single five-brane with modulus λ--the anomaly, hidden supersymmetry and positive squared gauge coupling constraints become

$$
\begin{gathered}
W_{i}=\left(\frac{4}{3}, \frac{7}{3},-4\right)_{i}+d_{i j k} \ell^{j} \ell^{k} \geq 0, \quad i=1,2,3 \\
d_{i j k} \ell^{i} a^{j} a^{k}-\frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\left(d_{i j k} \ell^{i} \ell^{j} \ell^{k}+\ell^{i}(2,2,0)_{i}\right. \\
\left.-\left(\frac{1}{2}+\lambda\right)^{2} \ell^{i} W_{i}\right)=0, \\
d_{i j k} a^{i} a^{j} a^{k}-3 \frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\left(-\left(\frac{8}{3} a^{1}+\frac{5}{3} a^{2}+4 a^{3}\right)+\right. \\
\left.+2\left(a^{1}+a^{2}\right)-\left(\frac{1}{2}-\lambda\right)^{2} a^{i} W_{i}\right)>0, \\
d_{i j k} a^{i} a^{j} a^{k}-3 \frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\left(d_{i j k} a^{i} \ell^{j} \ell^{k}+\right. \\
\left.+2\left(a^{1}+a^{2}\right)-\left(\frac{1}{2}+\lambda\right)^{2} a^{i} W_{i}\right)>0 .
\end{gathered}
$$

respectively. We must solve these along with the conditions for the slope-stability of the observable sector E_{8} bundle. Note that these equations, as well as the conditions for slope-stability, are homogeneous with respect to the rescaling

$$
\left(a^{1}, a^{2}, a^{3}, \frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\right) \mapsto\left(\mu a^{1}, \mu a^{2}, \mu a^{3}, \mu^{2} \frac{g_{s}^{2} l_{s}^{4}}{v^{2 / 3}}\right), \quad \mu>0
$$

\Rightarrow one can set $\frac{g_{s}^{2} s_{s}^{4}}{v^{2 / 3}}=1$.

Let us try to solve this using

$$
V^{(2)}=L=\mathcal{O}_{X}(1,2,3) \Rightarrow\left(l^{1}, l^{2}, l^{3}\right)=(1,2,3)
$$

This gives

$$
W=(16,10,0) \Rightarrow \text { effective }
$$

$\mathrm{FI}=0 \Rightarrow$

$$
a^{3}=\frac{-2\left(a^{1}\right)^{2}-\left(a^{2}\right)^{2}-24 a^{1} a^{2}-108 \lambda^{2}-108 \lambda+117}{6\left(2 a^{1}+a^{2}\right)}
$$

Inserting this leads to three polynomial inequalities in a^{1}, a^{2}, λ.
\Rightarrow Scan through the range $-\frac{1}{2} \leq \lambda \leq \frac{1}{2}$ and plot the region of validity in the $a^{1}-a^{2}$ plane.

For example, choosing

$$
\lambda=0.496
$$

\Rightarrow
(a)

(b)

(c)

Figure 2: The two-dimensional slice through the Kähler cone where the FIterm of the hidden line bundle $L=\mathcal{O}_{X}(1,2,3)$ with five-brane position $\lambda=0.496$ vanishes. The slice is parametrized by $\left(a^{1}, a^{2}\right)$ with a^{3} given by (61). In red, the visible sector stability condition, see sub-figures a) and c). In blue, the region where the both the visible and hidden sector gauge couplings are positive, see sub-figures b) and c). Their intersection is drawn in yellow, see sub-figure c).

Figure 3: The Kähler cone, in 3 dimensions (top) and the projection in radial directions (bottom). The blue region \mathcal{K}^{+}is our hidden sector solution for $L=\mathcal{O}_{X}(1,2,3)$ at $\lambda=0.496$. It shows the Kähler moduli $\omega=a^{1} \omega_{1}+a^{2} \omega_{2}+a^{3} \omega_{3}$ simultaneously satisfying the $F I=0$ condition and the positivity of the visible and hidden sector gauge couplings. The red region \mathcal{K}^{s} is the stability region of the visible sector bundle from Figure 1. The intersection $\mathcal{K}^{s} \cap \mathcal{K}^{+}$is where all physical constraints are satisfied.

Spectrum For A Single Line Bundle

For the above embedding of $\mathrm{L}, E_{8} \rightarrow U(1) \times E_{7}$ and

$$
\underline{248} \longrightarrow(0, \underline{133}) \oplus((1, \underline{56}) \oplus(-1, \underline{56})) \oplus((2, \underline{1}) \oplus(0, \underline{1}) \oplus(-2, \underline{1}))
$$

The multiplicity of each representation is given by the associated sheaf cohomology.We find

$U(1) \times E_{7}$ representation	Multiplicity	Multiplicity if L is ample
$(0, \underline{\mathbf{1 3 3}})$	$h^{0}\left(X, \mathcal{O}_{X}\right)$	$h^{0}\left(X, \mathcal{O}_{X}\right)$
$(1, \underline{\mathbf{5 6}})$	$h^{0}(X, L)+h^{2}(X, L)$	$h^{0}(X, L)$
$(-1, \underline{\mathbf{5 6}})$	$h^{0}\left(X, L^{*}\right)+h^{2}\left(X, L^{*}\right)$	0
$(2, \underline{1})$	$h^{0}\left(X, L^{2}\right)+h^{2}\left(X, L^{2}\right)$	$h^{0}\left(X, L^{2}\right)$
$(-2, \underline{1})$	$h^{0}\left(X, L^{2 *}\right)+h^{2}\left(X, L^{2 *}\right)$	0
$(0, \underline{\mathbf{1}})$	$h^{0}\left(X, \mathcal{O}_{X}\right)$	$h^{0}\left(X, \mathcal{O}_{X}\right)$

Table 1: Matter spectrum for the $E_{8} \rightarrow U(1) \times E_{7}$ breaking pattern with a line bundle L. The multiplicity counts the number of left-chiral $N=1$ multiplets with the given gauge charge.

On a Calabi-Yau threefold one always has

$$
h^{0}\left(X, \mathcal{O}_{X}\right)=h^{3}\left(X, \mathcal{O}_{X}\right)=1
$$

with the remaining two 0 . Our chosen line bundle

$$
V^{(2)}=L=\mathcal{O}_{X}(1,2,3) \quad \Rightarrow \quad\left(l^{1}, l^{2}, l^{3}\right)=(1,2,3)
$$

is "ample" \Rightarrow The multiplicities are then reduced to the to the right-hand column of the Table. It follows from the the Atiyah-Singer index theorem that

$$
\begin{aligned}
h^{0}\left(X, \mathcal{O}_{X}\left(\ell_{1}, \ell_{2}, \ell_{3}\right)\right) & =\int_{X}\left(\frac{1}{12} c_{1}\left(V^{(2)}\right) \wedge c_{2}(T X)+\operatorname{ch}_{3}\left(V^{(2)}\right)\right) \\
& =\frac{1}{3} \ell_{1}^{i}+\frac{1}{3} \ell_{2}^{i}+\frac{1}{6} \sum_{r, s, t=1}^{3} \kappa_{r s t} \ell_{r}^{i} \ell_{s}^{i} \ell_{t}^{i}
\end{aligned}
$$

and, hence

$$
\begin{aligned}
h^{0}(X, L) & =8 \text { for } L=\mathcal{O}_{X}(1,2,3) \\
h^{0}\left(X, L^{2}\right) & =58 \text { for } L^{2}=\mathcal{O}_{X}(2,4,6)
\end{aligned}
$$

We conclude that the complete $U(1) \times E_{7}$ matter spectrum of the hidden sector is

$$
\underline{1} \times(0, \underline{133})+\underline{8} \times(1, \underline{56})+\underline{58} \times(2, \underline{1})+\underline{1} \times(0, \underline{1})
$$

